
C. Burandt† , U. Bonnes, J. Enders, M. Konrad, N. Pietralla,
Institut für Kernphysik, TU Darmstadt, 64289 Darmstadt, Germany

Abstract
This contribution describes an EPICS device support for

CAN bus. It makes use of the Socket-CAN framework and
is thereby independent from the API of a specific vendor.
The device support has been used successfully in a produc-
tion environment at the superconducting Darmstadt linear
electron accelerator (S-DALINAC) since almost two years.

INTRODUCTION
CAN bus (Controller Area Network) has been chosen

as the preferred field bus connecting in-house developed
hardware to the S-DALINAC’s accelerator control system.
CAN bus is a rather robust communication bus. It allows a
bit rate of 1 Mbit/s for distances up to 40 m. The underlying
protocol is message-based. Every frame carries up to 8 byte
of user data.

CAN interface controllers for personal computers are
commercially available from different manufacturers, but
although they all share the same basic functionality, most
of them have a vendor-specific application programming
interface (API). Moreover traditional CAN drivers are usu-
ally accessed by only one process at a time, which pre-
cludes the use of sniffer programs for debugging. In con-
trast to that the Socket-CAN network stack [1], included
in recent Linux kernels, provides access to the CAN bus
via network devices (BSD sockets). Those can be accessed
by multiple applications at the same time via a vendor-
independent interface. A set of open source CAN drivers
provides access to controllers of different vendors.

For development purposes we use USB interfaces. They
are easy to transport and can therefore be utilized to hook
a laptop into a CAN bus segment for on-site diagnostics.
The Linux computers running the IOCs (input output con-
troller) are equipped with PCI/PCI express slot cards.

Since the S-DALINAC’s accelerator control system is
currently being migrated to EPICS [2], a CAN device sup-
port module has been developed to provide access to our
devices from EPICS IOCs.

SOCKET-CAN
Opposed to a character device driver based device sup-

port, our solution here described relies on the Socket-CAN
framework. The latter is included in the kernel main line
since Linux kernel version 2.6.25, which is exceeded even
by most of the conservative Linux distributions. On the

∗Supported by DFG through CRC 634.
† burandt@ikp.tu-darmstadt.de

Figure 1: The Socket-CAN framework presents itself in
the same fashion as the Linux kernel’s network support.
Different devices can be accessed by different applications
at the same time. This is achieved by the network layer and
appropriate protocol families.

one hand it brings along a growing number of CAN device
drivers, on the other hand a network layer is implemented,
which allows CAN interfaces to be treated in a similar fash-
ion to ethernet devices [3]. The connection endpoint on the
PC is represented by the Linux kernel as a BSD socket.
The described functionality is combined in a so-called pro-
tocol family named PF CAN. It is a common analogue of the
PF INET protocol family, which allows ethernet interfaces
to be accessed with protocols like TCP and UDP. Both pro-
tocol families are provided by the kernel simultaneously.
Figure 1 shows this architecture.

According to this concept, a CAN adapter does not just
show up as character device /dev/canX, but needs to be
brought up by

ip link set can0 up type can bitrate 1000000

as usual with ethernet devices. A virtual CAN device can
be configured easily using the vcan kernel module. This
is useful when doing IOC development without a physical
CAN interface.

A central feature of the Socket-CAN framework is to re-
flect its bus property on the PC. While in hardware several
participants can be connected to a CAN bus segment, the
same should be possible on the PC. The Socket-CAN net-
work stack makes this possible. Therefore, multiple appli-
cations, e. g. several IOCs and diagnostic tools, can be run

Socket-CAN DEVICE SUPPORT FOR EPICS IOCS∗

Proceedings of PCaPAC2012, Kolkata, India THPD13

Software and Hardware Technology

ISBN 978-3-95450-124-3

163 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Figure 2: The device support keeps two queues. One is
used by the writer thread as a buffer. The other one tracks
the time which has passed since the last arrival of an in-
coming frame to allow a second thread to identify timeouts.
The reader thread maps incoming frames to the different
records. It uses an allocation table for this task.

on one PC and can use a single interface to connect to a
CAN segment.

DESIGN OVERVIEW

Figure 2 shows the structure of the device support mod-
ule. The detailed design of the device support depends
on the capabilities of the different devices which will be
connected to the CAN bus. Asynchronous communication
with the devices is possible. Nevertheless, we decided to
use polling, that is requesting all data periodically. The
repetitive transmission makes sure the information is never
totally outdated or changed unnoticed by the control sys-
tem. Polling allows broken devices, which do not respond
anymore and that cannot even signal errors, to be identified
quickly. A timeout can be triggered when a certain device
does not send frames anymore. A feature shared by many
of the in-house developed devices is the ability to transmit
certain values periodically without the need for repeated re-
quests. This makes the polling with timeouts approach even
more convenient.

Since CAN frames may carry more than one piece of in-
formation, the device support needs to be able to distribute
them to multiple records. A record table holding the map-
ping between the CAN address IDs and the corresponding
input records is created during the IOC startup process.

All records sensitive to timeouts are stored in a separate
table. Writing to the bus is handled by a queue. It holds all
the frames intended to be sent on the bus. Multithreading
allows each table/queue to be processed with equal priority.

DEVICE SUPPORT MODULE

Software Engineering Features
The Socket-CAN device support has been written in

plain C. About 1300 lines of code are necessary to inter-
face the Linux kernel and to deliver the data to different
types of EPICS records.

Two build dependencies exist apart from some standard
C library header files and from EPICS header files. The
headers, describing the Linux kernel’s Socket-CAN net-
work stack, are needed. This is nowadays trivial, since it
is part of the kernel main line. The second dependency
concerns the firmware embedded in all devices that are
equipped with a CAN interface. This header file defines
the addressing scheme which is used for sending messages
to specific devices.

