Socket-CAN Device Support

for EPICS 10Cs*

C. Burandtt, U. Bonnes, J. Enders, N. Pietralla

Institut fur Kernphysik, Technische Universitat Darmstadt, Germany

TECHNISCHE
UNIVERSITAT
DARMSTADT

CAN Bus

Linux Socket-CAN Network Stack

The In-house Developed Hardware Family
 magnet power supplies, low-level RE multi-purpose

measurement system, ...

e uniform firmware running on microcontrollers for all types

of hardware
e connected via CAN bus to PC

CAN Bus Properties as used at the S-DALINAC

Bit Rate 1 Mbit /s

Frame Size
Address Format

physical length of bus| < 40m (for bit rates of 1 Mbit/s)
8 byte of user data
29 bit (extended frame format)

PC Interface Hardware

e PCI/PClexpress slot cards used in PCs running the EPICS IOCs

e USB interface for on-site diagnostics

Design Overview
e at the S-DALINAC polling is preferred for the
in-house developed hardware family

e broken devices can be quickly identified
(timeouts are to be defined therefore)

e CAN frames can carry more than one piece
of information and thus need to be
distributed to multiple input records

e different threads use different tables/queues

to handle reading/writing and the timeout

behaviour
N C N
C\ Lo
é’ . — \
= OUT JJ INP JJ EPICS Records
=
=
=
% Timer
-
> Queue
a=
= _
:E SocketCAN
N2
E CAN interface

Software Engineering Features
e approx. 1300 lines of plain C

* build dependencies are limited to
header files which are part of the Linux
kernel source or EPICS base

* not dependent of the PC CAN interface
manufacturer in any way

Supported Record Types

e analog in/out

* Jong in/out

* binary in/out

* multi binary in/out

* multi binary direct in/out

Not Yet Supported Record Types
e different record types can be
implemented in principle

e complex record types like string in
and string out require transmission
of multiple CAN frames, which is
different from the record types
implemented so-far

Debugging of Templates

Socket-CAN Tools

The cansend and candump tools allow to

send and receive arbitrary CAN frames.
e cansend: send single CAN frame

dump the traffic of a
complete CAN bus segment

* candump :

Thus, the raw communication can be tested
manually. Together with the caput and
camonitor command-line tools the whole
communication and conversion chain can be
validated.

Example
Request supply voltage by hand and observe
the answer with candump and camonitor.

camonitor rf:rdSupplyVoltADC &
rf:rdSupplyVoltADC 2012-11-30 09:39:31 O

candump canO &

cansend canO 06044207#02

can0 6044207 [1] 02

can0 7044207 [6] 02 53 E9 90 02 22

rf:rdSupplyVoltADC 2012-11-30 09:39:39 0.61

5 o
§ =z EPICS I0C candump cansend What It is . L
o & e part of the Linux kernel main line
_ since version 2.6.25
Linux Socket Layer .
e some manufacturers supply their own
Protocol Family Protocol Family Socket-CAN device driver
S PF_INET PF_CAN many CAN interface device drivers
n .
z tce || upp already included
5 .
< P How 1t works
e analogous to internet protocols like
Linux Network Layer TCP/IP (protocol family)
= e connection endpoint is represented as
T eth(can(canl vcan(a9 BSD socket
i # ip link set canO up type can bitrate 10000000
How to use it
e treatment similar to ethernet devices # modprobe vcan
: : : # ip link add d XY t
e setup of virtual CAN device possible P otnE ettt ey manit wybe veel
ip link set vcanO up type vcan

Using tudSocketCan Device Support

Showcase for a Record Definition Addressing Scheme

The hardware is organized in crates which
are connected to a CAN bus segment.

record(ai, "rf:rdSupplyVoltADC") {
field(LINR, "SLOPE")
field(ESLO, "9.3e-9")

field (EOFF, "O") * the slots are numbered accordingly to

field(EGU, "V") their position inside the crate.
field(SCAN, "I/0 Intr")

field(DTYP, "tudSocketCan") T late Fil
field(INP, "@canO 07 01 02 519 02 1 sl 50") St plelhs Al o
} A Perl script allows to use mnemonics like

LLO8 GET ADC instead of numerical codes.

e an individual number is assigned to each
crate.

The template designer needs certain information: .
field(INP, "$(can_interface) 07 $(crate)

e @can0 the CAN interface to be used $(s1lot) LLOS GET ADC 02 1 sl 50")
e 07 . marks the CAN frame as being
sent from a device (as opposed
to being sent to a device) A certain CAN frame can be handed to
e 01 02 address of the device multiple records. The INP fields can either
e 519 defines the specific request b?fldentlcal or differ for example in the byte
offset.
* 02 . specifies the ADC o . '
. - the first data b b Only get the additional byte which contains
! + omut the hrst data byte, when status information of the ADC:
converting the value, since it is
the one used to identify the ADC
e sl . interpret value as signed long field (INP, "$(can_interface) 07 $(crate)
D e : $(slot) LLOS_GET_ADC 02 5 uc 50")
e 50 . timeout in seconds

Summary

Experience
e first used for the digital low-level rf control system

e in a production environment for two years now

e growing number of different devices controlled through this device support

Future
e rewrite in C++ programming language is proposed

e C++ STL provides many usefull components which allow for a much cleaner software design
e improve bus error detection and treatment

e support record types which require multiple CAN frames to be transmitted

*Work supported by DFG through CRC 634
tTburandt@ikp.tu-darmstadt.de

