

Proceedings of

PCaPAC 2010
October 5-8, 2010 – Eighth International

Workshop on Personal Computers

and Particle Accelerators

PCaPAC 2010 – Saskatoon, Saskatchewan

ii Preface

 The 8th International Workshop on Personal Computers and Particle Accelerators (PCaPAC) was
held from October 5th - 8th , 2010 in the City of Saskatoon, Saskatchewan, Canada. The workshop,
organized by the Canadian Light Source, attracted 115 participants from 14 countries. A total of 30
talks and 48 posters were presented at the workshop. LabView training sessions were sponsored
and held by National Instruments while workshops were presented covering Control System Studio,
RTEMS and Matlab. A scientific excursion brought the participants to the Canadian Light Source
where five areas of the facility were visited.

 A banquet was held at the Western Development Museum where participants toured Boomtown , a
representation of a typical Saskatchewan town in 1910. Over 30 buildings portray community life –
from the general store to the working blacksmith shop to the train station and the sod house. During
the banquet, the Isamu Abe Prize was presented to two winners, Marcin Trycz of INFN and Ziga
Kroflic of the University of Ljubljana. Best Poster Prizes were presented to Jutta Fitzek (GSI,
Darmstadt) and Michel Fodje (CLS, Saskatoon)

 Special thanks go to the International Program Committee led by Elder Matias. Valuable
suggestions were made to assure the scientific success and to cover a broad spectrum of topics:
Accelerator Controls, Control Hardware and Low-level Software, Data Networking and Web
Technology, Experiment Data Acquisition and Analysis Software, Facility and System Engineering.

 On behalf of the International Program Committee and the Local Organizing Committee we
express our sincere thanks for the generous financial support received from our two main sponsors,
Cosylab and National Instruments. The workshop also benefitted from the financial support of six
industrial exhibitors; Cosylab, Hytec, Instrumentation Technologies, Pro-Dex, National Instruments
and W-ie-ne-r

 We are pleased to provide the proceedings from the workshop that contain not only the 78 paper
contributions received but also pdf copies of the talks and posters presented at the workshop. These
proceedings were edited and prepared for publication on the Web by the local JACoW team led by
Carl Finlay.

 Last but not least: The highly qualified talks, posters and numerous discussions made PCaPAC
2010 a very successful and inspiring week – a warm thank you to all participants!
Sincerely

Elder Matias
Chairman - PCaPAC 2010

PCaPAC 2010 – Saskatoon, Saskatchewan

Preface
Foreword

iii

PCaPAC 2010 – Saskatoon, Saskatchewan

iv Preface
Foreword

PCaPAC 2010 – Saskatoon, Saskatchewan

Contents

Preface i
Foreword . iii
Contents . v
Committees . vii
Pictures . viii
WETA01 – Wednesday Welcome by Josef Hormes . 1
WETA02 – Wednesday Welcome By Elder Matias, PCaPAC 2010 Chair 2
WERA01 – Control System Studio Workshop Report . 3
WECOMA01 – Use of the Cell Accelerator Platform for Synchrotron Data Analysis 4
WECOMA02 – Fast Orbit Correction at the Canadian Light Source . 9
WECOMA03 – High-Level Application Protocols . 12
WECOMA04 – What’s behind an Accelerator-Control-System? . 13
WECOAA01 – Tango Collaboration News . 16
WECOAA02 – The TINE Control System Protocol: How to Achieve High Scalability and Performance . . 19
WECOAA03 – FESA3 – The New Front-End Software Framework at CERN and the FAIR Facility 22
WECOAA04 – Employing RTEMS and FPGAs for Beamline Applications at the APS 27
WEPL002 – A software framework based on Qt for accessing EPICS data using Channel Access 30
WEPL003 – The Beamline Experiments Scheduling Software . 33
WEPL004 – Accurate Measurement of the Beam Energy in the CLS Storage Ring 36
WEPL006 – Status of the future SPIRAL2 Control System . 38
WEPL008 – Settings Management within the FAIR Control System based on the CERN LSA Framework 41
WEPL009 – Integration of Programmable Logic Controllers into the FAIR Control System using FESA . . 44
WEPL010 – FESA Based Data Acquisition for Beam Diagnostics at GSI 47
WEPL011 – FAIR Timing Master . 50
WEPL012 – From an Empty PC to a Running Control System: A KNOPPIX Live-CD for DOOCS 53
WEPL014 – Consolidating the FLASH LLRF System Using DOOCS Standard Server and the FLASH DAQ 55
WEPL015 – An orbit feedback for the Free Electron Laser in Hamburg (FLASH) 58
WEPL016 – Status, Applicability and Perspective of TINE-powered Video System, Release 3 61
WEPL018 – The FERMI@Elettra CCD image acquisition system . 64
WEPL020 – EPICS applications in the control of SPES Target Laboratory 67
WEPL021 – Soft real-time control with client/server control system . 70
WEPL022 – STARS on PLC . 73
WEPL023 – Improvements for Simple Operation at SAGA-LS Accelerator 76
WEPL025 – Control and Timing System Design of CPHS Project . 79
WEPL028 – TINE/ACOP state-of-the-art Video Controls at Petra III . 82
WEPL029 – Applicability of XAL for ESS . 85
WEPL031 – CCCP - Cosylab common control platform . 88
WEPL032 – Programming Interfaces for Reconfigurable Instruments . 91
WEPL033 – EPICS IOCcore Real-Time Performance Measurements on Coldfire Module* 94
WEPL035 – High Level Matlab Applications for SPEAR3 . 97
WEPL037 – A Novel Approach for Beam Commissioning Software using Service Oriented Architecture . 100
THIOA01 – PC –Based Technologies for Diagnostics, Measurement and Control 103
THRA01 – MatLab Workshop Report . 104
THCOMA01 – Progress status for the Petra3 EMBL Beamlines . 105
THCOMA02 – synApps: EPICS-Application Software for Synchrotron Beamlines and Laboratories 106
THCOMA03 – Using ezcaIDL to connect to EPICS Channel Access from SHADOWVUI for Dynamic X-ray

Tracing . 109
THCOMA04 – A simple DAQ system based on LabVIEW, php and MySQL 112
THCOAA01 – Web Services Cyber-Security Issues . 115
THCOAA02 – Remote Access to the VESPERS Beamline using Science Studio 118
THCOAA03 – Research Metadata Management at the Australian Synchrotron and ANSTO 121
THCOAA04 – Diamond’s transition from VME to fieldbus based distributed control 124
THPL004 – A Discrete Hysteresis Model for Piezoelectric Actuator and its Parameter Identification 127
THPL005 – Automation of the Macromolecular Crystallography Beamlines at the Canadian Light Source . 130
THPL006 – Mechanical Vibration Measurement System at the Canadian Light Source 133

Contents v

PCaPAC 2010 – Saskatoon, Saskatchewan

THPL007 – Remote Access to a Scanning Electron Microscope using Science Studio 136
THPL008 – CLS User Services Web Portal . 139
THPL009 – EPICS Data Acquisition Software at the CLS . 142
THPL010 – CLS LINAC Safety System Upgrade . 144
THPL011 – FEC in Deterministic Control Systems over Gigabit Ethernet 147
THPL012 – LLRF Control System Upgrade at FLASH . 150
THPL013 – Scripting tools for beamline commissioning and operation . 153
THPL014 – The ANKA B-Field Test Facility Control System, based on a SPEC Macro Package Enhanced

Setup . 156
THPL015 – Macro package based Enhancement of SPEC controlled Experimental Setups 159
THPL017 – Study case of a collaboration portal for an international scientific project 162
THPL018 – Development of Image Processing System on Embedded EPICS for Beam Diagnostics . . . 165
THPL020 – Control and Acquisition Software Complex for TBTS Experiments 168
THPL021 – Estimation of the Response Time and Data Flows in the TOTEM DCS 171
THPL022 – Plans for monitoring TPS control system infrastructure using SNMP and EPICS 174
THPL023 – Data Acquisition and Studies of Vibration Motion in TLS Beamlines 177
THPL024 – Computational Strategies in Optimizing a Real-Time Grad-Shafranov PDE Solver using High-

Level Graphical Programming and COTS Technology . 180
THPL026 – ESS Controls Strategy and Control Box Concept . 183
FRIOA01 – Control systems for new large projects . 186
FRRA01 – RTEMS Workshop Report . 191
FRCOMA01 – ‘WhiteRabbit’ - A novel, high precision timing system . 192
FRCOMA02 – FLASH DAQ Data Management and Access Tools . 195
FRCOMA03 – Beam Profile Monitoring System for XFEL/SPring-8 . 198
FRCOMA04 – Embedded Controller for Industrial CT trigger module . 201
FRCOAA01 – ITER control system development environment . 204
FRCOAA02 – Database-driven Status Analysis in Beam Operation at the Heidelberg Ion Therapy Center 205
FRCOAA03 – Quark: A Dynamic SDLC Methodology . 208
FRCOAA04 – Experiment Based User Software . 211
FRCOAA05 – Data Acquisition from heterogeneous sensor networks: the case of NEPTUNE Canada, the

world largest cabled ocean observatory. 214
FRTA01 – Friday Closeout Presentation . 219
FRTA02 – PCaPAC 2012 Announcement . 220

