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Abstract 
We give some perspective on the present state of intelli-

gent control for particle accelerators. This is based on our 
experience over the past 14 years in developing artificial-
intelligence-based tools specifically to address modeling 
and control challenges found in particle accelerator sys-
tems.  

INTRODUCTION 
Despite the rush to incorporate artificial intelligence (AI) 

into every component of our lives, not all systems (or sub-
systems) require intelligent control or data analysis for re-
liable operation. As the old saying goes, “Just because you 
can [build it/use it] doesn’t mean you should.” Some sys-
tems, however, can greatly benefit from the responsible 
and well-architected incorporation of control techniques 
with intelligent characteristics. 

Although other fields, such as computer vision and web 
search engines, were quick to adopt AI or AI-like tools, the 
field of accelerator physics has been more reluctant. How-
ever, things have advanced in several areas, such as com-
puting and data collection, and these advances have truly 
enabled the research and subsequent application of AI tech-
niques to particle accelerator. But, as with anything new, 
the APS News (June 2018, “AI Makes Inroads in Physics”) 
notes there are still challenges [1]. 

Here we review several examples of complex systems 
that can benefit from intelligent control methodologies, 
i.e., cases that were otherwise under-responsive when sim-
pler, less advanced approaches were applied. The case ex-
amples on which we focus deal with particle accelerators 
that are used in many disciplines including fundamental 
discovery science and engineering.  

ACCELERATOR CHALLENGES  
INTERESTING FOR INTELLIGENT  

CONTROL AND MODELING SCHEMES 
Upon examining the machines used for physics we note 

that since 1938, accelerator science has an estimated influ-
ence on almost one-third of physicists and physics studies, 
and on average contributed to physics Nobel Prize-winning 
research every 2.9 years [2]. Further, as one example of the 
prevalence of particle accelerators, we look to the United 

States. In support of its science mission, the U.S. Depart-
ment of Energy (DOE) operates large scientific instru-
ments that support the work of more than 50,000 scientists 
worldwide. Large particle accelerators are at the core of 
eleven of the seventeen National User Facilities that DOE 
operates. Particle accelerators also have roles in the indus-
trial, medical, security, defense, environmental, and energy 
sectors. The performance goals and complexities of parti-
cle accelerators are ever increasing to meet the needs of the 
science and applications.  

Several characteristics of the more complex existing and 
future particle accelerators are interesting for employing 
intelligent controls or modeling schemes. For instance, 
there are many parameters to monitor and control in vari-
ous sub-systems, and accelerators have many interacting 
sub-systems. Applications can have on-demand, fast 
changes in the accelerator operational states. Accelerators 
can have many small, compounding errors. The accelerator 
physics of certain machines can be riddled with complex 
and/or non-linear dynamics having potential detrimental 
instabilities or other collective effects for effective ma-
chine operation. Often, the machine model does not resem-
ble the as-built machine, so there are challenges in diag-
nosing and/or interpreting the operational behavior from 
day one of operation. Accelerator systems often exhibit 
time-varying and non-stationary behavior. Diagnostics for 
the beam, systems, and peripherals are also often limited 
because of cost, space, and the inability to physically char-
acterize the overall system at all locations. In addition, 
even when diagnostics are in existence, they are often not 
put to full use in control schemes (e.g., images). A final 
concern is that systems or system peripherals are re-pur-
posed in “new” machines, meaning that the equipment was 
not originally intended for use in such a configura-
tion/specification. 

WHAT DO ARTIFICIAL INTELLIGENCE 
(AI) AND RELATED TERMS MEAN? 

The exact definitions of artificial intelligence and its re-
lated techniques are somewhat fluid in terms of interpreta-
tion in the community. Figure 1 attempts to help the reader 
classify the areas of artificial intelligence and related areas 
covered in this paper [3].  
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Figure 1: Classification space of artificial intelligence (AI) 
and related techniques [3]. 

Artificial intelligence is the concept of enabling ma-
chines to have intelligence similar to that of living beings. 
Where mathematical optimization involves the minimiza-
tion or maximization of some objective function to select a 
target with regard to some criteria, machine learning allows 
some representation of the data to be learned and put to use 
in a specific task. Neural networks are a common method 
of machine learning employing many integrated pro-
cessing units. There are many genres of neural networks 
and schemes for their training. Deep learning is concerned 
with hierarchical representations and is often equated with 
many-layered neural networks. 

HOW TO USE AI CONCEPTS FOR  
ACCELERATORS 

AI-based and related concepts can feed into controls en-
gineering and takes inspiration from actual operators of the 
system. How? These concepts incorporate optimization 
(finding sweet spots), model learning, planning and predic-
tion, learning control, diagnostic analysis, and system con-
straints into their models. 

