
EPICS CHANNEL ACCESS USING WEBSOCKET
A. Uchiyama , The Graduate University for Advanced Studies (SOKENDAI), Tsukuba, Japan#

K. Furukawa, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
Y. Higurashi, RIKEN Nishina Center, Wako, Japan

Abstract
Web technology is useful as a means of widely

disseminating accelerator and beam status information.
For this purpose, WebOPI was implemented by SNS as a
web-based system using Ajax (asynchronous JavaScript
and XML) with EPICS [1]. On the other hand, it is often
necessary to control the accelerator from different
locations as well as the central control room during beam
operation and maintenance. However, it is not realistic to
replace the GUI-based operator interface (OPI) with a
Web-based system using Ajax technology because of
interactive performance issue. Therefore, as a next-
generation OPI over the web using EPICS Channel
Access (CA), we developed a client system based on
WebSocket, which is a new protocol provided by the
Internet Engineering Task Force (IETF) for Web-based
systems. WebSocket is a web technology that provides bi-
directional, full-duplex communication channels over a
single TCP connection. [2] By utilizing Node.js and the
WebSocket access library called Socket.IO, a WebSocket
server was implemented. Node.js is a server-side
JavaScript language built on the Google V8 JavaScript
Engine. [3] In order to construct the WebSocket server as
an EPICS CA client, an add-on for Node.js was
developed in C/C++ using the EPICS CA library, which
is included in the EPICS base. As a result, for accelerator
operation, Web-based client systems became available not
only in the central control room but also with various
types of equipment.

INTRODUCTION
One of the advantages of an EPICS-based system is the

unified communication protocol between the front-end
controller and client systems provided by the CA
(Channel Access) protocol. Thus, even when various
types of controllers were used as control systems, all the
client systems such as the OPI (operator interface) could
be developed on the basis of the CA protocol without
hardware dependencies. In general, a method that used the
CA libraries or display manager supported by EPICS
collaboration, such as CAJ/JCA, CA-Python,
MEDM/EDM, and CSS (Control System Studio) [4], was
adopted for the development of the GUI in the EPICS-
based system. On the other hand, the engineers at SPring-
8 proposed the development methods for the main OPI
using WebSocket and conducted a prototype
implementation [5]. The prototype system was
constructed using a MADOCA (message and database
oriented control architecture)-based system that was

developed at SPring-8. It was different from the EPICS-
based system. Since the web application with real-time
have many advantages, we started to develop WebSocket
server corresponding to EPICS CA, and implemented
Web applications using WebSocket for the EPICS-based
control system. The traditional Web application lacked
the interactivity needed to operate some of the hardware
for the accelerator control system. By utilizing
WebSocket technology, it is possible to solve the
problems of Web-based OPI, such as the interactive
response.

WEBSOCKET PROTOCOL
WebSocket is a new protocol for achieving the

bidirectional communication between a Web server and
Web browser. In the beginning, WebSocket was part of
HTML5. It was formulated as an RFC6455 by ITEF in
Dec. 2011. An overview of the protocol is as follows.

1. A Web browser sends a handshake request to the
server for connecting to the WebSocket.

2. The server returns the handshake response after
approval.

3. After the establishment of the handshake, the
protocol switches to the WebSocket, and then the
bi-directional communication occurs between the
Web server and Web browser.

WebSocket makes interactive response realizable and
thus compensates for the disadvantage that could not be
eliminated in traditional HTML. Thus far, various types
of Web services in EPICS-based systems have been
implemented. However, there were only implemented in
Web-based systems, where a quick response and
monitoring are unnecessary such as in archive viewers
and electric-log systems. This is because it is difficult for
a Web-based OPI to realize a real-time response similar to
native applications such as EDM/MEDM/CSS, even if
Ajax technology is utilized. Since it becomes bi-
directional transmission between a server and clients has
become possible, the aforementioned problem is solved
by WebSocket. In practice, we confirmed sufficient
interactive response in a 100 ms cycle using WebSocket
on the Web browser, and it had a performance similar to
that of native EPICS applications such as EDM.
Furthermore, since periodic polling is not necessary like
Ajax, it becomes possible to reduce network traffic.
WebSocket does have a problem with Internet Explorer 9
(IE9), which is one of the main browsers, because a
WebSocket connection is unavailable. However, this
problem may be resolved in IE10, which is the next