Appendices 221
List of Authors . 221
Institutes List . 225
Participants List . 229

vi Contents

PCaPAC 2010 – Saskatoon, Saskatchewan

International Program Committee
Reinhard Bacher - BESSY (Germany)
Ralph Baer - GSI (Germany)
Giorgio Bassato - INFN (Italy)
Matthew Bickley - Jefferson Labs (US)
Daniele Bulfone - Elettra (Italy)
Luciano Catani - INFN (Italy)
Ron Chestnut - Stanford-SLAC (US)
Pavel Chevtsov - Jefferson Labs (US)
Matthias Clausen - DESY (Germany)
Philip Duval - DESY (Germany)
Richard Farnsworth - (AS) (Australia)
Dave Gurd - Oak Ridge (retired)
Mark Heron - Diamond (UK)
Kuo-tung Hsu - NSRRC (Taiwan)
Steve Hunt - Alceli (Switzerland)
Norihiko Kamikubota - KEK (Japan)
Ajith Kumar- NSC (India)
Shin-ichi Kurokawa - KEK (Japan)
Ralph Lange - BESSY (Germany)
Elder Matias - CLS (Canada)
Wolfgang Mexner - FZK (Germany)
Hiroshi Nishimura - KEK, (Japan)
Mark Plesko - Josef Stephan Institute (Slovenia)
Hermann Schmikler - CERN (Switzerland)
Guobao Shen - BNL (US)
Ryotara Tanaka - Spring 8 (Japan)
Jorg Klora - CELLS (Spain)
In Soo Ko - Postech (South Korea)
Deborah Quock - APS (US)
Bei Bei Shao - (China)
Detlef Vermeulen - PSI (Switzerland)
Igor Verstovsek - CozyLab (Slovenia)
Karen White - Oak Ridge-SNS (US)
Ernest Williams - SLAC Stanford (US)
Akihiro Yamashita - Spring 8 (Japan)

Local Organizing Committee (all Canadian Light Source)
Chairman - Elder Matias
Editor and Program - Carl Finlay
Workshop Coordinator - Dionne Laprairie
Tour Coordinator - Gillian Black
Audio/Video Coordinator -Robby Tabber
Marketing Coordinator - Sandra Ribeiro
Technical Program - Glen Wright

Preface
Committees

vii

PCaPAC 2010 Participants

PCaPAC 2010 – Saskatoon, Saskatchewan

viii Preface
Pictures

Isamu Abe Prize Winner (Shared) – Ziga Kroflic (University of Ljubljana, Ljubljana, Slovenia)

Isamu Abe Prize Winner (Shared) – Marcin Ireneusz Trycz (INFN- Roma II, Rome, Italy)

PCaPAC 2010 – Saskatoon, Saskatchewan

Preface
Pictures

ix

Best Wednesday Poster Winner – Jutta Fitzek (GSI – Darmstadt, Germany)

Best Thursday Poster Winner – Michel Fodje (Canadian Light Source, Saskatoon, Canada)

Accepted by Russ Berg, CLSI

PCaPAC 2010 – Saskatoon, Saskatchewan

x Preface
Pictures

PCaPAC 2010 – Saskatoon, Saskatchewan

Preface
Pictures

xi

PCaPAC 2010 – Saskatoon, Saskatchewan

xii Preface
Pictures

PCaPAC 2010 – Saskatoon, Saskatchewan

Preface
Pictures

xiii

PCaPAC 2010 – Saskatoon, Saskatchewan

xiv Preface
Pictures

PCaPAC 2010 – Saskatoon, Saskatchewan

Preface
Pictures

xv

PCaPAC 2010 – Saskatoon, Saskatchewan

xvi Preface
Pictures

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WETA01

PRESENTATION ONLY

Accelerator Controls Development and application frameworks

1

WETA02 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

PRESENTATION ONLY

Accelerator Controls

2

Development and application frameworks

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WERA01

PRESENTATION ONLY

Control hardware and low-level software Front-end (Hardware Interface) Software

3

USE OF THE CELL ACCELERATOR PLATFORM FOR SYNCHROTRON
DATA ANALYSIS

J. Qin, M. A. Bauer, N. S. McIntryre
The University of Western Ontario, WSC-143, UWO, London, ON. N6A 5B7, Canada.

Abstract
The analysis of synchrotron-based Polychromatic X-ray

Microdiffraction (PXM) data has been used by scientists
and engineers to understand elastic and plastic strains in
materials on a micro or nano scale. Such experiments
generate hundreds or thousands of images where the
analysis of each image often entails intensive
computations- a challenging task. As well, in the past, the
speed of such computations has made it difficult to obtain
feedback on the experimental results in near real time.
This has constrained researchers from making critical
decisions on direction subsequent experiments should
take based on the results in hand. In order to improve the
analysis performance of PXM images, we have
investigated the use of parallel analysis schemes. This
paper reports on the design and implementation of
accelerated PXM analysis software. It has been developed
on IBM PowerXCell 8i processors and Intel quad-core
Xeon processors. A substantial improvement in
processing speed has been obtained to the extent that it
should be possible to obtain results at the same rate as
they are produced on the VESPERS beamline at the
Canadian Light Source (CLS) Synchrotron (~1 Hz).

INTRODUCTION
The development of high-energy PXM as a non-

destructive method to determine elastic and plastic strains
has been ongoing for the past decade [1-5]. The data
generated in PXM experiments can consist of a large
number of 2D digital images. Once these images have
been generated from an experiment, ideally, it is expected
that data can be processed at a same speed level as data is
collected.

There are three major procedures involved in PXM data
analysis, including peak searching, indexing and strain
calculation. Briefly, peak searching attempts to extract
useful information about intensity points (peaks) from an
image to be used as input for the next two procedures.
The indexing procedure takes the output from the peak
searching procedure and generates the structural
information about the sample material, e.g. the orientation
of a crystalline lattice plane from which a diffraction spot
is generated. Based on the indexing results and peak
information, the strain analysis procedure then produces
strain tensors in the sample. Based on the indexing results
and strain tensor information, an orientation map and a
strain map can be generated for the entire scanned area
from which all PXM data were collected.

There are some existing software packages for PXM

data analysis, such as the 3D X-ray Micro-diffraction
Analysis Software Package at APS in Chicago which was
developed at ORNL[6], and X-ray Micro-diffraction
Analysis Software (XMAS) at ALS in Berkeley[7]. The
common feature of these two packages is that they both
are Windows-based software with a frontend interface
implemented in Interactive Data Language (IDL) [8] and
some backend procedures implemented in Fortran. Both
can process a large amount of PXM data sequentially, i.e.,
step by step and one by one in sequence. This is a very
time consuming process, and it usually takes days to
finish processing a set of data collected from one PXM
experiment. However, synchrotron time is valuable and it
is often difficult to get a scheduled beam time. Data
analysis using existing software means that researchers
must complete the analysis following their time on the
synchrotron. Faster analysis could help researchers make
decisions on subsequent experiments during their
synchrotron session and gain significant insight into the
materials that they are studying.

In this paper, we introduce the development of an
accelerated software for PXM data analysis, so called Fast
Online X-ray Micro-diffraction Analysis Software
(FOXMAS). It has been developed on a Cell accelerator
platform comprised of Intel and IBM Cell processors. The
software developed and the system it runs on makes it
possible for PXM data to be processed in “near-real
time”, that is, nearly as fast as it is being produced. A
description of the platform, the development approach,
some performance evaluations, conclusions and future
work are reported.

CELL ACCELERATOR PLATFORM
The target Cell accelerator platform, called Prickly, is

one of the clusters in SHARCNET [9]. It is a
heterogeneous High Performance Computing (HPC)
system consisting of one head node for hosting user
logins and a chassis with 12 Linux cluster blades
providing total 160 computing cores. Among the 12
blades, four blades are Intel blades and the other eight are
IBM Cell blades. On each of the Intel blades, there are
two quad-core Xeon E5420 processors running at 2.5GHz
with 8GB of memory. Each of the Cell blades contains
two PowerXCell 8i processors, so called Cell processors,
running at 3.2GHz with 16GB of memory. Blade
interconnection is achieved through Gigabit Ethernet.

Unlike traditional multi-core processors which are
homogenous, such as those on Intel blades, the Cell
processor itself has heterogonous multi-cores [10]. It
employs two types of cores optimized for different kind
of tasks. Each Cell processor has nine cores, i.e. one

*Work is part of Science Studio project supported by CANARIE
http://www.canarie.ca/

WECOMA01 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

4

Data analysis

PowerPC Processor Element (PPE) and eight Synergistic
Processor Elements (SPEs). The PPE is just a traditional
64-bit Power processor and acts as a large-scale processor
core to run the operating system and performs control-
intensive tasks. In contrast, the SPEs are much simpler,
but devote more resources to perform computationally
intensive tasks. Since each Cell blade has two Cell
processors, in total, there are sixteen SPEs on each Cell
blade. The sixteen SPEs are independent, 128-bit vector
processors. Each SPE has its own local storage (256KB)
for instructions and data. The SPE access to the memory
is achieved through its Direct Memory Access (DMA)
controller. The DMA can work concurrently with SPE
executions, which hides the latency caused by memory
accesses.

The Element Interconnect Bus (EIB) provides four 128-
bit data transmission channels for the inter-
communication among PPE, SPEs, main memory and
I/O. It can support up to 307GB/s bandwidth between
any two bus units. Therefore, with EIB, each SPE can not
only work alone, but also be chained together to perform
data processing with an intensive workload, such as
stream processing.

