
USING TKINTER OF PYTHON TO CREATE GRAPHICAL USER
INTERFACE (GUI) FOR SCRIPTS IN LNLS

D. B. Beniz†, A. M. Espindola‡, Brazilian Synchrotron Light Laboratory, Campinas, Brazil

Abstract
Python is being widely used to create scripts which

cover different necessities in computational scenario. At
LNLS (Brazilian Synchrotron Light Laboratory) we suc-
cessfully developed Python scripts to control beamlines
operations, including a case of GUI (Graphical User
Interface) creation using Tkinter [1] for one of LNLS
beamlines, DXAS (Dispersive X-ray Absorption Spec-
troscopy) [2]. In this article its motivation and some im-
plementation details will be presented.

MOTIVATION
The decision to use Python to build a GUI was based

on the previous experience with such programming lan-
guage in LNLS. There is a library package, called Py4Syn
[3], developed in LNLS with Python version 3.4 and in
use to control beamline devices, like motors and detec-
tors, and to operate a sequence of actions to perform spe-
cific experiments by synchronization of a set of such
devices and storing of collected data into files formatted
in columns to facilitate their analysis. Controllers of such
devices have software abstractions, IOCs (Input/Output
Controllers), developed in EPICS (Experimental Physics
and Industrial Control System) [4] which resources, PVs
(Process Variables), are available in the laboratory net-
work via CA (Channel Access) [5] protocol. Python offers
packages to control such resources, with PyEPICS [6], to
perform mathematical calculations and data matrix ma-
nipulation, with NumPy [7], and to display data as
graphics, with Matplotlib [8], this way it facilitated the
development of Py4Syn.

Once we had the tool to elaborate scripts to orchestrate
synchrotron beamline experiments, Py4Syn, the new
challenge was to offer a GUI that helped users to inform
scripts parameters, control and monitor their execution.
LNLS adopted CS (Control System) Studio [9] as the tool
to monitor and operate EPICS IOCs. It is a great option to
monitor and interact with EPICS PVs, however, it is not
recommended by their developers to control complex
scripts in Python. We tried to use CS Studio to control
Py4Syn scripts but the performance was unsatisfactory.
Then, we decided to build a GUI in Python, once the
scripts were written using that language, and Tkinter
arose as a good start as it is the standard GUI package of
Python and we found a large number of tutorials and code
examples in the Internet. The first experience in LNLS
with Tkinter to build graphical interfaces for Python
scripts was with DXAS beamline, which was being re-
formed between 2014 and 2015.

ARCHITECTURE OVERVIEW
In Figure 1 the overview of current software architec-

ture solution for control system of DXAS is presented.

Figure 1: Overview of DXAS Solution Architecture.

Electronic (Technical) Equipment
At lower level of control system are the typical tech-

nical devices present in synchrotron beamlines. In fact,
they have their own controllers which receive instruc-
tions, via serial (RS232/RS248) or Ethernet connection,
for example, and then command the equipment. Some
devices present in DXAS beamline of LNLS are:

 Galil DMC-4183: motor controller
 Parker OEM750: motor controller
 Heidenhain MT 2501: optical encoder
 Keithley 6485: picoammeter
 Kepco BOP: power supplier
 OMRON E5CK: digital controller of furnace
 LakeShore 331: temperature controller of cryogenic

cooling system
 Stanford SR570: low noise current preamplifier
 Princeton Instruments PyLoN: CCD camera

Logical (Abstraction) Layer
Over the devices controllers is the first abstraction of

them, build in EPICS, with correspondent IOCs for each
one of the devices. Those devices of the same manufac-
turer and model share the same IOC program, but run in
individual instances. Basically, a set of instructions to get
information or to send a command to devices is organized
in those IOCs as PVs, where each PV is a record, or piece
of data, with some attributes to format, configure or simp-
ly return related information.

† douglas.beniz@lnls.br
‡ alexey.espindola@lnls.br

WEPOPRPO25 Proceedings of PCaPAC2016, Campinas, Brazil

ISBN 978-3-95450-189-2
56Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

User Interface and Tools

All PVs are broadcasted in the network via CA proto-
col, in which subnet where CAS is connected they are
accessible.

The second abstraction level of those PVs is made by
Py4Syn, which offers a set of Python objects representing
each one of devices controlled by EPICS IOCs. Py4Syn
also implement a set of utility tools to perform scan of
motor positions while a counting detector is accumulating
information of beam intensity transmitted across a sam-
ple, or to vary a furnace temperature while a CCD is ac-
quiring spectra images to analyse sample absorption of x-
ray, for example. It also allows a combination of motor
movements, like a mesh of two motors, and mathematic
calculations based on the measure of one or more detec-
tors.
User Interface Layer

Finally, the top layer of this architecture is the GUI.
The focus of this article is the graphical interfaces for
scripts that perform automation of procedures to execute
experiments in DXAS beamline of LNLS. Such GUIs
were implemented, and are being used to operate the
beamline since the beginning of 2016, using, mainly,
Tkinter package of Python.

The main finalities of such interfaces are to receive pa-
rameters and to control the flow of experiment operations.
Parameters can be those necessary to configure devices,
like the current/voltage of a power supplier of a magnet
coil, or the temperature stages (amplitude and duration) of
a furnace, or parameters to define initial and final condi-
tions of each experiment, like interval of motor positons
to scan, or beam energy amplitude to perform the experi-
ment, or energy interval to scan. Flow operations involve
actions of start, pause, when applicable, or stop the exper-
iment.

