
THE TINE CONTROL SYSTEM
PROTOCOL

HOW TO ACHIEVE
HIGH SCALABILITY
AND PERFORMANCE

Data Flow and Scalability

Most Scalability issues in a distributed system are concerned
with data flow.
Most of the data flow in a distributed control system is
concerned with readback data.

– Display
– Middle Layer logic (automation decisions)
– Archiving

The Control System Protocol is concerned with data flow.
S i/ li– Server i/o -> clients

– Load on server
– Load on network

API– API

Control System Protocols

Initial Driving Force :
KISS “K it i l St id!”– KISS: “Keep it simple, Stupid!”

e.g. transaction polling is easy to program!

Initial Consequence:Initial Consequence:
– “If all you have is a hammer, everything looks like a nail”

- Abraham Maslow
Fewer options often lead to more and bigger problemsFewer options often lead to more and bigger problems
Solutions sometimes artificial
Corollary: And later on with more tools available:

Still use the hammer (‘cause that’s what you know)!– Still use the hammer (cause that s what you know)!

Transaction-based Client-Server

Data Flow Memes : 0th Order

Transaction-based Client-Server
– Client asks, server responds
– KISS (no management tables) !

S it bl f ll t– Suitable for small systems
– Server Load: LS ~ NC X NT X LD X UT

LS = Load on Server/sec (CPU cycles spent)
NC = Ave. num clients
NT = Ave num transactions / client
L = Ave Load handling a dispatch

Threads ?

Multi-Core ?
LD = Ave Load handling a dispatch
UT = Ave update rate

Transaction-based Client-Server

Data Flow Memes : 0th Order

Network Load: LN ~ NC X NT X PT X UT X 2

LN = Load on Network (bytes/sec)
NC = Ave. num clients
NT = Ave num transactions / client

Threads ?

Multi-Core ? NT = Ave num transactions / client
PT = Ave Transaction Payload
UT = Ave update rate
2 = outgoing + incoming payloads ~equal

Multi Core ?

Increase Scalability => Reduce the Load
Reduce any of these factors !Reduce any of these factors !

Transaction-based Client-Server

Data Flow Memes : 0th Order

Possible solutions to Scalability Problems :

Gateway ?

Good Clients

Bad ClientsBad Clients

Contract-based Publish-Subscribe

Data Flow Memes : 1st Order

Contract-based Publish-Subscribe
– Kiss KISS goodby !

Contract and connection management
Transaction => managed contract + table of clientsTransaction > managed contract + table of clients
Larger systems
Server Load : LS ~ NT X LD X UT

LS = Load on Server/sec
NT = Ave num transactions / client
LD = Ave Load handling a dispatch

NC (Number of
Clients) no longer
a factor ! D g p

UT = Ave update ratea factor !

Contract-based Publish-Subscribe

Data Flow Memes : 1st Order

Network Load: LN ~ NC X NT X PT X UT

– Similar, but:
Factor 2 gone!
Can use ‘Send on Change’ to

LN = Load on Network (bytes/sec)
NC = Ave. num clients
NT = Ave num transactions / client
P = Ave Transaction PayloadCan use Send on Change to

reduce UT

Can use multicast to reduce NC

PT = Ave Transaction Payload
UT = Ave update rate

Great Benefit to Scalability!
– BUT: API can still allow inefficiency !
– AND: Who is doing the programming ?

APIs and ‘Joe, the Programmer’

Some APIs still allow or even ‘only allow’ synchronous
polling !polling !

– Easy for Joe to understand
no callbacks or events …

N once again a factor in the server load!– NC once again a factor in the server load!
Some APIs guide Joe to use individual transactions for
all readback values

E h f th 300 BPM iti t t t– Each of the 300 BPM positions, status, etc.
– Each of the 600 Ion Pump pressures, status, etc.
– Each of the 1000 PSC currents, setpoints, status, etc.

N b l !– NT can be very large !
But: These client applications are driving the data flow !

Contract-Coercion

Data Flow Memes : 2nd Order

Publish-Subscribe with Contract-Coercion
– Focus on ways to reduce NC and NT in server load

and network load
Police action ?Police action ?

– Find Joe and tell him to do it differently.
Push the data ?

multicast everything!– multicast everything!
– Network load could increase dramatically
– Client load could increase dramatically

G l K th API d l t J d h t h t– Goal: Keep the APIs and let Joe do what he wants.

Contract-Coercion

Data Flow Memes : 2nd Order

Analyze the transaction request
– Map to an existing contract if possiblep g p
– Anticipate future requests and renegotiate the contract with the client

e.g. “if he’s asking for BPM#1, then he’ll probably want BPM#2 as well”
– Guide synchronous and asynchronous acquisitions

Don’t monitor ‘static data’
Don’t synchronously poll monitorable data.
Trap ‘foolish’ update intervals

– KISS is a distant memoryKISS is a distant memory

– Briefly review 3 Control System Architecture Models …

Control System Models (a review)

Model I: Database Model
– EPICS, VISTA (i.e. VSystem not the OS)

– Control system data are elements in a database.
T f P V i bl– Transfer Process Variables

pvData have names
Actions are ‘get’ ‘set’ ‘monitor’Actions are get , set , monitor

– BUT: Some things aren’t variables at all !
e.g. command and calls

Control System Models (a review)

Model II: Device Server Model
TANGO DOOCS ACS STARS* TINE*– TANGO, DOOCS, ACS, STARS*, TINE*

– Elements are controllable objects managed by a device
server.
Instance of such an object is a device with a hierarchical– Instance of such an object is a device, with a hierarchical
name.