 While the Cell’s special architecture offers many
advantages for high performance computations, the
architecture also makes programming on Cell more
difficult.

DEVELOPMENT APPROACH
The goal of this development is to port the PXM data

analysis software onto the target Cell accelerator platform
to achieve an accelerated performance.

There are two major challenges involved in this porting
process. First, the exiting software was written in IDL
with some backend procedures written in Fortran. Our
target Cell platform Prickly can only support programs
mainly in C/C++. The software has to be rewritten into C
in order to make it run on Cell.

Another challenge is to program on the Cell. To make
use of all those advanced features provided by the Cell,
especially the computation power provided by those
SPEs, programming on Cell is a challenging. As each
SPE has its own local store for holding instructions and
input/output data, data needs to be moved back and forth
between the local store and the main memory with
explicit DMA commands. Because of the limited space
(256k) for a local store on SPEs, only tasks that fit can be
considered, otherwise, an advanced overlay management
needs to be used.

There were two objectives in developing the PXM data
analysis application. First, we wanted to create an
implementation of the three major analysis procedures
where the processing tasks were pipelined in order to
accelerate the processing of a PXM image. Second, we
wanted an implementation so that multiple PXM images
could also be processed in parallel.

To further improve the processing speed on a single
image, we want to identify the performance “bottleneck”
of the entire process and then target an implementation on
Cell around that “critical” part. Our measurements on a
sequential version of the analysis code indicated that
more than 80% of the processing time was spent in the
peak searching procedure; therefore, it was initially
targeted as the “critical” computation to be considered for
porting to the Cell.

The peak searching procedure involves finding a
threshold, blob searching, and curve fittings on each of
the blobs. Among all three subtasks in peak searching,
curve fitting is the most intensive one. During curve
fitting on a blob, it applies two 1-D fittings (i.e., one for
the X direction and one for the Y direction) and one 2-D
fitting for a box area around each blob. Fig. 1 illustrates
blobs identified in a PXM image with a certain intensity
threshold. Each fitting process actually entails solving a
multi-variable, non-linear least square minimization
problem. It involves iterations to update the state of
corresponding variables continually until certain criteria

Figure 1: An PXM image with identified blobs that need curve fittings

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WECOMA01

Experiment Data Acquisition/ Analysis Software Data analysis

5

are met. Specifically, the 1-D fitting involves solving
four variables; these results become the initial states for
the 2-D fitting. In turn, the 2-D fitting involves solving
for six variables. The existing software carries out the
curve fittings sequentially for each of the blobs in an
image; this is very time consuming and becomes the
bottleneck of the entire PXM data analysis.

 Considering the computational power of a Cell’s SPE,
with a limited local store, it works well for a process with
relatively small size but needs to run many times.
Fortunately, the curve fitting is applied to each blob,
which is in a relatively smaller area than the entire image
area. The computation of the fitting process is also
relatively intense and needs to be applied to every blob in
an image. Therefore, the curve fitting process was
selected as the processing task for the Cell’s SPEs. After
a collection of blobs has been identified, the fitting
process can be done on the Cell’s multiple SPEs in
parallel, i.e. multiple blobs can be fitted by multiple SPEs
simultaneously.

To analyze a large set of PXM images, we considered a
computational approach involving processing multiple
images in parallel and doing curve fitting on multiple

blobs in parallel for each image during peak searching.
The design of our parallel PXM data analysis program is
illustrated in Fig. 2.

Using Fig. 2 as a guide the processing proceeds as
follows. Initially, n images are loaded to be processed in
parallel. Each of these images is initially processed on
one of Cell’s PPEs in order to identify blobs – potential
regions having peaks. A list of blobs is produced for each
image. Curve fitting is then done on each list of blobs on
Cell’s SPEs in parallel. The processing of the blobs from
an image results in a list of possible peaks. The list of
peaks is then passed to the indexing computation which
results in index data and orientation maps based on index
data. The index data is also used in the strain computation
which produces a strain results and maps based on strain
data. The indexing computation and strain computations
are done on the Intel blades.

The design illustrated in Fig. 2 that has been
implemented and deployed on Prickly, FOXMAS, has a
web interface for job submission and online result
visualization, that are not discussed in this paper. Because
of the limited length, this paper only focused on the
development of the accelerated data analysis.

Figure 2: The configuration of high performance PXM data analysis on Prickly

Source Images

Images

Source Images

WECOMA01 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

6

Data analysis

PERFORMANCE EVALUATION
We measured the time needed for processing different

sets of images sequentially with the original IDL
software. We also measured the performance of
FOXMAS, i.e., the average processing speed with various
settings, including the number of parallel pipelines and
number of SPEs used on each image. The speedup of
each test case is compared to the speed of the IDL
software.

 PXM images could have different sizes depending on
the type and setting of a CCD detector. Larger size
images tend to provide more information with a trade-off
of a heavier analysis workload. In this evaluation, we
examined two different image sizes. One set of images
were collected from APS, each of which has 1042X1042
pixels and is about 2MB/image. Another set of images
were from CLS, each of which has 2084X2084 pixels and
is about 8MB/image. Using the original IDL software on
a desktop machine, the average processing speed for APS
images is about 4.31 sec./image and for CLS images is
about 14.36 sec./image.

 Prickly has total of 4 Intel blades and 8 Cell blades, we
examined the performance of data analysis on one pair of
Cell-Intel blades and on multiple pairs of Cell-Intel
blades. As described in Fig. 2, peak searching is done on
the Cell blade; while indexing and strain analysis are done
on the Intel blade. Since each Cell blade has a total of 16
SPEs, if n images are processed in parallel, i.e. n
pipelines, and m SPEs are allocated for each image or
each pipeline, m and n are constrained to be values such
that m×n=16. Different combinations of m and n were
tested. For the workload on the Intel blade, if n pipelines
are initiated for processing n images in parallel, n
processes are created on the Intel blade, and each of these
n processes works on the indexing and strain analysis on
one of n images. The operating system takes care of
workload distribution among the eight cores on the Intel
blade. The speedup of each test case is compared to the
desktop speed using IDL software. Tables 1 and 2
present the measured results on one pair of computation
nodes on Prickly.
Table 1: Results of processing APS images on one pair of
Cell-Intel nodes on Prickly

Images in
parallel

(pipelines)

Number of
SPEs for

each image

Average
Speed

(sec./image)

Speedup
vs. IDL
(times)

1 16 0.63 6.84
2 8 0.43 10.02
4 4 0.35 12.31
8 2 0.26 16.58

16 1 0.22 19.59

The results presented in Table 1 illustrate that for
processing images of the size of the APS images, the
more images that are processed in parallel, the better
throughput, i.e. processing 16 images resulted in average

speed 0.22 sec./ image and speedup of 19.59 times
compared to IDL software.
Table 2: Results of processing CLS images on one pair of
Cell-Intel nodes on Prickly

Images in
parallel

(pipelines)

Number of
SPEs for

each image

Average
speed

(sec./image)

Speedup
vs. IDL
(times)

1 16 2.84 5.06
2 8 1.81 7.93
4 4 1.55 9.26
8 2 1.67 8.60

16 1 1.68 8.55

In processing the larger size images, i.e. those from
CLS, the results of Table 2 suggest that processing 4
images in parallel and with 4 SPEs allocated for each
image can produce the best throughput, i.e. an average
speed 1.55 sec./image and about 9.26 times of speedup
compared to IDL software. The processing of multiple
images in parallel was achieved through multi-process
programming, while the parallel blob fitting on the Cell
was achieved through multi-threaded programming. In
general, process creation cost is much larger than thread
creation cost. The overall performance gain of a parallel
application is dependent on balancing the computational
workload and the trade-off in setting up the parallel
processing elements. The result of reducing the number of
SPEs allocated for each image, i.e., to 2 or 1 in Table 2, in
lieu of having more parallel pipelines to process more
images in parallel is not sufficient to overcome the blob
processing done on each of the larger images within the
SPEs. Consequently, using 4 pipelines and 4 SPEs results
in the best performance for images of this size.
Table 3: Results of processing APS images on multiple
pairs of Cell-Intel nodes on Prickly

Pair(s) of
Cell-Intel

nodes

Images in
parallel

(pipelines)

Average
speed

(sec./image)

Speedup
vs. IDL
(times)

1 16 0.22 19.59
2 32 0.14 30.78
3 48 0.07 61.57
4 64 0.07 61.57

To examine the performance of using multiple pairs of

Cell-Intel nodes on Prickly, based on the results presented
in Tables 1 and 2, 1 SPE per APS image and 4 SPEs per
CLS image were used. Tables 3 and 4 present the results.
The results illustrate that the performance of PXM data
analysis has been boosted significantly when more
computational resources are used. For the smaller sized
images collected at APS, as presented in Table 3, when
48 processing pipelines were setup on three pairs of Cell-
Intel blades, the average processing speed can reach as
high as 0.07 sec./image, which is 61.57 times speedup
compared with 4.31sec./image of using existing IDL
software on a desktop machine. For larger size images
collected at CLS, when 16 processing pipelines were
setup on four pairs of Cell-Intel blades, the average

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WECOMA01

Experiment Data Acquisition/ Analysis Software Data analysis

7

processing speed (see Table 4) can reach as high as 0.59
sec./image, which is 24.34 times speedup compared with
14.36 seconds/image when using the IDL software on a
desktop machine.
Table 4: Results of processing CLS images on multiple
pairs of Cell-Intel nodes on Prickly

Pair(s) of
Cell-Intel

nodes

Images in
parallel

(pipelines)

Average
speed

(sec./image)

Speedup
vs. IDL
(times)

1 4 1.55 9.26
2 8 0.96 14.96
3 12 0.70 20.51
4 16 0.59 24.34

Notably, the measured speedup from both sets of

experiments presented in Tables 3 and 4 do not result in a
linear improvement as more nodes are added. One of the
factors affecting the speedup is the increased overhead of
in setting up more pipelines exchanging information
across the two types of nodes on Prickly. Another factor
that affects achieving a linear speedup is the data transfer
and communication cost of the Gigabit Ethernet; as more
processes are added there is an increase in
communication.

