
DEVELOPMENT OF ACOP .NET STARS TRANSPORT LAYER
T. Kosuge†, H. Nitani, Y. Nagatani, H. Ishii

High Energy Accelerator Research Organization, 3050801 Tsukuba, Japan
J. Szczesny, P. Duval, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany

Abstract
Simple transmission and retrieval system (STARS) is

an extremely simple and flexible software for small scale
control systems with TCP/IP sockets. It is used by sys-
tems such as the beamline control system, and other sys-
tems at the KEK Photon Factory (KEK-PF). STARS
works on various operating systems; therefore, STARS
client developers can choose their preferred programming
language. .NET is commonly used to develop graphical
user interface (GUI) applications for beamline control at
the KEK-PF.

Advanced component oriented programming (ACOP),
which was developed by DESY, is very useful for GUI
development, and a .NET version of ACOP was recently
developed. ACOP communicates with various systems
through a transport layer. We are currently developing
ACOP .NET STARS transport layer. So far, we have
succeeded in adding very primitive functionality.

OVERVIEW OF STARS
Simple transmission and retrieval system (STARS) is a

software for small-scale control systems [1,2]. STARS
consists of a STARS server and STARS clients. Each
client is connected to the STARS server via a TCP/IP
socket and handles text-based messages. The current
version of the STARS server is written in Perl; therefore,
STARS users can choose their preferred operating system
and programming language for STARS client develop-
ment.

Node Name and Hierarchical Structure
Every STARS client has its own unique node name that is

used to identify the destination of the STARS text- Figure

Figure 1: Message transportation on STARS.*

based message. Figure 1 shows examples of STARS mes-
sage transportation. If a STARS client that has “Term1” as

a node name sends a text-based message of the form
“Dev1 xxx”, the message will be delivered to the client
“Dev1”. Hierarchical structure node names that are sepa-
rated with a period “.” are available, and the server uses
the first part of the node name as the destination.

Command, Reply and Event

Figure 2: STARS message structure.*

Figure 2 shows the structure of a STARS message. The
first part before “>” shows the origin of the message, and
the next part before the first whitespace shows the desti-
nation of the message. The string which follows the first
whitespace character can be either a command, a reply, or
an event. A reply string starts with “@”, an event string
starts with “_”, and a command string does not contain a
preceding symbol. The strings can also contain values.

Event Delivery Function
STARS has an event delivery function. An event deliv-

ery request is registered by sending a “flgon” command to
the server, which also has a node name “System”. Figure
3 shows an example the event delivery function. “Tm1”
and “Tm2” request an event from “Dev1” by sending
“System flgon Dev1” to the server. After the registration,
if “Dev1” sends an event to the server, the message is
delivered to “Tm1” and “Tm2”.

Figure 3: Event delivery function of STARS.*

Dev1Tm1

STARS
Server I/O ClientUser Client

Dev1 => Tm1

System _changed XX
Dev1>Tm1 _changed XX

User Client

Tm2

Dev1 => Tm2

Dev1>Tm2 _changed XX

† takashi.kosuge@kek.jp
* Source: http://stars.kek.jp/

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-THCB2

THCB2
144

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

GUI Technologies and Frameworks, User Interfaces and Tools for Operations

Certification Procedure
STARS has a simple certification procedure.
• Host name certification
• Node name and keyword certification
• Node name and host name certification (optional)
The server checks the client’s host name first. If the cli-

ent passes host name certification, the server then sends a
random number to the client. The client must then send its
node name and keyword corresponding to the number.
After keyword validation, the server checks node name
and host name, if necessary.

STARS Interface Library
STARS is a very simple system, and the development

of a STARS client is easy if the programmer can handle
TCP/IP socket and text. However, there may be some
difficulty for beginners. STARS provides interface librar-
ies and tools that help in the development of a STARS
client as follows:

• Perl interface library
• Python interface library
• C interface library
• Java interface library
• .NET interface library
• Perl STARS client development wizard
• Windows form C# template for Visual Studio
• Windows form VB .NET template for Visual Studio
Using the interface library, programmers can develop a

STARS client while avoiding TCP/IP complexity.

STARS CLIENTS
STARS users can add new functions to their control

system by developing STARS clients. STARS clients can
be roughly classified into two types as IO clients and User
clients. An IO client behaves like a device driver and
controls hardware. User interface clients, including graph-

ical user interface (GUI), are called User clients. A gen-
eral purpose system can be developed if common com-
mands are defined and a standard control system with
STARS for KEK-PF beamline is introduced. Figure 4
shows a common beamline control system at the KEK-PF.
The system provides the same command interface (getting
values or setting values etc. of the hard ware). The beam-
line users can choose their preferred software such as
LabVIEW, SPEC, common GUI program provided by the
KEK-PF, or their own developed program.

Debugger
A client with the node name “Debugger” has a special

purpose. When connected to the STARS server, the client
can receive a copy of messages sent to all clients from the
STARS server. “Debugger” works effectively during
troubleshooting.

ACOP .NET
Advanced component oriented programming (ACOP)

helps in the development of GUI programs [3]. The .NET
version of ACOP was newly developed by DESY and is
still under development.

ACOP tools appear in the Microsoft Visual Studio
toolbox if ACOP .NET is installed (Figure 5). Powerful
GUI tools (e.g., AcopChart and AcopLabel) can be used
to choose and deploy the designer screen. ACOP supports
TINE [4, 5] protocol, and programmers can develop the
GUI without having to write the source code.

ACOP .NET STARS TRANSPORT LAYER
We started the development of ACOP .NET STARS

transport layer to support STARS protocol. The primitive
part of the transport layer was developed. ACOP .NET
transport layer is written in C# and we added code for
STARS.

