

CONTROL SYSTEM INTEROPERABILITY, AN EXTREME CASE:
MERGING DOOCS AND TINE

P. Duval, A. Aghababyan, O. Hensler, K. Rehlich, DESY, Hamburg, Germany

Abstract
In controlling large facilities one is rarely able to

manage all controllable elements via a common control
system framework. When the standard framework must
deal with numerous 'foreign' elements it is often
worthwhile to adopt a new framework, rather than
'disguising' such components with a wrapper. The
DOOCS[1] and TINE[2] control system frameworks fall
into this scenario. Both systems have a device server
oriented view, which made early mapping attempts
(begun in 2000) immediately successful. Transparent
communication, however, is but a small (albeit important)
part of the control system merger currently taking place.
Both systems have well-established central services (e.g.
archiving and alarms), and possess a general 'culture'
which might dictate to a large extent how something is
actually 'done'. The long term goal of the DOOCS/TINE
merger is to be able to make use of any tool, from either
the DOOCS or TINE toolbox, on any control system
element.

We report here on our progress to date, concentrating
on the REGAE accelerator, and plans for the XFEL
accelerator (to begin commissioning in 2015).

INTRODUCTION

and it is important to be clear at the outset what we mean

Any control system framework will likely provide
interfaces to popular scientific and engineering software
such as MatLab and LabView as well as popular user
utilities such as Python, Java, .Net, and the like. If these
interfaces are not native to the software in question then
one speaks

external software packages. In this paper, however, we
refer to as being that between the
different control system frameworks themselves.

 Since circa 1990 control system frameworks have
been typically recognized by their names rather than, say,

. Likewise there has
been a strong tendency for institutes to adopt an existing
controls
The most popular of these is EPICS[3]. There are
nonetheless a large number of institutes which base
accelerator control on something else, for example
TANGO[4], ACS[5], STARS[6] or, our primary focus
here, TINE[2] and DOOCS[1].

Consequently when the primary control system is not,
for instance, EPICS it often occurs that, over the course of
operations, some provision must be made to interface to
exotic EPICS elements which invariably creep into the

system. This is in fact one of the primary motivations for
pursuing interoperability. Experiments and test equipment
from other facilities can suddenly introduce timelines, not
to mention complexity, which necessitate seamless, rapid,
and robust integration of foreign components into a
control system. Epics2tine [7] is one of the first attempts
to do this systematically. Since then, a number of
translation interfaces and gateways such as tango2tine,
epics2tango, etc. have been available.

In this vein, a doocs2tine translation layer was
embedded directly into the DOOCS libraries in the year
2000. This constituted the primary step in the eventual
control system merger now taking place.

Below we will first discuss what the interoperability
between control system frameworks might mean in
general and then give specific details concerning what it
means to merge two relatively distinct control system
frameworks. We note here that this goes far beyond the
simple

CONTROL SYSTEM FRAMEWORK
INTEROPERABILITY

There are in principal three ways to go concerning the
interoperability between two distinct control system
frameworks [8]. If System A refers to the primary control
system framework, then each of these interoperability
methods amounts to translating requests from System A
into System B language, obtaining results, which are then
translated back to System A language. This can be
achieved by a stand-alone gateway process, by
incorporating the translation layer directly within the
System A client-side API, or by incorporating the
translation layer within the System B server-side API. The
relative merits of these approaches have been discussed
before [8]. Solutions such as the Joint Controls Project
(JCOP) [9], Control System Studio (CSS) [10], or java
DOOCS Data Display (jddd) [11] focus on the second
method listed above. We note here that the third method,
server-side translation layers, being the most invasive is
also the most demanding, as the introduction of any new
software (the translation layer) on the front-end elements
places these critical components at new risk.
Nevertheless, it is precisely this third method which
allows a control system merger to take place in the first
place and is the key to the DOOCS/TINE merger we now
describe below.