The goal of this project is to make use of such an
accelerated data analysis for a synchrotron beamline to
achieve a real time experiment and data analysis. The Cell
platform Prickly is located at The University of Western
Ontario in London Ontario. A synchrotron beamline, such
as CLS is located in Saskatoon Saskatchewan. To achieve
a real time PXM experiment and data analysis, data
collected at CLS needs to be transferred to UWO in an
ultra high speed. CANARIE’s cross country lightpath
network can provide such an ultra high speed data
transmission. By using CANARIE’s dedicated lightpath
we are able to complete such a scenario.

A preliminary functional test has been measured for
such a scenario. It included a procedure of sending a set
of total 100 PXM images (about 8MB/image) from CLS
to UWO, then getting processed on SHARCNET’s
Prickly at UWO, and presenting final results at an FTP
site for users to download. It only took around 4 min. to
complete the entire procedure. In specific, it took about 2
min. for data transmission from CLS server to UWO
server through the lightpath, and less than 1 min. for data
transmission from UWO server to SHARCNET’s Prickly
through UWO’s intro-network. It only took about 1 min.
to finish the data analysis on Prickly and send the analysis
results back to UWO server for users to download. Even
thought there are still rooms for refinement, the
performance is quite promising for a real time
experiment.

CONCLUSION AND FUTURE WORK
In this paper we reported the development of an

accelerated PXM data analysis, FOXMAS, on a Cell
accelerator platform, i.e. the cluster Prickly on
SHARCNET. Using the computation power of Prickly,

especially the Cell processors, FOXMAS can achieve up
to 60 times faster than a desktop performance of using
original IDL software package, depending on the size of
images and the number of computation nodes used on
Prickly. Combined with CANARIE’s dedicated lightpath
for data transmission, the promising performance makes it
possible to process the data at the same high rate as it is
produced at the synchrotron (CLS).

Future work for our next step is to implement the
function of data transmission/analysis at the same time as
it has been collected during a synchrotron experiment, i.e.
a real time data collection and analysis. This is currently
underway using the VESPERS beamline at the CLS. Such
a model could also be adapted to other synchrotron and
HPC facilities.

ACKNOWLEDGEMENTS
FOXMAS was developed based on source code of IDL

packages from APS [6] and XMAS from ALS [7]. We are
grateful for the useful document from Dr. Nobumichi
Tamura of ALS in helping us to understand the analysis
procedures involved in PXM data analysis. Thanks to Dr.
M.L. Suominen Fuller and Ph.D. student Jing Chao at
UWO for their great help on the validation of results
produced by FOXMAS. Thanks to Dong Liu at CLS for
his collaborated work in the measurement of data
transportation from CLS to UWO through the dedicated
lightpath.

REFERENCES
[1] J.S. Chung and G. E. Ice, Journal of Applied Physics,

86 (1999) 5249-5255
[2] G. E. Ice and B. C. Larson, Advanced Engineering

Materials, 2(2000) 643-646
[3] B. C. Larson, W. Yang, G. E. Ice, J. D. Budai and J.

Z. Tischler, Nature, 415(2002) 887-890.
[4] M. L. Suominen Fuller, R. J. Klassen, N. S.

McIntyre, A. R. Gerson, S. Ramamurthy, P. J. King
and W. Liu, Journal of Nuclear Materials,374 (2008)
482-487

[5] J. Chao, A. Mark, M.L. Suominen Fuller, N. S.
McIntyre, R. A. Holt, R.J. Klassen and W. Liu,
Material Science and Engineering, A 524 (2009) 20-
27

[6] PXM data analysis at APS :
http://www.aps.anl.gov/Sectors/33_34/microdiff/dow
nloads/

[7] PXM data analysis at ALS:
http://xraysweb.lbl.gov/microdif/user_resources.htm

[8] K. P. Bowman, An Introduciton to Programming
with IDL: Interactive Data Language, Elsevier Inc.
2006

[9] SHARCNET website:
 https://www.sharcnet.ca/

[10] M. Scarpino, Programming the Cell Processor: For
Games, Graphics, and Computation, Printice Hall,
2008

WECOMA01 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

8

Data analysis

FAST ORBIT CORRECTION AT THE CANADIAN LIGHT SOURCE

C. Payne, Canadian Light Source, Saskatoon, Saskatchewan, Canada
D. Chabot, Brookhaven National Laboratory, Upton, New York, USA

Abstract
Correction of the electron beam orbit in the storage ring

at the Canadian Light Source has historically been
implemented using a correction system capable of only
moderate update rates. Over the past several years work
has been undertaken to reduce orbit perturbations and
improve end user synchrotron beam quality by
reimplementing the correction system and enabling orbit
corrections several orders of magnitude faster. This paper
will describe the implementation and migration of the
orbit control software from the slow correction system to
the fast system.

CLS ORBIT CONTROL HISTORY
The present orbit control system in use at the Canadian

Light Source (CLS) is described in [1]. This system is an
intermediate step between the previous orbit control
system [2] and the system described in this paper. The
design limitations of the current system as impetus for
change are worth mentioning and will be briefly
discussed below.

DESIGN LIMITATIONS OF THE
EXISTING SYSTEM

There are several key limitations inherent to the orbit
control system in use at the CLS at the time of writing.

Update Rate Limitations
The main motivational factor to migrate to a new

system is maximum possible update rate. The present
system is only capable of quasi-static update rates on the
order of 0.1Hz. Although this has been successful at
sufficiently maintaining the orbit of the CLS Storage Ring
(SR), faster corrections rates are desired to further reduce
orbit perturbations.

Serial Application of Orbit Corrections
 The Matlab [3] program, CLSORB [4], applies

corrections in a sequential manner. This results in
undesirable orbit perturbations as the corrections are
applied one after another around the storage ring.
Distribution of corrections from CLSORB through the
Experiential Physics and Industrial Control System
(EPICS) [5] produces additional non-deterministic
behaviour due to network and computer latencies.
Delivering corrector magnet setpoints in this way also has
the effect of accruing hardware delays on a per-channel
basis, instead of per power-supply controller. This adds
significant delays to the process of setpoint distribution,

and is a major factor governing the achievable rate of the
orbit control system.

HARDWARE
The hardware involved in the orbit control system is

shown schematically in Figure 1. The hardware consists
of:

An Industrial 3GHz x86 PC IOC with 1GB or RAM
running Real-Time Executive for Multiprocessor
Systems (RTEMS) v4.10 [6]
Four (4) Versa Module Eurocard (VME) Crates [7]
Four (4) pairs of Struck Innovative Systems (SIS)
PCI/VME 1100/3100 cards, for connectivity [8]
Four (4) Analog to Digital Converter (ADC) VME
cards (ICS-110BL sampling ADC)
Eight (8) Digital I/O Modules, model VMIC 2536 D-
I/O, 2 per VME crate used to control corrector
setpoints

In addition, hardware independent of the fast orbit control
software system:

Beam Position Monitors (BPMs) which produce
analog signals in proportion to the position of the
electron beam passing through them. [9]
Bergoz BPM Modules which sample the BPMs to
produce analog x-y coordinates of beam position.
[10] These signals are then digitized by ICS-110BL
VME modules and the data processed by the
RTEMS IOC.
OCM Power Supply Controllers, VME based devices
interfaced with the OCM power supplies. There are
48 vertical and 48 horizontal orbit correctors,
contained in a bulk IEPower [11] chassis. It should
be noted that although setpoints are via the fast,
VME interface, the power supply feedback is
exclusively via serial interface.

Figure 1: Hardware Overview

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WECOMA02

Accelerator Controls Development and application frameworks

9

ADVANTAGES OF THE FAST
IMPLEMENTATION

Although the current orbit control system has served
the CLS well, a more efficient and faster system has been
designed. Along with speed, there are several other
advantages of the fast orbit control system over the
existing system.

Update Rate
As the name implies, the key advantage of the new

system is an improved correction rate, which will be
several orders of magnitude faster than the existing
system. With the fast system, rates of 20-100 Hz are
attainable.