Figure 4: Standard control system for KEK-PF beamline that provides common interface commands.

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-THCB2

GUI Technologies and Frameworks, User Interfaces and Tools for Operations
THCB2

145

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 5: ACOP tools in Toolbox of Microsoft Visual
Studio.

STARS .NET Interface Library
ACOP .NET STARS transport layer communicates with

the STARS server through STARS .NET interface library
(Fig. 6), which processes the connection and the keyword
certification procedure during connection.

Figure 6: ACOP .NET STARS transport layer and
STARS .NET interface library.

Mapping of Name Space
Mapping of name space between ACOP and STARS is

one of the primary issues. The procedure to allocate name
space for device names, properties, and commands was
discussed, and the first version of the mapping table was
generated (Table 1).

Table 1: Name Space Mapping Table

ACOP Properties STARS Name Space

Context Node name of GUI

Subsystem Not allocated

Server Host name : Port number

Device Node name of IO Client

Property [Command /] Reply / Event

Context of ACOP is mapped to its own GUI node name
of STARS. Server is mapped to host name and port num-
ber of STARS server, which are separated with the “:”

character. Device is mapped to node name of STARS IO
client that is being monitored by this GUI client. Property
is mapped to the part of STARS command, reply, or
event. Multiple messages can be defined using the “/”
character as a separator. This first version of mapping will
be improved after practical examination.

Attach and STARS Event
If the attach method in ACOP .NET STARS transport

layer is called, the event delivery function of STARS is
enabled by sending the “flgon” command to the STARS
server, and the information of the request such as host
name, node name, etc. is registered in the address list. The
attach method does not send the “flgon” command again
if the same information is in the list.

EXAMPLE OF PROGRAMMING
STARS Windows form template for Visual Studio (C#

or Visual Basic) helps in the development of the STARS
GUI Client. Once the new Visual Studio project is created
with the template, primitive source code that handles the
method of the STARS .NET interface library is created
automatically. However, this means that the programmer
must carefully examine the source code and handle func-
tions for communication with the STARS server.
ACOP .NET with STARS transport layer allows for
source code with less programing on the part of the pro-
grammers. Figure 7 shows an example of ACOP chart
properties in the property window of Visual Studio. The
host name of STARS server, node name etc. can be set
with ACOP by editing these transport properties. The
programmer requests the procedure that chooses an ACOP
component from the tool box, deploys the component on
the form, and sets parameters.

Figure 7: Property window of ACOP chart.

The ACOP address editor is a useful tool for setting
ACOP transport properties (Figure 8). The editor window
appears by clicking the button in the address editor field.
“LinkAddress” property is generated automatically by
entering “Context,” “Server,” “Device,” and “Property” in

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-THCB2

THCB2
146

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

GUI Technologies and Frameworks, User Interfaces and Tools for Operations

the text fields of the address editor. If the “Auto-Attach”
check box is marked, the “AutoLinkAttach” property
becomes “True.” The component is attached automatical-
ly when the program is started, and parameters are set if
the “OK” button is clicked.

Figure 8: ACOP address editor.

Test with IO Client Simulator
We prepared an IO client simulator that returned values

of the sine curve, added small noise values, and created a
GUI client having an ACOP chart, and an ACOP button.
Figure 9 shows a screenshot of the telnet terminal con-
nected to the STARS server with the node name “Debug-
ger.” The “GetValue” command from the GUI named
“AcopStarsTest” to IO client simulator named “testdev,”
and the reply message from “testdev” is observed on the
screen.

STARS handles text-based messages only, and the IO
client simulator returns values in text. Type-conversion
(strings to integer, float etc.) is achieved by ACOP .NET
STARS transport layer automatically. Figure 10 is a
screenshot of a GUI client. We verified that the ACOP
chart shows graph of values from the IO client simulator
correctly.

Figure 9: Screenshot of debugger.

Figure 10: Screen shot of STARS GUI client with ACOP.

ACOP Spider
ACOP has a debugging tool called ACOP spider. The

debugging function is enabled by deploying “AcopSpi-
der” on the form. If the “AcopSpider” icon is clicked
when the program is running, the debugging window
appears on the screen and shows the connection infor-
mation. The debugging window has “Active Links,” “All
Links,” and “Messages” tabs. Figure 11 shows the debug-
ging window with the “Messages” tab active. We verified
that the ACOP spider works satisfactorily on debugging
as well.

Figure 11: Debugging with ACOP spider.

CONCLUSION
We have succeeded in developing a first version of

ACOP .NET STARS transport layer and obtained suffi-
cient results upon making a GUI STARS client with
ACOP. The name space mapping between ACOP and
STARS still needs to be refined. Checking all the ACOP
components and replacing the name space mapping table
(if necessary) will be the next steps in the development.

REFERENCES
[1] STARS, http://stars.kek.jp
[2] T. Kosuge and Y. Nagatani, “STARS: Current Develop-

ment Status,” in Proc. PCaPAC’14, Karlsruhe, Germany,
Oct. 2014, paper WPO019, p. 75.

[3] I. Krznar et al., “New ACOP Beans and TINE General
Purpose Diagnostic Applications,” in Proc. ICALEPCS’09,
Kobe, Japan, Oct. 2009, paper TUP034, p 161.

[4] TINE, http://tine.desy.de
[5] P. Duval and S. Herb, “The TINE Control System Proto-

col: How to Achieve High Scalability and Performance,”
in Proc. PCaPAC’10, Saskatoon, Canada, Oct. 2010, paper
WECOAA02, p. 19.

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-THCB2

GUI Technologies and Frameworks, User Interfaces and Tools for Operations
THCB2

147

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