EXAMPLES OF RECENT AI-BASED  
CONTROLS ACTIVITIES 

Our team has conducted design architectures and simu-
lations [4] and proof-of-principle experiments in artificial-
intelligence-based control of particle accelerators. Here we 
describe several examples. 

On beamlines at the Australian Synchrotron, the Linac 
Coherent Light Source (LCLS), and the Fermi@Elettra at 
Sincrotrone Trieste [5-10], we were able to experimentally 
stabilize the electron beam energy and energy spread in the 
presence of klystron phase and amplitude jitter. We also 

demonstrated a novel controller that maintains maximum 
transmission through the machine. 

The resonant frequency of a normal-conducting, radio-
frequency (rf) electron gun is controlled thermally with a 
circulating water system adjusted as needed to the required 
temperature. At Fermilab, we were able to demonstrate bet-
ter control of a water system with long, variable time de-
lays due to large thermal time constants and variable rates 
of water transport. The existing PI controller for this sys-
tem was unable to stabilize the temperature quickly and 
produced a large overshoot. For example, in a 1 °C change 
in the temperature set point of the gun, it takes approxi-
mately 25 minutes to settle and produces a maximum over-
shoot of > 0.5 °C. Using the method of an applied model 
predictive control (MPC) with a neural network model 
trained on measured data, the temperature was fixed in un-
der six minutes and without overshoot [11-12].  

In another normal-conducting device at Fermilab (a 
high-intensity, radio-frequency quadrupole (RFQ) to be 
used for the PIP-II upgrade program) we developed a res-
onance control system exploring several approaches, in-
cluding a neural network control policy [13-15]. 

With the Thomas Jefferson National Accelerator Facility 
(JLAB) we have been collaborating on approaches for au-
tomatic steering tune-up on the now former free-electron 
laser (FEL) recovery linac. After taking data during tune-
up and machine studies, a neural network (NN) model 
learned the beam position monitor responses to changes in 
dipole and quadrupole magnets. By interacting with the 
model, an NN control policy was then used to quickly jump 
to desired trajectories with specified position offsets 
[12,16-17]. 

We are also exploring ways to rapidly switch between 
operational set-points, such as two output wavelengths in a 
FEL user facility, or different beam energies in inspection 
systems. Using a neural network control policy trained 
over a broad range of operating conditions, one may be 
able to quickly and automatically execute these actions (for 
example, switching between different energies while main-
taining a match to the undulator [18]). 

Another area of exploration involves using a convolu-
tional/fully-connected NN to predict downstream beam pa-
rameters for certain machine set-points; this is an important 
first step toward creating an NN controller that can directly 
use image diagnostics [19].  

CONCLUSIONS 
Our collaborations have made some of the first imple-

mentations on accelerators around the globe. Additional 
activities through new grants and contracts will permit ad-
ditional progress for our community. 

In the last ten months, three workshops have been held 
demonstrating the interest in artificial intelligence tech-
niques as applied to particle accelerators as well as physics 
in general. The first, “Intelligent Controls for Particle Ac-
celerators,” was held 30-31 January 2018 at Daresbury La-
boratory [20]. The second, “ICFA Beam Dynamics Mini-
Workshop: Machine Learning Applications for Particle Ac-
celerators,” was held 27 February-2 March 2018 at SLAC 
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[21]. The third, “Physics Next: Machine Learning,” was 
held by the American Physical Society Physical Review 
publications group in New York on 8-10 October 2018 
[22]. 

Outside of research and discussions on the technical as-
pects of artificial intelligence techniques, there are also im-
portant ethical discussions underway regarding these pow-
erful tools. The Institute of Electrical and Electronics En-
gineers (IEEE) is actively engaged in investigating these 
topics. One significant IEEE activity, established in 2016, 
is the IEEE Global Initiative on Ethics of Autonomous and 
Intelligent Systems. It is an open, global, and inclusive (re-
gionally, culturally, gender, etc.) community of experts and 
interested persons from technology and human science. Its 
mission is to ensure that every stakeholder involved in the 
design and development of autonomous and intelligent sys-
tems is educated, trained, and empowered to prioritize eth-
ical considerations so that these technologies are advanced 
for the benefit of humanity. One outcome from this initia-
tive is a standard [23]. In addition, the IEEE P7000 series 
of standardization projects is an ongoing process that seeks 
to gather more concrete guidelines through consensus in a 
meaningful time frame [24]. 
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