Concurrently Acquired BPM Data
BPM data acquisition in the fast system can be period

driven rather than interrupt driven. Although this shift
from interrupt driven is necessitated by the inability of
determining detailed information on the FIFO buffer state
of the ICS-110BL, it has several, positive side effects.
Using per ADC threads (4) to concurrently acquire the
BPM data ensures true time correlation amongst the BPM
data. As well, the threaded, concurrent nature of the BPM
data acquisition results in both a reduction in noise by
approximately a factor of 4 as well as a reduction in dead
time of a factor of 16. [1]

Localized Setpoint Calculation and Application
Previous versions of orbit control software have relied

on multiple computers working together to create a
complete orbit control system. One system would acquire
the orbit positions, pass them to another system, which
would calculate and apply the corrections, either back to
the initial system, or to other slow systems.

Corrections are now calculated and applied directly by
the RTEMS Input Output Controller (IOC). This
migration from a remote setpoint application, with
network and other latencies involved, greatly increases the
rate at which applications may be applied to the system.

In the fast system, once the response matrix is
determined and transferred from Matlab to the RTEMS
IOC, the system operates independently, calculating and
distributing new corrector magnet setpoints.

Concurrent Correction Setpoint Application
Similar to the concurrent acquisition of BPM data, the

fast system is also able to simultaneously apply the
correction setpoints to the orbit correctors. Once the
setpoint values are calculated and loaded to the corrector
controllers, they are simultaneously activated across all
controller channels. This method minimizes the
perturbations caused by the serial application inherent in
the previous system.

Multiple Operating Modes
The fast system has the added flexibility of allowing

multiple modes of operation. [12] This feature is useful
both for initial commissioning as well as providing a
migration path from the current system to the fast system.
The modes, which are exposed and controlled via an
EPICS Process Variable (PV) include:

Standby: In this mode, BPM data acquisition is
disabled, but control of corrector setpoint PV's is
permitted.
Assisted: This mode causes the system to emulate
the current system where BPM process values are
averaged and updated at 20Hz and corrector
setpoints are distributed via the CLSORB Matlab
program. Assisted mode provides a migration path
between the current system and the fast system, and
has been in use since April 2010 while awaiting
delivery of a full compliment of fast VME controller
boards.
Autonomous: In this mode BPM acquisition is
identical to Assisted but the RTEMS IOC will
calculate and apply corrections independent of
CLSORB.
Timed: This mode is similar to Autonomous, but the
BPM data acquisition is timer driven thereby
allowing faster operating rates.

Of these modes, Autonomous and Timed will be the
modes used most often during normal operation.

Orbit Control EPICS Interface
The fast system also exposes various orbit control

parameters as EPICS PV's, leveraging the nature of the
Channel Access (CA) protocol to provide a user interface
accessible to distributed CA client programs. The
accessible system parameters include BPM x and y
averages and standard deviations, the number of BPM
samples per average, as well as corrector magnet setpoint
control and read-backs.

SYSTEM PERFORMANCE
Initial testing performed in March 2009 with one half

(48) the total required number of fast correctors available
has shown promising results. The test consisted of
opening and closing the gap of the Hard X-ray Micro-
Analysis (HXMA) Wiggler while observing the expected
orbit perturbation. Historically this is a disruptive
operation, causing relatively large orbit excursions. The
effectiveness of the new orbit control system's ability to
dampen beam disturbances is readily apparent from
Figure 2 and Figure 3 below.

WECOMA02 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

10

Development and application frameworks

Figure 2: Orbit response due to HXMA Wiggler
Operation while operating orbit control in Assisted Mode,
equivalent to slow operation.

Figure 3: Orbit response due to HXMA Wiggler
Operation while operating orbit control in Timed Mode,
Approximately 65Hz update rate.

Theoretical limits to the update rate of the fast system
in the current configuration are on the order of 100Hz.
Realistically attainable rates in Timed mode are 65Hz.

FUTURE WORK
Preliminary work has been done on the next generation

of fast orbit control which will be capable of even higher
update rates. The changes required to attain even faster
rates include heavily modifying the power supply setpoint
distribution algorithm to distribute the cost of the
hardware delays associated with affecting setpoint
changes. As well, a behavioural modification permitting
application of the orbit control algorithm based on the
number of ADC frames collected, rather than based on
ADC or RTEMS timer interrupts has been implemented.
Coupled together these changes permit application of
orbit corrections well in excess of 100 Hz.

CONCLUSION
The CLS storage ring orbit control has been driven by

CLSORB for several years. Although sufficient in
controlling the orbit to allow storing beam for long
periods of time, the system does not operate fast enough
to counteract insertion device movement or other sources
of beam disturbance on the order of 10 Hz.

The benefits of an improved orbit correction system for
the CLS storage ring are obvious from the example given.
Routine activities such as movement of insertion device
gap can be made almost transparent to user operations.
Other, low-frequency sources of beam disturbance can
also be effectively compensated for with the new system.

Fast correction hardware availability has been the
limiting factor in full deployment of the fast orbit
correction system. We are hopeful that the system will be
fully deployed in late 2010.

ACKNOWLEDGEMENTS
Research described in this paper was performed at the

Canadian Light Source, which is supported by the Natural
Sciences and Engineering Research Council of Canada,
the National Research Council Canada, the Canadian
Institutes of Health Research, the Province of
Saskatchewan, Western Economic Diversification
Canada, and the University of Saskatchewan.

REFERENCES
[1] D. Chabot, “SR1 Orbit Control Design Note”, 5.2.39.4 -

Rev. 0, 2008
[2] R. Berg, “Orbit Control for the Canadian Light Source”,

EPAC Proceedings 2004
[3] Matlab http://www.mathworks.com/products/matlab/
[4] H, Zhang “CLSORB Slow SR Orbit Control in Matlab”,

7.2.61.6 Rev. 0 , Jun 2008
[5] Experimental Physics and Industrial Control System,

http://www.aps.anl.gov/epics/
[6] Real-Time Executive for Multiprocessor Systems,

http://www.rtems.com
[7] Versa Module Eurocard, http://www.vita.com
[8] Struck Innovative Systems, http://www.struck.de
[9] D. Bertwistle, CLS Design Note 7.2.38.1 Rev. 0, “CLS

Button Position Monitor Sensitivity Analysis”, Nov 2001
[10] I. Stavness, CLS Technical Document 7.2.38.5 Rev 0,

“BPM Test Report”, Sept 2003
[11] IEPower Inc, http://www.iepower.com
[12] D. Chabot, “CLS Orbit Control Notes, Sept 2009,
unpublished

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WECOMA02

Accelerator Controls Development and application frameworks

11

WECOMA03 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

PRESENTATION ONLY

Accelerator Controls

12

Development and application frameworks

WHAT'S BEHIND AN ACCELERATOR-CONTROL SYSTEM?

Rüdiger Schmitz, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.

Abstract
A control system has a lot of features, some essential:

e.g. a set of application programs. The infrastructure they
need in order to run so that the operators at least be able
to switch the accelerator on and off.

Graphical User Interfaces, intelligent control algorithms
or data acquisition methods are obvious, but other
features (not as obvious) also require considerable
manpower and should not be underestimated. They have a
major impact on the availability of the control system. I
call these features the ‘meta-control system’.

This paper describes the efforts made by the control
systems group at DESY to provide a reliable tool for the
operators, minimizing the downtime caused by control
system failures. It reviews this aspect of computer based
accelerator control dating back to the late 1970s when the
accelerator PETRA went into operation, controlled
entirely by mini-computers from Norsk Data [1].

Both the computer with the supporting technology and
the control system group are essential to an accelerator’s
success.

INTRODUCTION
MCS -the machine control group at DESY- has built,

maintains and improves the control systems of all current
DESY-accelerators: The preaccelerators LINAC II,
DESY II and PIA, the light sources DORIS III and
PETRA III and the free electron laser light source
FLASH II. Since the decision to switch off the proton-
lepton collider HERA II in 2007, DESY changed its
scientific profile from a predominantly high-energy
physics laboratory to a synchrotron light research centre.
This had a major impact on the required reliability and
availability of the control systems:

• The top-up mode for PETRA III does not tolerate
any failure in the accelerator-chain for more than 5
minutes.

• The cramped schedule of the beam line experiments
at DORIS III, PETRA III and FLASH II may well
leave behind an unhappy user if part or all of the
requested beamtime is lost.

OPERATOR VIEW
A control system is most visible at the operator-

console. Nowadays this is an assembly of monitors and
input devices such as mice, knobs or keyboards connected
to computers. The operator console is the place from
which all available functions of the accelerator in its
different phases of operation can be controlled: user run,
maintenance periods and machine studies.

The technical implementation differs a lot from control
system to control system, but nevertheless the look and
feel is not much different. (FLASH and PETRA have

different ‘control systems’ but for some areas like
vacuum and sequencer there is hardly any difference.)
Differences arise from the different age of the
accelerators and also from the skills and preferences of
the constructor and operator.

Application programs in operator consoles may be rich
clients written in Java and Visual-Basic or they may be
operator panels generated for example by jDDD and web-
based-applications running in a browser such as Web2C
[2].

At the other end, there is the accelerator which will be
directly affected by actions initiated at the operator-
console or by automatic processes running independently
of operator interaction. The diagnostic- and machine-
protection systems will necessarily report any
malfunction of control system procedures.

In between we have what I call here a ‘communication
cloud’, i.e. something allowing communication between
the operator console and the accelerator. This leads to the
simple operator view of an accelerator control system
shown in Fig. 1.

