

Current Status and Upgrade Plan of the Data-Acquisition System at SACLA

<u>T. Sugimoto</u>, A. Amselem, Y. Furukawa, T. Hirono, Y. Joti, T. Kameshima, A. Kiyomichi, T. Ohata, M. Yamaga, R. Tanaka (JASRI/SPring-8) T. Abe, A. Tokuhisa, T. Hatsui (RIKEN SPring-8 Center)

Outline

- Overview of SACLA
 - X-ray Free Electron Laser
 - Current Status of SACLA
- SACLA Data Acquisition System
 - Experimental Requirement
 - Front-end Section
 - Data transfer and Accumulation Section
 - Analysis Section
- Future Plan
 - Analysis using External Supercomputers
 - Next Generation Detector and FE System

Outline

- Overview of SACLA
 - X-ray Free Electron Laser
 - Current Status of SACLA
- SACLA Data Acquisition System
 - Experimental Requirement
 - Front-end Section
 - Data transfer and Accumulation Section
 - Analysis Section
- Future Plan
 - Analysis using External Supercomputers
 - Next Generation Detector and FE System

X-ray Free Electron Laser (XFEL)

PCaPAC2012, VECC, India

X-ray Free Electron Laser Facilities

SACLA and SPring-8

SPring. 8

SPring-8

(Storage Ring)

RIKEN/JASRI

SACLA is located at west region of Japan.

SACLA SACLA

PCaPAC2012 VECC, India

111

Characteristic Components at SACLA

First XFEL image acquired by the SACLA DAQ system.

Group photograph of SACLA development staff.

User Experiments Started

- We have delivered XFEL for user experiments from March 2012.
 - 25 experiments (March 2012 July 2012)
 - 27 experiments (October 2012 March 2013)

Current Status of SACLA

Location		SPring-8 site, JAPAN
		700 m long
Components	Electron source	e-gun
	Acceleration tube	L-band (x1), S-band (x4), C-band (x64)
	Light source	in-vacuum undulator (x18)
Beam condition	Energy	8 GeV (max.)
	Emittance	0.77 – 1.1 pimm.mrad
	Repetition rate	60 Hz (spec.) / 10 Hz (present)
XFEL condition	Energy	5 – 15 keV (2.4 – 0.8 Å, tunable)
	Power/pulse	280 uJ/pulse (max.)
	Pulse width	6 – 30 fs

Outline

- Overview of SACLA
 - X-ray Free Electron Laser
 - Current Status of SACLA
- SACLA Data Acquisition System
 - Experimental Requirement
 - Front-end Section
 - Data transfer and Accumulation Section
 - Analysis Section
- Future Plan
 - Analysis using External Supercomputers
 - Next Generation Detector and FE System

Scientific Application: Coherent X-ray Diffraction Imaging (CXDI)

One of motivation is life science.

By accumulating and analyzing 10 M shot of X-ray diffraction image of proteins, we can reconstruct structure of proteins using CXDI technique.

Dec. 6, 2012 K. J. Gaffney and H. N. Chapman, Science 316, 1444 (2007)

Experimental Requirement

- Experimentalist need to acquire X-ray 2D image;
 - 2000x2000 resolution
 - 16 bit data depth
 - 60 Hz repetition rate
 - 10,000,000 shot

 To accomplish experimentalists' requirement, we have developed dedicate <u>X-ray sensors</u> and <u>DAQ system</u>.

Overview of the SACLA DAQ System

SACLA

Detector and Front-end System

Dec. 6, 2012

PCaPAC2012, VECC, India

Multi-Port CCD (MPCCD) Sensor

x8

Single MPCCD Sensor

Octal MPCCD Sensor

We use octal and single/double simultaneously. Total data rate is 600 MB/s. (5 Gbps)

Because we can use other commercial cameras.

