
USING MEMCAHED AS REAL-TIME DATABASE IN THE SPARC
CONTROL SYSTEM

G. Di Pirro, E.Pace, INFN LNF, Italy

Abstract
The first implementation of the SPARC control system

was based on a distributed TCP/IP data server: each front-
end CPU had its own server to distribute data to the
console. We decided to move the system to a NoSQL key
value database. We decided to use an open source
database Memcached. This is a database that is high
performance key-value cache optimized for speed only.
For this reason we could use memcached not for storing
data, but as a channel of communication between front-
end processors and consoles. The first object that we have
installed is the camera system. We chose this class of
elements because the amount of data is high; cameras are
at least 640x480 with 8 bit. In this first installation we
made some speed test: we increased the speed transfer
and the data transfer is now independent from the number
of high level CPUs that are using the same image. The
success of this installation convinced us to bring the entire
data transfer of SPARC control system to
use Memcahed as data server.

SPARC
The SPARC*[1] (Sorgente Pulsata e Amplificata di

Radiazione Coerente, Self-Amplified Pulsed Coherent
Radiation Source) (Fig.1) project is to promote an R&D
activity oriented to the development of a high brightness
photo injector to drive SASE-FEL experiments at 500 nm
and higher harmonics generation. Proposed by the
research institutions ENEA, INFN, CNR with
collaboration of Universita` di Roma Tor Vergata and
INFM-ST, it has been funded in 2003 by the Italian
Government. The machine is installed at Laboratori
Nazionali di Frascati (LNF-INFN). It is composed by an
RF gun driven by a Ti:Sa laser to produce 10-ps flat top
pulses on the photocathode, injecting into three SLAC
accelerating and 6 undulator sections.

Figure 1: SPARC.

CONTROL SYSTEM DESCRIPTION
The control system should guarantee and simplify

machine operation. In general the main operations in an
accelerator control system are: data taking, display of
information, analysis, command execution and storage.
The simplest and functional control system has distributed
processors on a classic three levels architecture (Fig. 2).

 First level: At this level we find the console with its
human interface to allow the operator to control the
machine, a logbook to share information within the
collaboration, a database to store all information
coming from the machine and a web tools to help the
management of the control system and to share some
information outside the collaboration;

 Second level: At this level we find the front-end CPU
that executes commands and handle all the
information about the status of the machine available
at the first level. Meanwhile it automatically saves
data from its various elements in two ways: on value
changes and/or at fixed time intervals;

 Third level: This is the acquisition hardware where
we find an appropriate acquisition board or the
secondary field bus to acquire data from the real
element.

The interconnection bus between the levels is a
Gigabit Ethernet LAN.

Figure 2: Control System Structure.

ELEMENTS
The control system allows to control all machine

elements (from the Laser until undulator) and their
diagnostic instruments.

* The SPARC project is financially supported by the

EU Commission in the 6th FP, contract no. 011935
EUROFEL and contract no. RII3-CT-2003-506395
CARE

THCB03 Proceedings of PCaPAC2012, Kolkata, India

ISBN 978-3-95450-124-3

112C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control Databases

 Table 1 describes the kind of elements under control
and their own interface.

Table 1: Element Controlled

Element Number Interface

RF Modulator 2 TCP/IP

RF Low Level 1 PXI Digitizer

Vacuum Pump 30 DAC, ADC, IO,
Serial

Vacuumetr 12 Serial

MagnetPS 50 Serial, ModBus

Flag 24 Serial Motor

Camera 24 IEE1384, GigaEth

BP M 12 Bergoz ADC

BCM 2 Bergoz DVM

Faraday Cup 1 High speed digitizer

Laser
Photodiode

1 High Speed Digitizer

Filter wheel 3 Serial motor

Element Abstraction

To control an element means control its hardware
interface. For example to control the magnet mean control
its power supply.

In this case we make an abstraction of the power supply
to allow include the main characteristic of the element
and we define a class.

We have two kind of cluster, (see Fig. 3) one contains
all information that is necessary to control the power
supply (called static part). It contains the type of interface,
the eventual conversion factor and some parameter such
as min max value and so on. The second cluster contains
dynamic information such as the current, the voltage, the
status and the error.

