

ACOP.NET: NOT JUST ANOTHER GUI BUILDER
P. Duval, M. Lomperski, J. Szczesny, H. Wu, DESY, Hamburg, Germany

T. Kosuge, KEK, Tsukuba, Japan
J. Bobnar, Cosylab, Ljubljana, Slovenia

Abstract

ACOP (Advanced Component Oriented Programming)
tools have been useful in control system GUI application
development for some time, originally as an ActiveX
component [1] offering a transport layer and a multi-
faceted chart and then later as a suite of components in
the Java world [2]. We now present a set of ACOP
components for development in .NET. And where the
emphasis in the past has been primarily on rapid
application development of rich clients, this new palette
of components is designed both for fully featured rich-
client development in any of the .NET supported
languages (C#, C++, VB, F#) as well as for fully
configurable clients (with design-time browsing), where
no programming on the part of the developer is necessary,
and of course for any combination between these
extremes. This is an important point, which will become
clear when we contrast application development with
ACOP.NET with other control system GUI builders such
as Control System Studio (CSS) [3] and Java DOOCS
Data Display (jDDD) [4]. Although Visual Studio is the
GUI builder of choice, we will present other available
options, for example on Linux. Examples using transport
plugs for TINE [5], STARS [6] and EPICS Channel
Access [7] will be given.

INTRODUCTION
The control system for a particle accelerator or other

large facility must meet stringent requirements for stable
operation. And it must offer diagnostic tools for spotting,
finding and fixing problems as well as online and offline
analysis tools for examining machine data and improving
operations. This much goes without saying. Yet, the
control system is often judged by its operational interface,
i.e. at the presentation level.

There are several strategies for providing the operators,
engineers, and machine physicists with useful control
system applications. These applications can be provided
by a controls group. Or application development tools
can be given to the end users so that they might generate
the controls applications themselves. Or … both. And
note that the three groups of end users mentioned above
will each have a different perspective as to what a
controls application should be able to do. They are also
likely to have different skill sets concerning programming
abilities and understanding the various aspects of the
machine being controlled.

A very common strategy is to have a controls group
provide certain core applications, but to allow the
operators and engineers to create control panels using
some framework, where no programming skills are

required, and where, more often than not, programming is
not even possible. This is for instance the case of CSS,
Taurus [8], and jDDD, each of which provides the panel
developer with a rich set of displayer widgets, which can
be attached to a control system address, and combined
with other graphical widgets providing some display
logic. Here it is assumed that there is no need to program
any additional display logic, although this would be
nominally possible with Taurus in a Qt environment.

Machine physicists, on the other hand, frequently need
higher level control in order to ‘test things’ and improve
the overall performance of the machine. That is, they
need to be able to program at the client side. A common
strategy here is to provide control system components in a
mathematically based programming environment such as
MatLab or Python (and NumPy).

This two-pronged approach, a panel builder for basic
display and control applications, and MatLab or Python
support for high level controls, is common to many
accelerator facilities.

Yet another strategy is to support rich client
development using rapid application development (RAD)
tools. This approach has met with great success at HERA
and PETRA-3 where RAD tools in either Visual Basic
and ACOP ActiveX or Java and ACOP beans were used
by both the controls group and machine physicists to
develop applications [9].

We shall now describe ACOP.NET which provides a
single application development paradigm, offering both a
non-programming panel building environment as well as
a fully-programmable environment (and of course any
combination between these two extremes). In fact, a
panel application without a single line of user code can be
extended by supplying additional logic at any later date.

ACOP AND .NET
ACOP was originally designed as a RAD tool in the

ActiveX world [1] and was predominately used in Visual
Basic applications. It featured a very powerful chart, with
a number of control system oriented features and a
transport layer. It was later ported to java and expanded
to include a variety of displayer beans suitable for rich
client development in java [2].