MERGING DOOCS AND TINE
Device Servers versus Databases

Control system frameworks have a general perspective
concerning the accelerator control points. Some, such as,

Proceedings of PCaPAC2012, Kolkata, India THIB04

Control System Interoperability

ISBN 978-3-95450-124-3

115 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

EPICS or VISTA [12], have a database view of the

Others, such as TANGO, TINE, and DOOCS, have a
device server view of the controllable elements, which are
regarded as devices at some location. Here one thinks of
calling the methods of some device. That both TINE and
DOOCS both have a device server perspective makes the
task of merging the two considerably less daunting.
DOOCS and TINE also have a three-tier naming

 Unlike DOOCS, however,
property server

whereby a server does not represent an interface to a
device collection so much as a service with properties,
each of which in turn might refer to a different collection
of keywords. We shall come back to this point below.

Request-Response Translation
The request-response translation between DOOCS and

TINE is straightforward as long as both systems agree on
the contents of the data being transferred. The early
doocs2tine layer in fact concentrated on ensuring that the
set of data types used in DOOCS were matched in TINE
and vice versa. Besides the standard primitive data types,
both systems also provide compound data types for
atomic transfer (e.g. a name, a float, and an integer value).
Such data types must of course exist in both systems.
TINE also allows user-defined structures, which are not
directly supported in DOOCS and presents a potential
problem. However, the individual fields of a TINE
structure are accessible via the normal DOOCS API.

At this point in the merger (~2001), all DOOCS servers

TINE servers are visible and accessible to DOOCS
clients.
and in a systematic way. In fact, the full gambit of the
efficient transport techniques available in TINE (e.g.
asynchronous communication, contract coercion [13]) are
now available in DOOCS via the TINE protocol.

Culture Shock
In practice, although both systems offer rich client

programing, Servers in a DOOCS-centric facility such as
FLASH are usually accessed via ddd or jddd [11] panels,

display widgets. Servers in a TINE-centric facility such
as PETRA III are usually accessed via rich clients written
in java, using RAD (Rapid Application Development)
tools such as ACOP [14]. A successful merger implies
that a client developer can remain in his culture of
expectations and be unaware of the idiosyncrasies of
either framework.

The panel approach tends to place the burden on the

is not a bad thing. It also tends to decouple the panel
developer from making data update decisions. In the
early days, a ddd panel would synchronously poll a TINE
server even though a more efficient asynchronous

communication was available. In addition, TINE server
developers have been known to overload specific method
calls, delivering differently encoded data based on the
requested data type and input. A panel application
accessing such a method will only access
method call.

Such considerations really only provide caveats to the
client application developer and do not impact per se on a
merger of the two systems. What does impact more
strongly is the inherent control system browsing within
the panel builders and other browsing tools. Here naming
conventions and cultures along with browsing logic play a
strong role in meeting expectations.

property servers
Browsing such servers requires querying the keywords of
a property as opposed to querying the properties of a
device, as is the case with device servers. Although the
naming hierarchy remains the same, such browsing logic
must be incorporated in the relevant DOOCS utilities in a
DOOCS-centric system with TINE property servers.

Infrastructure
Assuming we have addressed request-response

mapping and the culture shock aspects of client
applications communicating with a mixture of DOOCS
and TINE servers, can we claim to have merged the two
control systems? We have of course achieved something
remarkable, but the answer to this question remains a

still needs to be considered is the
infrastructure aspects behind the frameworks.

Archiving
An accelerator control system will have an archive

system, an alarm system, naming services, and security to
go along with the general culture and behavioral aspects
and expectations of a user within either a DOOC-centric
or TINE-centric facility.

Both DOOCS and TINE provide a local history
subsystem, where the history of specific properties can be
acquired directly from the servers, and there are utilities
in both DOOCS and TINE which can access and display
this information. However, each utility is expecting
functionality which may or may not be present depending
on the pedigree of the server. At the time of this writing,
the expectations of either culture are approximately only
50 per cent met, with archive reading utilities often

will not discuss the TINE Central or Event archive
systems nor the DOOCS DAQ system at this juncture,
except to note that these additional add-on services do not
reflect on the merger status.

Alarms
Alarm mapping was introduced in 2009 and is by and

alarm information to a central server, whereas TINE
servers set alarms w
server. The alarm mapping consists then of DOOCS
servers setting alarms for access via the TINE central

THIB04 Proceedings of PCaPAC2012, Kolkata, India

ISBN 978-3-95450-124-3

116C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Interoperability

alarm server and for the TINE central alarm server to
push selected alarms to the DOOCS central alarm server.
The alarm utilities of either system can then be used to
view alarms.