Overview of the SACLA DAQ System

SACLA

DAQ Network

System Control via 1GbE Network

SACLA

Event-synchronized Data Acquisition

PCaPAC2012, VECC, India

In-line Data Handling: Live View

SACLA

In-line Data Handling: Low-level Filtering

2D Image Data Recording

2D Image Data Recording

Statistics of Storage Usage

From March 2012, experimental data are accumulated without fatal trouble.

At present, repetition rate of XFEL is 10 Hz. Thus accumulation rate is relatively low than that we expected.

The DAQ system can perform at 10/30/60 Hz. 30 Hz mode is already used by a few experiments.

Overview of the SACLA DAQ System

Long-term Data Storage

High-performance PC Cluster

Front-end section

Data transfer and Accumulating section

Data analysis section

High-performance PC cluster (HPC) is 13 TFLOPS Intel-based PC Cluster system.

The HPC is not only for off-line analysis, but for instant visualization during the experimental period.

Since the stored 2D image data are reciprocal lattice space, we have to analyze to extract real-space image.

By performing instant visualization, we can determine whether the experimental conditions need to changed.

Current Status of SACLA DAQ System

- SACLA DAQ system consists of three section.
 - Front-end section
 - Data transfer and accumulating section
 - Data analysis section
 - We have developed each component of DAQ system to satisfy experimental requirements.

- 2000x2000 / 16bit / 60 Hz / 10 M shot

- Experiments are successfully performed from March 2012.
 - Typical experiments use 10 Hz mode. Some experiments use 30 Hz mode (vs. XFEL is 10 Hz).
- Off-line analysis are currently underway by each experiment group.

Outline

- Overview of SACLA
 - X-ray Free Electron Laser
 - Current Status of SACLA
- SACLA Data Acquisition System
 - Experimental Requirement
 - Front-end Section
 - Data transfer and Accumulation Section
 - Analysis Section
- Future Plan
 - Analysis using External Supercomputers
 - Next Generation Detector and FE System

Future Plan : Analysis using External Supercomputers

We plan to use the "K Computer" (10 PFLOPS), which is 100-km apart from SACLA, for the online visualization.

We already carried out a preliminary data-transfer from SACLA to K computer. We achieved 6.4 Gbps bandwidth, which satisfy the experimental data rate. Dec. 6, 2012 PCaPAC2012, VECC.

Future Plan: New Detector and FE System

To achieve higher data depth and large resolution, we started developing next generation SOI X-ray image sensor, named "SOPHIAS". The SOPHIAS have 1024x2048 and 32 bit data depth. Data rate becomes x8 higher (480 MB/s) than that of MPCCD (60 MB/s), and we plan to use 40 SOPHIAS sensors simultaneously (up to 20 GB/s).

We also started developing new FE system supporting up to 2.5 GB/s data rate, which satisfy requirements of SOPHIAS sensor readout.

T. Hatsui et al., International Workshop on Semiconductor Pixel Detectors for Particles and Imaging (PIXEL2012).
C. Saji et al., International Workshop on Semiconductor Pixel Detectors for Particle and Imaging (PIXEL2012).
PCaPAC2012, VECC, India 36

Summary

- Overview of SACLA
 - Key component
 - e-gun, C-band accelerator, in-vacuum undulator
 - Successfully established
 - First lasing on June 2011
 - Experiments with our DAQ system started on March 2012
- SACLA Data Acquisition System
 - Requirement
 - 2000x2000, 16bit, 60Hz, 10M shot
 - We have developed detector and DAQ system
 - MPCCD: 1024x512px, 16bit/px, 8+2 sensors
 - DAQ: 5 Gbps, 200+250TB cache, 6PB long-term storage
- Future Plan
 - Analysis using External Supercomputers
 - preliminary test bandwidth is 6.4Gbps (> 5Gbps, by 10 MPCCD sensors)
 - Next Generation Detector and FE System
 - 2048x1024px, 32bit/px SOI sensor, and 2.5 Gbps FE