Now, in general, rich client development in java
requires more extensive programming skills than
programming in Visual Basic. Thus, it is very tempting to
offer a panel building framework with smart widgets
which can be configured at design time and remove the
programing aspect entirely from the application
developer. This is in fact the approach of both CSS and
jDDD, where an application might exist as an XML file

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-THCB1

GUI Technologies and Frameworks, User Interfaces and Tools for Operations
THCB1

139

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

which is interpreted and rendered at runtime. Taurus
likewise makes use of an XML configuration file which is
rendered at runtime, but here the platform is Python rather
than java.

The latest variant of ACOP, which we now present, also
offers a panel building paradigm with smart widgets
configured at design time. The developer need not write a
single line of code, but does need to choose a .NET
programing language. The finished ACOP application
will exist as a single executable file. The development
project consists of a .NET solution and code modules
(maintained by the Visual Studio designer) instead of
XML files. The executable is every bit as portable as a
java application and can be run under mono [10] on non-
windows systems.

As noted earlier, not all control system application
needs can be met by pure configuration (no matter how
many ‘CALC’ records or properties are invented on the
server side). A team responsible for high level controls
will typically require an interface to Python or MatLab in
order to be able to 1) program and 2) to make use of the
available mathematical packages.

And here the beauty of ACOP.NET comes to shine.
Any ACOP.NET application can instantly become a rich
client (and easily leverage third party mathematics and
other packages). The developer will be able to choose
among such languages as Visual Basic (VB), C#,
C++/CLI, and F#, tailoring an application to his own
programing preferences. Thus, some thought should go
into the question as to which language to choose for a
particular controls project, even if it might be destined to
remain a simple configured panel. And, as an aside to
Python aficionados, note that Python and .NET can be
combined via Python for .NET [11].

.NET, Visual Studio, and Mono
Microsoft .NET enjoys a wide acceptance and client

base in the industrial and business world, if not in the
control system community. Applications written in .NET
on a Windows platform can generally be run on a Linux
or Mac platform as is via mono (which is now technically
sponsored by Microsoft). Although ACOP.NET GUI
applications can in principle be written using mono
developer on a Linux platform, it is strongly
recommended to make use of Visual Studio, which
features an integrated designer capable of writing and
isolating the GUI component relevant code. As the
community version of Visual Studio can be downloaded
and installed free of charge this should not present any
cost or licensing burdens on the developer.

The current version of ACOP.NET makes use of
WinForms, which are mature, wide-spread, and
encompass an extensive variety of common components.

Real vs. Graphical Programming
As is the case with any panel builder the developer can

configure a useful, working application by simply setting
design time properties in the GUI builder (here Visual
Studio). ACOP.NET offers design-time browsing of the

control system, so that the developer is not required to
know a priori the end-point addresses he wishes to attach
to the ACOP.NET displayers.

Often, an application can only go so far by merely
attaching addresses to displayers before some simple
display logic is desired. This can be something as
mundane as changing display characteristics based on a
condition, or applying some trivial manipulation of the
associated data before it is displayed.

If there is no ability to actually code something, then
the GUI builder might solve logic problems by offering
additional logical widgets (e.g. jDDD), which is
tantamount to offering a form of graphical programming.
Problems of data manipulation (because the data acquired
from a control system address is not in the form needed
for display) are then passed on to the front end, where
new properties (or CALC records) are invented to make
the displayer’s life easier (although not necessarily the
front-end developer’s).

None of this is necessary with ACOP.NET, as simple
logical decisions can be coded simply in the developer’s
favorite language, just as minor data manipulation prior to
display can be coded easily. And when more extensive
experimentation with front end data is required there is
effectively no alternative to programming.

The ACOP.NET control widgets can be used as is in
any application and these include shape widgets which
might be useful in synoptic displays. These can be used
side by side with the standard .NET or other 3rd-party
components.

Runtime Features minus Popup Pollution
The ACOP controls do not themselves launch

independent, non-modal windows. Thus there is no
danger of inadvertently filling the desktop with disjointed
display windows (Popup Pollution). Launching a
separate daughter window, if that is in fact desired,
requires a tiny bit of code, where the click event of the
launching component is used to show the additional
ACOP Form.