Some interfaces also show information of some devices
that are monitored in short intervals, updated each 100 ms,
e.g., like current furnace temperature, power supplier
voltage, motor position, among others.

TKINTER CONCEPT
Tkinter, or “Tk interface”, is a module of python that

provides an interface to Tk GUI toolkit, developed in
TCL (Tool Command Language) and multiplatform, with
support for Linux, MAC OS and MS Windows. Tk is
natively present in Linux and MAC OS, and can be easily
installed on MS Windows, it is not part of Python. Tkinter
is part of Python, being called “Tkinter” in versions prior
to 3, and “tkinter” on version.

Widgets, geometry management and event handling are
the three main concepts of Tk, which also apply for
Tkinter.

Widgets
Often referred to as controls, or window elements,

widgets are all visible components on a graphical inter-
face. Some examples are frames, labels, buttons, text
entries, checkboxes, tree views, scrollbars, and text areas.

Inside a Python script, widgets are objects, or instances
of classes that represent mentioned window components.
To instantiate an object on Tk, and then on Tkinter, is
necessary to indicate its parent, what maintain a window
hierarchy between all elements. On that hierarchy, the
main window is the root. Each widget has a set of config-
uration options which control how they are displayed or
how they behave, like a “text” option for components that
display some text, as a label, or “command” option when
they accept events, as the mouse click of a button.

Geometry Management
An important step of interface design is to organize the

widgets onscreen window. The most useful method to do
that using Tk, or Tkinter, is by a geometry manager, like
“grid”. In practice, “grid()” is a method available to all
supported widgets saying to then where exactly to be
positioned in an invisible matrix of columns and rows.

Combination of nested frames and grid is the better ap-
proach to design a Tk/Tkinter interface.

Event Handling
Tk/Tkinter manages the event loop that receives user

actions over the window components, controlled by oper-
ating system, like button presses, keystrokes, mouse
movement, and window resizing.

Individual widgets know how to respond to events. Ba-
sically, it provides a callback that can be assigned to a
procedure in Python code as a configuration, like “com-
mand” for button widgets. For events without a callback
command associated with them, it is possible to use an
event binding, which in practice is the use of “bind()”
method on a widget to capture any event and then execute
an arbitrary procedure or method.

Another important method available for widgets is “af-
ter()”. Using it is possible to create an execution thread
forked from the main application loop. At this new
thread, a set of Python instructions is performed in paral-
lel with interface updating. Besides, widget that calls it
continues to be responsive to any user input.

TKINTER SOLUTION OF DXAS
For DXAS beamline of LNLS the main techniques

supported are detection of very weak signals XANES (X-
ray Absorption Near-Edge Spectroscopy), XAFS (X-ray
Absorption Fine Structure), XMCD (X-ray Magnetic
Circular Dichroism), XRMS (X-ray Resonant Magnetic
Scattering), Catalysis and Cryogenics experiment (analy-
sis of X-ray Absorption during a very high or very low
temperature exposition).

So, the graphical interfaces built for DXAS control sys-

tem solution cover these operations:
 Spectroscopy
 X-ray Absorption
 XMCD / XRMS
 Catalysis / Cryogenics
 Motor Scan

Proceedings of PCaPAC2016, Campinas, Brazil WEPOPRPO25

User Interface and Tools
ISBN 978-3-95450-189-2

57 Co
py

rig
ht

©
20

17
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs

And some specific operations that include devices mon-
itoring:

 Slits (with virtual motors built by Py4Syn conjugat-
ing real motors)

 E5CK (with temperature ramp programming and
furnace monitoring)

 Kepco BOP (to set and monitor power supplier con-
figuration and amplitude)

 Generic graphics plot (to plot graphics from any
supported file by this solution)

 Generic data consolidation (to calculate results for
all supported files generated by this solution)

Figure 2 below shows an excerpt of source code of

XMCD and XRMS interface. On that, it is possible to see
a LabelFrame and some Button widgets being instantiat-
ed, with their configurations being set, as described above
in “Tkinter Concept” session.

Figure 2: Code Excerpt of XMCD and XRMS interface.

Figure 3 shows another code excerpt, this time of E5CK

interface. Here we see the mechanism of instantiating an
independent thread to update furnace temperature on the
UI after each 1 second, as described above in “Tkinter
Concept” session.

Figure 3: Code Excerpt of E5CK interface.

Finally, Figure 4 gives an example of how GUI for
DXAS beamline control system solution implemented
using Python Tkinter looks like.

Figure 4: GUI of Catalysis Experiments.

REFERENCES
[1] Tkinter, https://wiki.python.org/moin/TkInter
[2] DXAS beamline of LNLS,

http://lnls.cnpem.br/beamlines/xafs/beamlines
/dxas/

[3] Py4Syn, http://py4syn.readthedocs.io/en/latest/
[4] EPICS, http://www.aps.anl.gov/epics/
[5] CA, http://www.aps.anl.gov/epics/docs/ca.php
[6] PyEpics,

http://cars9.uchicago.edu/software/python/pye
pics3/

[7] NumPy, http://www.numpy.org/
[8] Matplotlib, http://matplotlib.org/
[9] CS-Studio, http://controlsystemstudio.org/

WEPOPRPO25 Proceedings of PCaPAC2016, Campinas, Brazil

ISBN 978-3-95450-189-2
58Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

User Interface and Tools