Figure 1: Simple operator view of a control system

CONTROL SYSTEM PEOPLE VIEW
Looking more deeply into a control system one can

identify the different hardware building blocks in the
‘communication cloud’: Computers, networks, field
buses, diagnostic systems and turnkey systems.

There is no precise definition as to where control
systems boundaries are drawn. What belongs and does not
belong to the control system is defined in different ways
by different people. But at least one needs all major
subsystems interfaced to the control system.

An even deeper view will bring us to the software. But
at this point the system cannot be understood without yet
further information, information which cannot necessarily
be found in the control system.

To get information about the underlying principles and
concepts of a control system one should ask the control
system group. They will use a lot of buzzwords or

Operator Console

Accelerator

Communication
Cloud

Control-
System
boundary

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WECOMA04

Accelerator Controls Operator interface software and human factors

13

abbreviations and will refer to documentation web-sites or
talks given at conferences. They will use the term ‘control
system’ in two different ways:

(1) A system controlling an accelerator, e.g. ‘The
control system for PETRA III’

(2) A name for a set of tools providing
communication protocols and services which
make for efficient client and server applications;
e.g. TINE, DOOCS, EPICS, TANGO [3]

I prefer the use of the term ‘control system’ as defined
in (1). Running a control system involves more features
than are laid down in the documents mentioned above.
Fig. 2 illustrates this fact:

Operating and Presentation Clients

Middle Layer Server

Data Acquisition and Control Busses
CANopen, GPIB, RS232, USB, PCI, SEDAC…

Front End Electronics

Specific Device
Interfaces

T&M Instrument
Interfaces

Common Device
Interfaces

Front End Device Server

Operating and Presentation Clients

Middle Layer Server

Data Acquisition and Control Busses
CANopen, GPIB, RS232, USB, PCI, SEDAC…

Front End Electronics

Specific Device
Interfaces

T&M Instrument
Interfaces

Common Device
Interfaces

Front End Device Server

Figure 2: Architecture of the control system for
PETRA III [4]

Why is Fig. 2 incomplete? A few examples:

• The daily operational needs may require minor or
major improvements, perhaps even adding to or
redesigning a certain feature. This may lead to
pragmatic solutions not foreseen in the description
of the tool-sets.

• There are old systems which, due to financial and/or
manpower bottlenecks cannot be upgraded.

• The control system has to be able to cope with
failures and unforeseen situations.

• The technical and personal environment of the
control system changes.

• The diagram shows the system under normal
operation conditions, but not the process of
achieving these conditions (e.g. when the system is
installed) nor the maintenance operations required
during the lifetime of the accelerator (e.g. when
hard- or software is replaced).

• Some purely pragmatic modifications might lead to
a situation in which the diagram no longer represents
reality.

Over and above the technical changes just outlined, the
control system people are faced with a number of jobs to
do and problems to solve. I describe these jobs as the
‘meta-control system’.

META-CONTROL SYSTEM VIEW
Here I describe some of the features that a meta-control

system should have. The focus is on the control systems
of PETRA III and DORIS III and its preaccelerators,
using TINE as an integrating tool-kit.

Fault detection and repair
The following features or improvements have been

added or made since 2005 [5]:
• JAVA-Applications write Logging-Information. The

control group at DESY has a Log-Viewer-
Application to identify faulty applications. Until
now, however, there is no automatic notification.
(jDDD has recently set a notification to a Java
Message Service Server.)

• Remote control of Device-Servers shows status and
allows restart.

• What we have named ‘Spider’ shows the status of all
links to TINE network devices. A ‘Tarantula’ crawls
through those links from one level down to the next,
building a tree of dependencies.

• For each type of Windows host used in the control
system a spare is kept running and there is an agreed
procedure for how to replace a broken computer
with the appropriate spare. The time needed for the
replacement is about 30 minutes.

Control systems central database
Measures are in place to make our system resilient to

disk crashes or computer breakdowns
The configurations and initialisations of Device Server

Computers as well as the processes they host are laid
down in a Central File Repository. There are semi-
automatic procedures using this information to setup a
new or replace a broken computer. Work still needs to be
done in order to ensure support for different operating
systems with the same Central File Repository (e.g.
proper choice of file-transfer modes, OS-independent file-
formats).

At regular intervals a central upload process copies
local files to a network repository. From there they will be
downloaded during the setup process mentioned above.

Application deployment
We have implemented a ‘build and deploy’ procedure

for JAVA applications [6] which eases the work of the
programmers and enforces our guidelines for the creation
and storage of JNLP files. (An offline-tool for re-
checking the files has yet to be integrated into ‘build and
deploy’.)

Application programming policies
A rich client application written for example in JAVA

can make use of all features of the language; but we have
rules which restrict usage of the features and it is the
programmers’ responsibility to obey them. So the control-
people may never lose sight of – or allow others to lose
sight of – these policies.

WECOMA04 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

14

Operator interface software and human factors

An application-framework [7] helps to create
applications which are policy conform, and operator
panels generated by a panel editor such as jDDD can fully
implement the policies.

Maintenance strategies
The control group uses the same operating system

updating procedures as the DESY central IT, but
provisions have been made for the control group to trigger
the process only when it fits into the accelerator schedule.

Proactive maintenance is achieved by looking for
critical events in system-log files (DISK-errors,
unscheduled reboots). Preventive maintenance involves
replacing equipment before end-of-life.

Defence against attacks
DESY’s central IT-Group provides and maintains the

anti virus software used by the Windows PCs of the
control system networks. These networks have no or only
limited access to the internet. Access-lists in the control
system network routers which could help to protect the
control system are under construction.

Access to accelerator equipment is secured by a device-
server specific list of ip-addresses and accounts.

Monitoring the system
We recently implemented monitoring tools servers

which are fully integrated into the tool-set TINE. e.g.: a
locator service shows the location of all network-devices
connected to the control system-network. This will
automatically trace roaming equipment such as vacuum
pumping stations. A network analysis service gives
information on bottlenecks or bad network connections
and may generate an alarm.

Integration into Campus IT-Infrastructure
We try to use as many central services as possible.

Some services have been introduced by us in close
cooperation with the central services people. We have to
keep an eye on how the control system is affected when
any of the above is out of order.

This strategy has been positive both for us and for the
machine-physicists and service-people who easily
exchange data between the control system and their
workplace.

Observation of hard- and software life cycles in
relation to the accelerator’s lifetime

A regular review of control systems is advisable,
keeping an eye on software- and hardware-lifetimes and
on possible improvements or necessary renewals.

The end of support for hard- and software forces us to
make decisions. For example Microsoft Windows XP
extended support ends in 2014, thus we will not and do
not need to upgrade the control system of DORIS III to
Windows 7 because the operation ceases by end of 2012.

Choice of adequate hard- and software-
solutions

We mainly use standard PCs in the control system, and
only occasionally avail ourselves of more expensive
solutions. We have generally had success with this policy.
It saves money and keeps diversity low.

The chosen hard- and software solution must meet the
requirements and the skills and experience of the control
system people.

Preserving approved concepts
In 1978 we operated PETRA I with mini-computers.

We had implemented many of these meta-control system
features. They disappeared along with the computers and,
at least some, out of the heads of the colleagues! I think
good concepts and their principles should be preserved.

CONCLUSION
An accelerator-control system should support the

reliable operation of an accelerator in all its different
operational phases with as few interruptions as possible.

The control systems group is responsible for that job,
formulating and activating the concepts, policies etc.
which hold the control system together and defending it
against various quick fix pseudo solutions, which are so
often proposed. Indeed, the control system people are the
custodians of the meta-control system!

I believe that, in any institution, you will have at least
as many control systems as there are control-groups, even
if there are no or only slight technical differences. The
control systems for DORIS III and PETRA III for
instance are technically quite different but are maintained
by the same people and the meta-control system is
therefore the same.

So what is behind an accelerator-control system?
The control system group!

REFERENCES
[1] Norsk Data, Oslo, Norway, ceased to exist 1992
[2] http://jddd.desy.de http://web2ctoolkit.desy.de
[3] http://tine.desy.de http://www.aps.anl.gov/epics

http://doocs.desy.de http://tango-controls.org
[4] From: R.Bacher, “The New Control System for the

Future Low-Emittance Light Source Petra 3 at Desy”,
Proceedings of EPAC 2006, Edinburgh.

[5] P.Duval U.Lauströer R.Schmitz, “Fault Identification
in Accelerator Control”, Proceedings of PCaPAC
2005, Hayama, Japan.

[6] A.Labudda, “Building and Deploying loosely
coupled Console Applications”, Proceedings of
PCaPAC 2006, Newport News, USA, p 126

[7] K.Hinsch and W.Schütte, "MstApp, a Control
Application Framework at DESY", to be published in
2011. See also: J.Wilgen, “First Experiences with a
Device Server Generator for Server Applications for
Petra III”, Proceedings of PCaPAC 2008, Ljubljana.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WECOMA04

Accelerator Controls Operator interface software and human factors

15

TANGO COLLABORATION NEWS
J. Meyer (ESRF) on behalf of the Tango community

ALBA, DESY, ELETTRA, ESRF, SOLEIL

Abstract
During the last years, the Tango collaboration was and is
still growing. More and more users are requesting new
features and developing new tools for Tango. Decisions
whether the requested features will be implemented and
whether new tools will be part of the Tango distribution
need to be made. The organizational aspects of the
collaboration need to be clarified as well as the decision
making process for new developments.