There is no need for any include file specific to the
CAN interface manufacturer. Therefore every CAN inter-
face which is supported by the Linux kernel’s socket-CAN
framework can be used with this device support.

The IOC has to supply the name of the interface which
is supposed to be used. During IOC initialization the INP

fields of all records using Socket-CAN device support will
be parsed. Every interface listed in one of these fields is
being connected to and listened for incoming frames.

On arrival of a matching frame the requested bytes are
extracted from the data frame and interpreted within the
meaning of C data types. Subsequently they are handed to
the record support for further conversion.

User Features
The Socket-CAN device support currently supports the

basic record types:

• analog in/out
• binary in/out
• multi binary in/out
• multi binary direct in/out
• long in/out

There was no need for the more complex record types yet,
but in principle these could be implemented also.

Template Development
The following is a showcase for a definition of a record

which uses the Socket-CAN device support:

record(ai, "rf:rdSupplyVoltADC") {

field(LINR, "SLOPE")

field(ESLO, "9.3e-9")

field(EOFF, "0")

field(EGU, "V")

field(SCAN, "I/O Intr")

field(DTYP, "tudSocketCan")

field(INP, "@can0 07 01 06 519 02 1 sl 50")

}

THPD13 Proceedings of PCaPAC2012, Kolkata, India

ISBN 978-3-95450-124-3

164C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software and Hardware Technology



The field DTYP makes the record use our Socket-CAN de-
vice support. To define a valid INP field, the template de-
signer needs to collect certain information about the device
the record is meant to communicate with. The line starts
with the interface which is going to be used (can0). The
further properties are as follows:

• 07: marks the CAN frame as being sent from a device
(as opposed to frames being sent to a device)

• 01 06: address of the device

• 519: defines the specific request, in this case some
ADC’s value is being transmitted

• 02: specifies the ADC (there are more than one)

• 1: omit the first data byte, when converting the value,
since this is the one used to identify the ADC

• sl: interpret as a signed long number

• 50: timeout in seconds

Usually the address is defined as a macro configured in a
substitutions file. The number which specifies the request
(519 in this example) is taken from a header file belonging
to the firmware running on the devices. The user can use
mnemonics to specify the request, and a perl script will
substitute those automatically with their numerical code.

Socket-CAN Tools
A significant advantage of the Socket-CAN approach is

testability. The Socket-CAN project provides a set of basic
command-line tools. The following tools have proven as
very convenient during template development:

• cansend: send a single CAN frame to the specified
interface. Address and data content are given in hex
notation and can be arbitrarily chosen.

• candump: dump the traffic of one or many CAN in-
terfaces to stdout. Precise timing information can
also be obtained. Filtering can be achieved by specific
command-line options or piping to a grep command.

Considering that the CAN bus uses a message-based pro-
tocol, one can easily monitor the traffic between the IOC
and the hardware. Utilizing caput and camonitor addi-
tionally, the whole chain from the CAN bus to the operator
interface can be evaluated on a minimal setup.

FUTURE WORK
The current implementation has been used successfully

at the S-DALINAC for almost two years. Still some minor
issues remain unresolved.

The architecture of an EPICS IOC with its scanning im-
plementation can lead to bursts of CAN frames sent to the
microcontrollers. These can cause overruns of the receive
buffers of the devices. Since dealing with such an issue
needs changes deep inside the device support, a complete

rewrite in the C++ programming language is being consid-
ered. The object-orientated design of this language plus a
large set of functionality provided by the Standard Tem-
plate Library (STL) would allow for a much cleaner de-
sign, from a software engineer’s point of view. The ta-
ble which holds the connecting information between the
EPICS records and the corresponding CAN messages is
currently implemented as a static array. During a rewrite
this would be replaced by a dynamic data structure which
consumes only as much memory as needed. Additional
functionality could also be implemented, for example the
logging of bus error frames to the IOC log or to a certain
record.

The extension of the supported record types is possi-
ble. Some of our hardware components can send or receive
strings. Thus string in, respectively string out, de-
vice support is needed. As long strings can require more
than one CAN frame to be transmitted, this proves to be
different from the already implemented records. The same
applies to waveform records which could be used to trans-
fer larger binary data sets.

CONCLUSION
The presented device support has been in use at the

S-DALINAC for nearly two years. In particular the low-
level rf control system relied on this module [4]. Since then
it proved to be quite suitable for the given task. However
the effort of a rewrite may be reasonable.

The characteristics of the device firmware are met well
and allow an easy definition of large numbers of records,
that share a pattern in nomenclature and the same firmware
request.

The concept is simple enough to allow studends to write
template files for yet unsupported firmware features after a
short time of familiarization.

ACKNOWLEDGMENT
Important advice for a successful implementation of the

Socket-CAN device support from members of the control-
system group at BESSY is gratefully acknowledged. This
work has been supported by DFG through CRC 634.

REFERENCES
[1] The Socket-CAN project at berliOS.de

http://developer.berlios.de/projects/socketcan/

[2] C. Burandt et al., “Status of the Migration of the S-DALINAC
Accelerator Control System to EPICS,” PCaPAC’12, these
proceedings.

[3] Readme file for the Controller Area Network Protocol Family
http://www.kernel.org/doc/Documentation/

networking/can.txt

[4] M. Konrad et al., “A digital base-band RF control system,”
ICALEPCS’11, Grenoble, October 2011, MOMMU012,
p. 82, http://www.JACoW.org

Proceedings of PCaPAC2012, Kolkata, India THPD13

Software and Hardware Technology

ISBN 978-3-95450-124-3

165 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s