On the other hand many controls such as the chart do
offer context menus whereby various properties can be
edited, or settings applied at runtime.

Should an ACOP control be bound to a control system
address which is not responsive, an initial modal window
is displayed alerting the user to this fact. Likewise, some
components will alert the user to a failure via a modal
window, for instance, when an access lock cannot be
obtained, or a setting cannot be applied.

Data acquisition errors are otherwise displayed, where
possible, within the ACOP displayer component in the
given error color and blinking state. In addition for many
components a specific error value can be supplied, which
will supersede the last displayed value upon any data
acquisition error.

Some ACOP components are in fact designed to
interact with other ACOP components. This is
particularly true of the ACOP Chooser, which allows a
user to make an end-point address change (such as

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-THCB1

THCB1
140

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

GUI Technologies and Frameworks, User Interfaces and Tools for Operations

changing the targeted device or context) at run-time and
apply the change to those ACOP components designated
at design time. The ACOP Status Bar can likewise set the
enabled state of a list of designated components from true
(expert mode) to false (read-only mode). Finally those
ACOP components which can apply settings can also set
selected properties of specific components in lieu of
control system end points. For example an ACOP Wheel
Switch could be used to set the Y-Axis Maximum of a
chart.

If no explicit tool tip text is provided for an ACOP
Component, it will offer the targeted end point address.
This is not true of the ACOP Chart however (except for
the chart frame). The application designer can instead
specify an auto-link-update mouse move tool tip where
the displayed data vs. horizontal coordinates or simply the
chart coordinates can be displayed.

ACOP Components
As noted earlier the preferred framework for building

ACOP applications is Microsoft Visual Studio. When
making use of one of the ACOP project templates, the
ACOP components should already be included in the
toolbox, as shown below in Fig. 1. New Acop Forms can
be added via the project’s Add New Item context menu.

Figure 1: Starting a new project: an empty ACOP
application.

As can be seen in the figure above, the basic ACOP

components consist of 20 GUI components plus a non-
GUI ACOP Link component which can be used in
situations where explicit programming is necessary. Of
these 20 components, there are two specialty components,
the ACOP Spider and the ACOP Status Bar. The ACOP
Spider is useful as a debugging portal, where specific link
information is made available. And the ACOP Spider is
itself contained within the ACOP Status Bar, which serves
as a menu footer when placed on an ACOP Form (and is
included by default on the primary ACOP Form when
making use of an application template).

In addition, there are several shape components, which
can be used in synoptic display. See Fig. 2 below.
Synoptic displays often make use of clusters of
components which are repeated on a panel’s façade. The
application designer can make his life easier by either
selecting the entire cluster and copy-and-paste or by

including the cluster in his own .NET component (Project
Solution category = Class Library), which can then be
used and re-used in any ACOP application.

Figure 2. A synoptic display example.

Control System Plugins
ACOP components offer a control-system independent

transport interface to obtain and display data from the
attached control system end points. A supported control
system protocol needs to provide a .NET plugin library
which implements the ACOP Transport interface. Over
the years there have been many, many transport layers
which purport to provide a common interface to various
known control systems, and we will not name them here.
In addition to this requisite feature, an ACOP transport
plugin should also provide browsing instructions and
transport information and statistics, useful in debugging
an application.

Although some ACOP components might make use of
the browsing interface at runtime (such as the ACOP
Chooser), this feature is mostly called upon at design
time, obviating the need for the developer to be aware of
and key in control system end-point addresses.

The transport information interface is used to provide a
snapshot of the application’s connectivity via the ACOP
Spider, which is embedded in the ACOP Status Bar but
can also be placed independently on any ACOP form. A
green spider indicates no connectivity issues and a mouse
click on the spider will launch one of the few non-modal
windows automatically available to an ACOP application,
where the application’s connection tables can be
examined in more detail. An example of connection
information window is shown in Fig. 3 below.