MEMCACHED AS COMMUNICATION
INFRASTRUCTURE

In a control system is natural developing a
communication channel between the front-end CPUs and
the user based on a simple client server mechanism.

This communication system has a weak point in
performance. The system can be influenced by the
number of customers that require data to the server
running on the front-end, and the possibility that the
acquisition process is stopped or the computer is switched
off. This second case leads to a general slowdown of the
console display and in system performance due to time-
out.

A method for exchanging information between a
system that produces data and one using data is a

database. In a relational database is the stiffness in the
definition of the data that have lengths required.

Figure 3: Magnet Clusters.

Development, especially in the field of web, non-

relational database type key value NoSQL db, largely
simplifies these problems. These systems allow you to
associate a value with each key.

A NoSQL database allows you to store information of
variable length within the same database as there is a
simple association between a key and its associated data.

The non-relational databases have received an impulse
in the development of Web applications and cloud where,
given the high number of nodes, it is difficult to define a
priori the tables. Their simplicity and no need to predefine
the tables make the system very flexible in the
implementation.

There are several versions of NoSQL databases in
particular we want try the system based on RAM for
speed reasons We chose an open source implementation
of a NoSQL based on ram called Memcahed.

Memcached [2] is a NoSQL key-value database. It is a
high performance key-value cache. It is intentionally a
dumb cache, optimized for speed only. Applications using
memcached should not rely on it for data, a standard
database guarantee, but applications can run much faster
when cached data is available in memcache for the
display.

IMPLEMENTATION
Transferring the information we decide to transfer the

whole cluster because the transfer time is similar to
transfer a single information (the normal dimension of a
dynamic cluster is normally less than 1500 byte). The
choice of data is performed by the console software. If we
need to transfer a big amount of data, i.e. image or

Proceedings of PCaPAC2012, Kolkata, India THCB03

Control Databases

ISBN 978-3-95450-124-3

113 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

waveform, we developed a specific data tape. All the data
are transferred in binary code,

The communication protocol with the database is easy
to develop we write some subroutines directly in TCP/IP
without using Memcahed libraries. This choice has
allowed us to use memcahed also for operating systems
where the libraries are not developed.

Figure 4: Packet Structure.

The protocol is simple: in Fig. 4 you can see the

description of the packet. The transmission standard
TCP/IP the only requested part is the header part all other
are option. There are two kind of header one for request
information (Fig. 5) and we have as answer header data
(Fig. 6). The answer has different length in function of the
request.

Figure 5: Request Header.

We have developed a library in Labview that allow data

transfer to the database so that easily integrate in our
system of control.

Each element has been associated with a key and the
data were written in binary.

Figure 6: Response Header.

 The first object that we have tested is the camera
system. We chose this class of elements because the
amount of data is high (our camera is at least 640x480
with 8 bit). In this first installation we make some speed
test: we increased the speed transfer and we have the data
transfer independent from the number of consoles taking
the image. The success of this installation convinced us to
bring the entire data transfer of SPARC control system[3]
to use memcache as data server.

The performance of the image transfer is very good we
can transfer any kind of real time image with the follow
time:
Image 640x480 16 bit 40 ms sample variance 8 ms
Image 640x480 8 bit 23 ms sample variance 8 ms

We do not see variation on performance from 1 to 4
consoles in simultaneous acquisition from the camera.

CONCLUSION
The use of database NoSQL there has demonstrated

both in performance and in simplicity of realization. So it
is possible to use such database basic data for a control
system.

The future development will be in the evaluation into
using a database like this but hard as a database for the
data history.

ACKNOWLEDGEMENTS
We want to We are also grateful to all the SPARC staff

for their continuous suggestions and encouragement for
making a good and useful job.

REFERENCES
[1] SPARC Project Team, Sparc Injector TDR

 http://www.lnf.infn.it/acceleratori/sparc
[2] http://memcached.org/
[3] G. Di Pirro et al., “The SPARC Control System”,

THP042, http://jacow.org, Proc. of ICALEPCS2009,
Kobe, Japan.

THCB03 Proceedings of PCaPAC2012, Kolkata, India

ISBN 978-3-95450-124-3

114C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control Databases