This paper will explain the collaboration, its
organization and the decision making process as well as
the latest facts and features around Tango.

Some ongoing developments are the new code
generation tool to allow inheritance in the Tango class
structure, the new event system for high bandwidth event
distribution and the Tango packaging to allow installation
with a few clicks.

WHAT IS TANGO?
Tango [1] is a control system tool kit developed by a

community of institutes. It is object oriented with the
notion of devices (objects) for each piece of hardware or
software to be controlled. Tango classes are merged
within operating system processes called Device Servers.
Three types of communication between clients and
servers are supported (synchronous, asynchronous and
event driven).

But Tango is not only the software bus which handles
the communication between device servers and clients.
The Tango tool chain offers software from the hardware
interface to the graphical user interface for several
programming languages.

Tango utilities are available, with the basic installation,
for code generation, device configuration and testing and
for administration and survey of a whole Tango control
system.

An archiving and a configuration snapshot system
usable with Oracle or MySQL are also available.

Table 1 : Available Tango Modules

Module Description

Core Libraries Client/Server communication libraries
for C++, Python and Java

Device Classes About 300 hardware interface classes
are available to download [1]

GUI Frameworks Available for C++ and Python using
QT, for Java using Swing and a web
interface written in PHP

Client Bindings LabView, Matlab and IgorPro

Tools Pogo – Code generator for device

classes in C++, Python and Java
Jive – Configuration and testing tool
Astor – Administration and survey of
the Control system

Archiving Archiving and snapshot system with
GUIs and web interface. Usable with
Oracle and MySQL

Alarm System Event driven alarm service

Sardana Framework for experiment control :
Interface standardization, configuration,
sequencing, command line interface

COLLABORATION HISTORY
Tango development started in 1999 at the ESRF.

SOLEIL joined as the first partner in 2002, ELETTRA
and ALBA joined in 2004 and the DESY (beamline
controls) in 2008.

For every new member a new memorandum of
understanding was signed by all collaboration partners.

We meet twice a year to discuss all ongoing projects. In
case of lack of consensus, we tried to find a solution, all
collaboration partners could agree upon.

A coordinator was named in each institute for all
organisational, but also technical requests concerning
Tango.

A mailing list is available for all questions and
propositions to the whole Tango community.

A GROWING COMMUNITY
Since last year we have two new institutes requesting to

join the collaboration: MAX-lab in Sweden, FRM-II in
Germany. Tango is also used by other laboratories, for
example LMJ (beam diagnostics) in France. Industrial
companies are evaluating Tango, due to outsourcing
requests from new projects.

The number of software development projects around
Tango is increasing. To package the system and to keep
the source repositories clean, we have to decide which
projects will be part of the Tango distribution and which
ones will be add-ons.

With the growing community, the increasing number of
users and the foreseeable number of new developments
around Tango, we have to find a new organisational form,
to be sure, to take decisions on development priorities and
strategies within a reasonable delay.

THE NEW ORGANIZATION
Taking into account the increasing number of users, we

will reduce the frequency of Tango meetings to reduce
organizational effort and cost. Specialised meetings on
particular development projects are encouraged.

WECOAA01 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Facility

16

Status Reports

To allow a fast decision making process we are
changing the collaboration management structure. The
new structure has three levels:

1. The executive committee:
The executive committee takes the strategic decisions

about developments in the Tango collaboration. There is
one member from each institute who has signed the
memorandum of understanding. This representative
should have enough power to decide on allocating
resources to develop software for Tango.

The committee will meet, at least, just after the Tango
collaboration meetings.

2. The collaboration coordinator:
The collaboration coordinator is the central point of the

organizational structure and liaises between the project
leads and the executive committee. His responsibility is:

• To organize and coordinate the executive
committee meetings, to produce a report of the
committee meeting and to give feedback to the
Tango community.

• To maintain a global project plan, in collaboration
with the project leads, including requirements,
schedule and resource requirements.

3. The project leaders
Besides the Tango core libraries, several packages are

considered to be part of the Tango controls system. A list
of these packages is maintained up-to-date by the
collaboration coordinator and any change to this list is
decided by the executive committee. Each package which
is part of the Tango core has to have a project leader.

For the Tango community, the project leader is the
contact person for all questions and remarks concerning
that particular project. He is in charge of following the
project schedule and ensuring the requirements are
satisfied. In case of problems impacting on other Tango
project(s), the project leader refers questions to the
collaboration coordinator and eventually to the executive
committee.

We distinguish two different collaboration membership
types:

• Committer: must contribute resources to the
collaboration. He is responsible for one or more
Tango core packages.

• Contributor: can propose code modifications to
the committers for the Tango core packages and
submits Tango device classes to the public device
classes repository.

How to accept a new collaboration partner?
To be an official member of the Tango collaboration, a

new institute needs to sign the memorandum of
understanding. New members are to be accepted with a
unanimous decision by the executive committee.

How to get an official Tango decision?
All requests for decision should be sent to the

collaboration coordinator. They will be presented to the
executive committee during the next committee meeting.

Decisions are made by voting. The vote of each
executive committee member is weighted according to its
status as contributor or committer (cf. above). Each
committee member has at least a weight of one. An extra
vote is acquired if the committee member represents an
institute which is also a committer.

ON-GOING PROJECTS
The Packaging

To allow an easy way to install and run Tango we
prepare binary packages on top of the source code
distribution.

A binary package is available for Windows, since a
long time, from the Tango web site [1]. Now a first
version of binary packages is available for Debian and
Ubuntu Linux users. From Launchpad the different
packages can be installed as needed [2]. Investigations are
ongoing how to support binary packages for other Linux
distributions.

The Tango Box
The Tango box is a virtual Linux computer which runs

in the VMware Player [3] virtualisation software. On this
virtual machine runs a Tango system and most of the
Tango tools are installed and ready to be used. It offers an
overview of the Tango software on a running system
without installing Tango on a local machine. The software
on the Tango box is updated once a year.

GUI Developments
A lot of effort is spent to add more features and new

functionality to the available graphical toolkits.
The Python toolkit Tau supports the whole spectrum of

viewers now. With the C++ toolkit QTango, synoptic
displays can be created from CAD drawings. On the Java
side, an on-going development will open the toolkit for
different data sources. This should allow the usage of
widgets with non Tango data sources.

Pogo the Code Generator
All the Tango classes follow the same skeleton.

Therefore, a code generator (Pogo) has been written to
generate these skeletons. This tool was available at the
very beginning of Tango. Pogo was implemented using
hand written parsing techniques. The decision was taken
to re-write the code generator.

The new release of Pogo is based on modern techniques
using Xtext [4] to create a Tango DSL (Domain Specific
Language). This DSL is then used to describe the new
Tango class. Using Xpand [5] and a set of templates, the
Tango class skeleton is generated. Xtext and Xpand are
part of the Eclipse modeling project [6].

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WECOAA01

Facility Status Reports

17

With this new way of generating code, it is now
possible to implement inheritance of Tango device classes
properly. Only the inheritance of abstract interface classes
was allowed before.

Figure 1 : Code generation with Pogo

The new code generator is available for generating C++
classes. The templates for Python and Java still need to be
written.

THE NEAR FUTURE
A Faster Event System

The Tango event system is based on the CORBA [7]
notification service, the implementation used is
omniNotify [8]. Today’s event rates are sufficient but
cannot be improved due to the implementation of
omniNotify (dead project). The detailed problems have
been already described at ICALEPCS 2009 [9].

Performance measurements for event distribution have
been carried out using the Data Distribution Service
(DDS) [10] implementation OpenSplice [11] and the
publisher/subscriber pattern of the ØMQ [12] Socket API.

The measured performance values are in received
events per second between two machines (P4, 2.5GHz,
Ubuntu 9.04 – Core 2 Duo, 2.6GHz, Ubuntu 9.04) on a
100 Mbit network.

Table 2 : Event System Performance Tests

Sub 1 int (32bits) 1024 int
 Tango DDS ØMQ Tango DDS ØMQ

1 770 12500 45000 650 1850 2400
5 400 7900 14000 200 1800 500

10 220 6500 7300 100 1700 230

DDS showed the best performance, for a growing
number of subscribers, due to its multicasting protocol.
But it has a set of drawbacks for programming and
configuration. The ØMQ performance was measured only
with unicast transmission because the multicasting
showed reliability problems.

Table 3 : Event Systems Advantages and Drawbacks

 DDS ØMQ

+

CORBA ORB/DDS
cohabitation,
Performance,
QoS,
Multicasting

No extra processes,
Single cast performance,
Can switch from uni- to
multicast transmission

-

Three processes + shared
memory per host,
SIGKILL forbidden,
No core dump,
No dynamic data
partitioning possible

Multicasting not yet
100% reliable,
Young product,
More integration code to
write

The Tango philosophy is to keep it simple. ØMQ seems

to be more adapted for us, even if the programming effort
is higher and we have to collaborate with the
implementers to make multicasting reliable. Due to the
complexity of a multicasting set-up we would like to keep
unicasting as the default transmission for the event
system. But, multicasting should be available when
needed.

Library for Image Acquisition (LIMA)
LIMA is a project for the unified control of two

dimensional detectors. The aim is to clearly separate
hardware specific code from the common software
configuration and common features, like setting standard
acquisition parameters (exposure time, external trigger,
etc), file saving and image processing.