Figure 3: An example of the connection information made
available by the ACOP Spider.

 The end point address paradigm used in the ACOP

transport API is one of a 4-tiered hierarchy, following that
used by the TINE control system as well as DOOCS [12]
and TANGO [13]. The top level is the Link Context,

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-THCB1

GUI Technologies and Frameworks, User Interfaces and Tools for Operations
THCB1

141

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

followed by the Link Server, the Link Device (which
together form the link end-point address), and the Link
Property (which specifies the method or attribute to be
accessed at the end point). As this does not directly fit
some control system protocols, an ACOP plugin can turn
off browsing and make use a simple Link Address or
provide a mapping into the ACOP hierarchy. For example,
Channel Access [7] does not provide any systematic
hierarchy other than a flat namespace appended by a
known set of meta-property decorations. STARS has a
more-or-less open hierarchy. In such cases one can simply
supply a Link Address without browsing or make use of
extra naming services specific to the control system site
(e.g. where control system addresses are maintained by
LDAP or other file system services), in which case the
ACOP plugin used for a particular control system
protocol would be site specific.

To this end, ACOP.NET is somewhat TINE centric, as
it makes allowances for features available in TINE (such
as multi-channel arrays, property-oriented server
browsing, structured data, etc.) which are not available in
other control systems. This is hardly a short-coming and
is in analogy with CSS being EPICS centric, jDDD being
DOOCS centric, and TAURUS being TANGO centric.

In any event, an ACOP transport plugin must be written
as a .NET DLL which utilizes the AcopPlugin interface.
This is shown in Fig. 4.

Figure 4: Acop Transport plugins.

An application can make use of multiple plugins if

desired. Plugin information, such as the default protocol
for an ACOP widget or design-time browsing instructions,
can be supplied in the AcopTransport.dll.config file,
deployed during setup and installation.

APPLICATION BUILDING
As mentioned earlier, the most sensible method of

building an ACOP application is by making use of some
flavor of Microsoft Visual Studio. In addition it is
recommended to make use of one of the ACOP
application templates for C#, VB, or VC++ development.
The choice of language might seem irrelevant if one is not
intending to program. If however, the application is
likely to be long-lived, a modicum of thought concerning
the programming skills of those who might want to add a
finishing-touch at some later stage is nonetheless
encouraged.

Installing ACOP.NET
ACOP.NET is most easily installed on a Windows

machine by making use of the Setup utility found on the
ACOP.NET Web page [14]. A pre-requisite is an existing
installation of Visual Studio. Depending on the ACOP
plugins selected, the corresponding control system should
also be installed on the local host.

Following the installation, a new Visual Studio project
will offer an AcopCSApplication in the C# Templates
category and an AcopVBApplication in Visual Basic
Templates. Selecting one of these will produce an empty
application panel resembling that shown above in Fig. 1.

Configuring Simple Panels
Starting with the blank slate shown in Fig. 1 above, one

then places the GUI components one wants on the empty
panel, as with any modern GUI builder. The ACOP
components have their own properties and events, some
of which are specific to display and GUI interactions, as
well as others pertinent to data acquisition. The latter fall
into the category Acop.Transport, which is shown in the
designer property grid in Fig. 5 below.

Figure 5: An ACOP application in design mode,
highlighting the Acop. Transport category.

It is here that design time browsing can greatly assist in

finding a control system end point address and its
corresponding property display characteristics, although
these values can also be keyed in by hand in the designer.

Further help for the application programmer is provided
through various modal designer editors which allow
multiple settings of ACOP properties at the same time.
For instance the Address Editor, shown below in Fig. 6, is
available to all ACOP GUI components and allows
browsing and selection of multiple link properties in a
logical and intuitive manner, in place of setting these
properties one by one in the property grid.

Otherwise each ACOP component will offer specific
display properties in the designer property grid.