– Actions pertaining to a device given by its properties !
i e get set monitor call some property OR commandi.e. get, set, monitor, call some property OR command

– BUT: some things aren’t devices !

e.g. “*” is NOT a device.
– AND: some services are Property-orientated !

Control System Models (a review)

Model III: Property Server Model
STARS* TINE* (maybe ACS?)– STARS*, TINE* (maybe ACS?)

– Elements are services with properties (or methods)
– Same basic hierarchy as Device Server Model
– Properties have Keywords– Properties have Keywords

(instead of Devices having Properties)
– e.g. Middle layer services

Name Server
Central Alarm Server
Central Archive Server
CDI Server
etcetc.

– BUT: Not everything divides cleanly into Device Server or
Property Server !

Transaction Coercion

Steps to reduce NC, NT, LD, and UT

Refer to the Property in the above models
– the ‘get’ and ‘monitor’ operations produce most of

th d t fl i di t ib t d t l tthe data flow in a distributed control system.

S E lSome Examples

Transaction Coercion

Multi-Channel Arrays (MCA)
– An array of all values of all devices for a given Property withAn array of all values of all devices for a given Property with

a well-known order.
Same units, settings, etc.

– Registered Property can declare itself to be an MCA.
St i t OO D i S d l d i ith– Strict OO Device Servers can declare device groups with
MCA characteristics.

– e.g. BPMs, BLMs, IonPumps, Temps, PSCs, etc.
– But Joe’s Client Panel will have a widget for a each thingBut Joe s Client Panel will have a widget for a each thing

individually !

– What to do?

Transaction Coercion

Contract-renegotiation
– delivers entire MCA
– informs client that widget #18 needs element

number #43 of the array !number #43 of the array !
NT is decimated !

FLASH DDD PS P l ith TINE M lti h l P lliFLASH DDD PS Panel with TINE Multichannel Polling

10 connections/property (was ~260)

50 contracts (was > 1000)

STEERER/SHGROUP (57)STEERER/SHGROUP (57)

STEERER/SVGROUP (48)

QUAD/QDGROUP (40)

DIPOLE/DIGROUP (19)

UNDULATOR/UNGROUP (7)

TTMAG-AB/GROUP

(PC104, 41 elements)
SEXT/SXGROUP (3)

MAIN/MNGROUP (6)

SOL/1GUN (1)
TTMAG-CD/GROUP

(PC104, 41 elements)

SOL/1GUN (1)

SUN (multi-server)

PETRA BPMs

227 Libera modules

~ 15 Client

~ 35 Contracts~ 35 Contracts

1 run-of-the-mill PC
with Ubuntu Linuxwith Ubuntu Linux

~ 7% CPU load !

CPU: 9 %

PETRA Liberas …

Feb. 18: 466 contracts, 15 clients …
Just plain old ‘Publish Subscribe’ …

Transaction Coercion

User-defined Structures
R t f i di id l fi ld d li th ti t t !– Requests for individual fields deliver the entire structure !

– Reduce NT !

Transaction Coercion

Polling Intervals and Scheduling
Eager Clients:– Eager Clients:

Need to know something ‘as soon as it happens’
Sometimes use ridiculously high update rates.

– Server can enforce a ‘minimum polling interval’!Server can enforce a minimum polling interval !
Client is informed and makes an adjustment

– Server ‘schedules’ the data when it changes.
e.g. DESY2e.g. DESY2

– cycles @ 6.25 Hz
– clients attempt to update @ 10 or 20 Hz
– Server establishes minimum polling rate @ 1 Hz but schedules

requested data @ the 6 25 Hz hardware trigger raterequested data @ the 6.25 Hz hardware trigger rate
– clients now really do get the data ‘as soon as it happens’ !

– Reduce UT !

Transaction Coercion

Steering the Acquisition Mode
Properties can reject synchronous calls– Properties can reject synchronous calls

Client can react and insert an asynchronous listener under
synchronous looking API calls.

– Properties can reject monitorsp j
Client is informed that monitored data are static

– Properties with large Payload can enforce multicast
acquisition !

Monitors coerced into listening for multicasts.
Synchronous calls rejected.

– Reduce NT and NC !

Transaction Coercion

PETRA3 Video Example:
Mixed Gbit/100-Mbit Net– Mixed Gbit/100-Mbit Net

– Large images (large PT)
Tune the transport Parameters !

– Enforce multicastEnforce multicast
– Minimum polling interval
– Redirect non-Scheduled

Property to Scheduled Property

NT = 1, NC = 1

A Server takes control of its Clients

Example: doing 1 thing for 1 effective client instead of 600 things for 10

Client

-Give me property “Pressure” for
Server

-No! You’ll have to monitor
pump “OL146.2”

- Ok then, monitor “Pressure” for
pump “OL146.2”

No! You ll have to monitor
this !

-No! You’ll have to monitor
the entire MCA

- Ok then, monitor “Pressure” for
all pumps

- Ok then I’ll listen for the

- Ok, but I’m going to
multicast it!

Ok then, I ll listen for the
multicast

Conclusion

New Data Flow meme: Contract-Coercion
– Can provide high scalability (without API restrictions)

YYes, you can …
– Run epics2tine
– Run tango2tine
– Use doocs (which has TINE embedded)
– Use stars which has a TINE bridge

http://tine.desy.de
Email: tine@desy.de@ y

Remember: Only the dead fish go with the flow !