__
#a-uchi@riken.jp

Proceedings of PCaPAC2012, Kolkata, India WECC02

Latest Trends in GUI

ISBN 978-3-95450-124-3

7 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

version, because Microsoft planned it to be compliant
with WebSocket. [6]

SERVER SIDE SYSTEM
We utilized Node.js and Socket.IO [7] as a WebSocket

library to develop the WebSocket server. Node.js is one
of the server-side JavaScript languages developed based
on the Google V8 JavaScript Engine. As a main feature,
Node.js works asynchronously with single-thread
processing. Although many human resources may be
required for the development of an asynchronous
WebSocket server from scratch, Socket.IO solve the
aforementioned problem. Node.js 0.6.18 and Socket.IO
0.9.6, which were stable versions of the languages, were
utilized for the development. In order to implement the
WebSocket server with a CA connection using Node.js,
Node.js has to call the CA API. Therefore, we developed
add-on software to interface CA from Node.js, that is,
NodeCA. Since Node.js can call the function developed
by C++, NodeCA utilized the CA library provided by the
EPICS base. To call CA from Node.js, caGet, caPut, and
caMonitor, which are basic functions in EPICS, were
prepared. In general, an event-driven caMonitor needs a
non-blocking algorithm in the program, although single-
threading Node.js causes the thread to be blocked by the
implementation negligently. Consequently, in order to
prevent the thread blocking, NodeCA is in waiting the
CA event into another thread, and then it send the
message queue to the main thread. Figure 1 shows an
overview of NodeCA. The software developed by this
research is shown in the gray area.

Figure1: Overview of the System.

CLIENT SIDE SYSTEM
It is possible to realize a text update like EDM by

coding DOM (document object model) with JavaScript on
the Web. In addition, flot [8] and jsgause [9], which are
jQuery-based JavaScript libraries, were used for the
visualization of the accelerator parameters in our system.
Many JavaScript libraries, other than those mentioned
above, are also available for the visualization of
information, such as strip chart. As a result, the client
system has the advantage of low development costs since
money can be saved multiple steps. Figure 2 shows the
whole system chart.

1. In the code of client side JavaScript, custom
events (caGet, caPut, caMonitor) are sent to the
server by using WebSocket protocol

2. WebSocket server connect to EPICS IOC via
NodeCA.

3. It is available to get the accelerator parameters
from EPICS IOC.

Figure 2: Whole System Chart.

IMPLEMENTATION
After satisfying the need for interactive access for

WebSocket using an EPICS-based system, we attempted
to implement NodeCA and the WebSocket server as a
Web-based OPI. As a result, the OPI was found to have
adequate ability for accelerator operation compared to the
traditional EPICS-based OPI. Moreover, we confirmed
that almost all the browsers for the iPhone4S/Android are
capable of obtaining and displaying numerical values
from EPICS IOC via WebSocket. The present software
support for browsers and OS is shown in Table 1. In the
case of iPhone, it is difficult to install self-produced
software without the approval of Apple Store. On the
other hand, approval of Apple Store is unnecessary to
install the self-produced Web application on an iPhone,
although a Web server is required. We consider that the
Web application using the WebSocket server and
NodeCA have satisfactory performance as an OPI
compared with the native applications of the iPhone.

At present, we are implementing it for controlling the
28GHz-ECRIS at RIKEN RIBF on a trial basis. [10] We
already verified that we had a good response when
monitoring the vacuum of the plasma chamber,
controlling the gas-valve, and so on.

Table 1: The Present Software Support
OS Browsers
Windows/Linux Google Chrome 20, Firefox 14,

Opera 11
Android 4.0 Google Chrome 18, Firefox 14

iOS (iPhone) Safari 5, Google Chrome 19,
Mercury

DISCUSSION
In 2000, GAN (global area network) was proposed by

ICFA (International Committee for Future Accelerators)

WECC02 Proceedings of PCaPAC2012, Kolkata, India

ISBN 978-3-95450-124-3

8C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Latest Trends in GUI

as a network for ILC accelerator control. [11] Although
GAN aimed at an accelerator-only network with
international collaboration, it has not been realized thus
far. Currently, a WAN with has sufficient high-speed data
communication is already in place around the world for
the development of Internet technology. On the other
hand, it is difficult to gain direct access from other
networks using this WAN with the CA protocol because
firewalls are implemented between the accelerator
network and gateways. For this reason, we considered the
possibility of accelerator control using HTTP technology,
which is a standard protocol for the Internet, and
WebSocket.