Naming Services
Naming servers for both DOOCS and TINE are similar

in that the address of a specific device server, based on its
context and server name are resolved centrally with the
results being returned to the caller. Device and property
information is then obtained directly from a specific
server, meaning that the server must be on-line to receive
that latter information. The principal complication to this
scenario occurs when the device server in question is not
a device server residing on a single host but is instead a
device group. In DOOCS such configurations are
handled administratively, whereas in TINE they are
usually handled via plug-and-play. The group server
mapping is done seamlessly as long as the proper
information is provided
configuration file.

Security
Security can be a real show-stopper. DOOCS security

is based on a unix-style gid and uid (group ID and user
ID) access mask of the caller, whereas TINE security is
based on the user name and/or the network
address. Where gid and uid information is unavailable,

with available NIS or LDAP information in order to
ascertain it. This approach works fine except in the case
where a TINE middle layer server is attempting to issue a
command to a DOOCS server. In such cases the user
name of the caller is then the TINE Middle-Layer FEC
(Front End Controller) name, which is definitely not a
user name to be found in any NIS or LDAP table. Thus
commands from such a Middle Layer are rejected. To
overcome this difficulty, TINE servers now note whether
a specific call is directed at a DOOCS server and if so
supply the original user name of process in the command
request.

Turing Tests
On could speak of undergoing Turing tests at various

levels in order to determine the state of a merged system.
Would a client programmer using his favorite
development tool be able to distinguish between a
DOOCS server and a TINE server? Do utility applications
such as alarm or archive viewers behave differently
depending on the flavor of the framework being used?
Do remote process control applications, such as front end
watchdogs, depend in any way on which kind of server
process is being monitored?

all of the above questions. In reality an expert will
always be able to detect differences. However the degree
to which these Turing tests are being passed is sometimes
remarkable, particularly as concerns the lay user.

To be sure, a browsing tool suddenly indicating a
property server is a dead giveaway that the target must be
a TINE server, as would be a target property indicating a
structure data type. Alarm viewing applications on the
other hand do not readily distinguish between DOOCS
and TINE alarms. And although archive functionality
mapping is not yet complete archive viewing applications
likewise do a remarkably good job displaying data. One
can now, for instance, drag and drop from a jddd panel
into the TINE archive viewer. Framework independent
remote process control is currently being addressed.

Status
FLASH is a DOOCS-centric facility but has long had

native TINE servers in control, notably for the magnets.
PETRA-III is a TINE-centric facility but likewise makes
use of native DOOCS servers, notably in the vacuum sub-

their (mostly minor) issues, but could always be dealt
with on a special basis.

The Relativistic Electron Gun for Atomic Exploration
(REGAE) facility at DESY provides an excellent test bed
for determining our progress in the DOOCS/TINE merger
as it consists of a good mixture of TINE and DOOCS
servers, as well as a good mixture of TINE rich client
applications, jddd panels, and MatLab applications in the
control room. In REGAE, virtually all DOOCS servers
are communicating only via the TINE protocol, even
when contacted by a jddd panel.

After an initial period operations in
the REGAE control room have been smooth for well over
a year, demonstrating the current success of the merger.
This bodes well for the X-ray Free Electron Laser (XFEL)
project currently underway at DESY.

REFERENCES
[1] DOOCS; http://doocs.desy.de
[2] TINE; http://tine.desy.de
[3] EPICS; http://www.aps.anl.gov/epics
[4] TANGO; http://www.tango-controls.org
[5] ACS; http://www.cosylab.com/solutions/ICT/ACS/
[6] STARS; http://pfwww.kek.jp/stars
[7]

2000 Proceedings.
r Duval et al.,

ICALEPCS 2003 Proceedings.
[9] JCOP; http://en-dep.web.cern.ch/en-dep/internal/JCOP/

[10] The CSS Story , M. Clausen et al., These proceedings.
[11] jddd; http://jddd.desy.de
[12] VISTA; http://www.vista-control.com
[13]

 Duval and S. Herb,
PCaPAC 2010 proceedings.

[14] ACOP; http://public.cosylab.com/acop/site/

Proceedings of PCaPAC2012, Kolkata, India THIB04

Control System Interoperability

ISBN 978-3-95450-124-3

117 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