If synoptic displays are desired, the ACOP shape
components can be utilized for basic shape design. These
are likewise smart components, which can display control
system data as well as adjust display settings such as fore
and back colors and the blinking state based on

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-THCB1

THCB1
142

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

GUI Technologies and Frameworks, User Interfaces and Tools for Operations

comparing incoming data to given thresholds. More
complicated shapes can easily be built from the basic
shapes.

Figure 6: The design-time ACOP Address Editor.

Adding Code
One can generate a powerful and fully operative control

system application via the simple panel configuration
method described above. And it is easy enough to take
the application to the next level by adding a smattering of
code, which just might help render the application a bit
more intuitive and functional to the end user.

An event delegate can be supplied for any of the
common GUI component events (such as mouse click, or
mouse move, etc.) as well as ACOP transport events (such
as Link Update or Link Error). There are likewise
numerous ACOP API calls to obtain the control system
data so that the application might make use of it.

For instance if the value at the cursor position over an
ACOP Chart display is needed in an ACOP Table cell, this
could be achieved as follows: 1) Get the drawn data by
supplying a link update delegate; 2) Catch the mouse
move over the chart with a mouse move event delegate,
which also provides the drawn data array index; 3) Add
this element to in the desired ACOP Table cell.

Runtime Options
Various ACOP GUI properties and actions can be also

be accessed at runtime, via associated context menus.
And as noted earlier, the ACOP Status Bar provides the
ACOP Spider and its runtime debugging capabilities. It
also provides runtime printing options (including print to
logbook) as well as application mode settings (read-only
vs. expert).

CONCLUSIONS
There are of course numerous packages which can be

used as control system GUI builders. CSS and jDDD are
java-based panel builders, which do not offer the ability to
program (although they are both able to launch
independent applications or scripts). Taurus is python
based and allows simple panel building (with some
hidden python programming) as well as additional
programming (in python) at an expert level through the Qt
designer. In addition, PyQt, MatLab and LabView all
offer GUI building with extensive programing capabilities

(as long as there is an interface to the control system), but
do not offer simple designer panels.

ACOP.NET on the other hand provides a GUI building
package which can cover the entire spectrum from simple
designer panel to complex application with as much
computational programing as is desired and offers design-
time browsing of the control system. When one does
need to or wish to add code, this is again aided by the
Visual Studio designer providing event delegates and
intelli-sense information, and can be done in one of
several languages suited to the developer’s needs. The
available languages range from Visual Basic (for those
whose programing skills are not particularly pronounced)
to C# (for the java aficionados) to F# (for those who
prefer functional programing), along with C++/CLI for
C++ purists. Additional packages such as Math.NET and
Python.NET can provide the user with a rich development
environment indeed.

ACKNOWLEDGEMENTS
We would like to thank Graham Cox, STFC Daresbury

Laboratory, UK, for his assistance in providing the EPICS
Channel Access .NET library [15] for discussions
concerning its integration into ACOP.NET.

REFERENCES

[1] I. Deloose, P. Duval, H. Wu, “The Use of ACOP Tools in
Writing Control System Software”, ICALEPS’97, 1997.

[2] J. Bobnar, et al., “The ACOP family of beans: the
framework independent approach”, ICALEPCS’07, 2007.

[3] CSS website, http://www.csstudio.org

[4] jDDD website, http://jddd.desy.de

[5] TINE website, http://tine.desy.de

[6] STARS website, http://stars.kek.jp

[7] EPICS website, http://www.aps.anl.gov/epics

[8] Taurus website, https://taurus-scada.org

[9] P. Duval and H. Wu, “Using ACOP in HERA Control
Applications”, PCaPAC’00, 2000.

[10] MONO website, https://www.mono-project.com

[11] Python for .NET website, http://pythonnet.github.io

[12] DOOCS website, http://doocs.desy.de

[13] TANGO website, http://www.tango-controls.org

[14] ACOP.NET Website, http://acop.desy.de
[15] G. Cox, “A .NET Interface for Channel Access”,

PCaPAC’08, 2008.

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-THCB1

GUI Technologies and Frameworks, User Interfaces and Tools for Operations
THCB1

143

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