 First, we considered the following in order to protect
the accelerator networks from outside intrusion. In the
case of accessing the accelerator network from the WAN,
we ensure the security of WebSocket access by using
VPN and authentication with SSL. Additionally,
accelerator operators have to completely understand the
user attempting to access the networks (login ID and so
on) and access route (full domain of Internet providers
and so on) before WebSocket control is allowed.
Therefore, all of the accessing logs for WebSocket control
should be open to the accelerator operators.

Next, we considered instructions for accelerator
operation to EPICS IOC from the Web browser via
WebSocket. For caPut, which provides instructions to
each device or component during accelerator operation,
accelerator operators need to know the action and
behaviour perfectly. On the other hand, it would not
matter if they did not understand some simple instructions
in detail such as caGet and caMonitor, which are used to
monitor or obtain the numerical values for the accelerator
parameters. If some accelerator parameters are changed
using the Web application from outside the internal
networks without considering the beam tuning, the
accelerator condition will be complicated in many cases.
Thus, when using caPut, a policy is needed for between
the accelerator operators in the control room and a
maintainer exerting control remotely over the Web. The
following are proposed for this policy.

1. Before the maintainer exercises remote control
over the Web, they have to call the accelerator
operator or send an E-mail.

2. The maintainer authenticates users (and
passwords) using SSL on the Web. After the
authentication, it is possible to monitor the
accelerator parameters via WebSocket.

3. The accelerator operators check the user ID and
the domain or IP address of the Internet provider
for the maintainer.

4. The maintainer sends a request to the accelerator
operators when sending caPut instruction to the
EPICS record.

5. In response to the request from the maintainer,
the accelerator operators make a judgement
decision about whether the component in the
EPICS record may be controlled using

WebSocket. A response is returned to the
maintainer about whether it is possible to operate
the component in the EPICS record.

6. After receiving this response, the maintainer can
not only monitor, but also operate the component
via WebSocket.

7. If the accelerator operators make a judgement
decision to interrupt the operation, the
WebSocket operation is discontinued as soon as
possible by the accelerator operator. In addition,
if a certain period of time passes, the permission
for the WebSocket operation will be cancelled
by a timeout.

CONCLUSION
We developed a server that makes it possible to connect

with EPICS CA by WebSocket. It enables the display of
information on the accelerator conditions and make it
possible to control it from the Web browser in real time. It
also makes it possible to call CA API from Node.js by
NodeCA as an add-on to the interface for the CA
protocol. We confirmed that we could control and
monitor one part of the accelerator parameters as well as
the traditional EPICS-based application. Additionally, the
developed Web-based OPI runs not only on the main PC-
based browsers, but also on almost all of the browsers for
Android and iPhone4S. We believe that this technology
will be useful as a means of accelerator operation using
Internet access, even if it has some problems of security.
In order to resolve these security problem for the
operation from a WAN, it is necessary to lay everything
out on the table to develop an access policy. In the future,
we will develop the NodeCA and WebSocket server for
the latest version of Node.js, which will be released as
open-source software.

REFERENCES
[1] K. U. Kasemir, et al., Proceedings of ICALPECS

2011, Grenoble, France, 2011, THBHAUST01.
[2] I. Fette and A. Melnikov, The WebSocket Protocol,

IETF HyBi Working Group. 2011.
[3] http://nodejs.org/
[4] X. Chen, et al., Proceedings of 2011 Particle

Accelerator Conference, New York, NY, USA, 2011,
WEOBN3 .

[5] Y. Furukawa, et al., Proceedings of ICALPECS 2011,
Grenoble, France, 2011, WEMAU010.

[6] http://msdn.microsoft.com/en-us/library/ie/
[7] http://socket.io/
[8] http://code.google.com/p/flot/
[9] http://code.google.com/p/jsgauge/

[10] A. Uchiyama, et al., Proceedings of ECRIS 2012,
Sydney, Australia, 2012, TUPP12

[11] “A Global Accelerator Network: ICFA Task Force
Reports”,
http://www.fnal.gov/directorate/icfa/icfa_tforce_repo
rts.html, Dec. 2001

Proceedings of PCaPAC2012, Kolkata, India WECC02

Latest Trends in GUI

ISBN 978-3-95450-124-3

9 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