Requirements and specifications are actually collected
from the interested institutes.

On top of the functionality of this library, a common
Tango interface for 2D detectors should be defined.

REFERENCES
[1] http://www.tango-controls.org
[2] https://launchpad.net/~abogani/+archive/tango
[3] http://www.vmware.com/products/player
[4] http://www.eclipse.org/Xtext
[5] http://wiki.eclipse.org/Xpand
[6] http://www.eclipse.org/modeling
[7] http://www.corba.org
[8] http://omninotify.sourceforge.net
[9] E.Taurel, “Tango Kernel Status and Evolution”,

ICALEPCS’09, Kobe, Japan, 2009, THA001, p. 630
(2009); http://www.JACoW.org.

[10]http://www.omg.org/tlogy/documents/dds_spec_catalog.htm
[11] http://www.opensplice.org
[12] http://www.zeromq.org

WECOAA01 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Facility

18

Status Reports

THE TINE CONTROL SYSTEM PROTOCOL: HOW TO ACHIEVE HIGH
SCALABILITY AND PERFORMANCE

P. Duval and S. Herb, DESY/Hamburg

Abstract

Over the years the TINE control system [1] has
implemented numerous strategies for achieving high
efficiency data transport within a distributed control
system. This was essential for controlling a large
machine such as HERA [2]. Our recent experience with
controls for the PETRA3 and FLASH accelerator
complexes at DESY has revealed new scalability issues.
The principal problem has been in limiting the
communications load on the front end servers and
network in the presence of increasing numbers of client
applications, many of which are written by 'part-time'
developers who prefer simple API calls, or use
development platforms which support only such calls. A
single such application, polling hundreds of devices, may
generate ~1000 calls per second to a single server. This
load on the server can be reduced if, for example, the
intermediate software layers can consolidate such calls
into array transfers. TINE now offers various 'second-
order' protocol features which go a long way toward not
just allowing but 'enforcing' efficient data transfer. We
shall describe some of these features in this article.

INTRODUCTION
In this report we concentrate on how the control system

protocol can be a limiting factor in scalability regarding
large distributed systems. To this end it is necessary to
review some popular communication strategies along
with application programmer interface (API) paradigms.

DISTRIBUTED DATA FLOW
0th Order: Transaction-based Client-Server

The earliest versions of most popular control system
protocols made exclusive use of transaction based client-
server polling. This data-flow pattern has the inherent
advantage of a ‘keep it simple’ strategy, but can quickly
run into scalability issues. These often manifest
themselves as server-load problems rather than network-
load problems, although both issues are important.

We take the average load (per second) on a server due
to polling clients to be roughly given by

TDTcS ULNNL ×××~ (1)

where Ls is the additional load on the server process due
to processing client transactions, NC is the number of
clients, NT is the average number of transactions per
client, LD is the average dispatch load of a transaction
request at the server, and UT is the average client polling
rate. Equation (1) is of course schematic. The loads LS

and LD will be taken to refer to the number of CPU cycles
devoted to the client-side transactions.

Note that ‘throwing money and threads’ at the problem
does not reduce the load as defined above. Faster, multi-
core computers are of course able to do more in a given
time interval. Using a thread for each transaction can also
reduce the impact of sluggish servers on the client side.
But in the end, the total number of CPU cycles involved
will be the same (if not more, due to extra thread
synchronization and context switching).

Similarly, the average load on a server’s network port is

TTTcN UPNNL ×××~ (2)

where LN is the network load (bytes per second), NC, NT
and UT are as before, and PT is the average transaction
payload. This does not depend on the number of threads
used or the CPU power of the server.

A real reduction in load (server or network) involves
reducing either NC and NT or both in the above equations.
This can either be accomplished artificially (for instance
by imposing restrictions on the number of and location of
clients allowed to run and the update rates they are
allowed to use) or moving to other data flow models.

1st Order: Contract-based Publish-Subscribe
As most control system data is used primarily in

display at the client side, moving to an asynchronous
publish-subscribe model can work wonders reducing the
load on a server. Doing so eschews the ‘keep it simple’
approach, as connection and contract management are
needed. A transaction request now results in a contract
managed by the server, along with a table of attached
clients. Nonetheless, the average load on a server due to
client requests essentially becomes

TDTS ULNL ××~ (3)

That is, the number of clients no longer plays a role. A
transaction request is cached and made once on behalf of
all NC clients.

The outgoing network load (2) essentially remains the
same, as the transaction results need to be passed to all
interested parties. The incoming contribution to network
load is for all practical purposes decimated, as transaction
requests are made far less often. In order to further
reduce the network load, one can adopt a ‘send-on-
change’ policy, or reduce the number of clients by
delivering data via multicast (especially effective for
those transactions involving large payloads). The TINE
control system protocol supports both of these features.

Asynchronous, publish-subscribe based protocols have
a much larger domain of applicability, which however is
still finite for several reasons. First, the API paradigm

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WECOAA02

System Engineering Building reliable systems

19

still permits plaguing a server with an extra large number
of transactions, NT. Second, if application programmers
have complete freedom in choosing their platforms and
programming styles, client applications may still engage
in synchronous polling, effectively reintroducing the NC
factor, and (depending on contract management) possibly
imposing an additional asynchronous/synchronous
coupling factor proportional to (NT)2.

To combat the latter two effects, one could restrict the
available platforms to those officially approved, and to
police the set of API standards. Or one could take steps to
coerce efficient data acquisition at the protocol level. The
TINE control system has now introduced many new
second order hand-shaking features in this direction.

2nd Order: Contract-Negotiation
Client applications (and middle layer servers) require

data from the control system for display and control of the
machine. Specifically tailoring applications for efficient
data transfer seldom enters into the picture. Indeed some
APIs do not even offer this capability.

So on the one hand we have client applications driving
control system data flow by making transaction requests
(contracts), and on the other we have servers which bear
the brunt of any ensuing scalability or efficiency
problems. Servers are of course responsible for collecting
the data and controlling the hardware. Thus, minimizing
the impact of a server’s data delivery plays a strong role
regarding scalability.

Various strategies are available for reducing NT and NC
in the above equations. In principle, one could use a
purely push approach, where all of a server’s available
data are pushed via multicast onto the network. Although
this might reduce the server load, it could drastically
increase the overall load on the network. In addition it
would require clients to sift through all data from a server
in order to find the portion of interest (increasing client
load). Nonetheless, pushing certain popular data elements
(such as beam energy and current) is in general a good
idea.

A server may also reduce the number of transactions it
deals with if it can analyze the initial client request and, if
possible, map it onto an existing contract, or anticipate
further requests and appropriately restructure (negotiate)
the contract request. We shall show below how this is
done. In order to understand the principles involved, we
present a brief review of control system API models.

We note that efforts to keep the dispatch load LD to a
minimum should in any case be made. The best practice
involves simply copying ready data within the dispatch
(rather than launching into numerical calculation or
hardware readout).

CONTROL SYSTEM MODELS

Database Model
One can view the data flowing in a control system as

deriving from elements in a database. This is the EPICS
[3] approach, where one transfers process variables

between the client and server. So the process variables
have names, and the actions on the variables are one of
put, get, or monitor.

Device Server Model
One can regard control system elements as controllable

objects managed by a server. The instance of such an
object is a device, which has a hierarchical name. The
actions pertaining to the device are given by its
properties. With minor differences in nomenclature and
degree of object-orientation this is the model used in ACS
[4], DOOCS [5], STARS [6], TANGO [7], and TINE.

Property Server Model
Certain control elements do not lend themselves well to

a device oriented view but nonetheless follow the basic
hierarchical naming scheme of the device server. This is
typically true of middle layer services. Here one does not
think of a device having properties, but of a property
applying to different keywords. This model is also
sometimes used in STARS and TINE, but is not available
in TANGO or DOOCS.

TRANSACTION COERCION
Below we give some examples of transaction coercion

and make frequent references to the property mentioned
in the device server and property server models above, as
this is the real focal point of the server transaction.

Multi-Channel Arrays
Client panels frequently attach individual elements of a

collection to different display widgets, e.g. power supply
controller (PSC) currents, beam position monitor (BPM)
positions, or vacuum pressures. In large machines, this
could amount to 100s if not 1000s of single elements.

TINE, however, allows a registered property to declare
itself a multi-channel array (MCA), capable of delivering
all elements of a given property as a vector (with a device
order determined by the server). A rich client might
directly request an MCA with all elements. Panels or
strictly OO clients will not do this. However, contracts to
obtain a single element of such properties are now
renegotiated into a contract delivering the entire array.
The client is informed via 2nd order handshaking as to the
array index to device cross-reference. Thus a server only
maintains a single MCA contract. The data arriving at the
client is parcelled out into the individual single-element
calls underneath the API. Recently, additional server side
registration enables the specification of group devices, for
cases where a property logically separates into sub-
groups.

User-defined Types (Structures)
TINE also allows a server to define its own data types

(structures) which a property can use in order to delivery
a collection of data as an atomic unit.

Although a wonderful advent for rich client
applications, structures present a display problem for

WECOAA02 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

System Engineering

20

Building reliable systems

simple panel clients, which are more likely to request the
structure fields individually. A server seeing such a
request will deliver the entire structure, which will be re-
packaged at the client. Again, many individual requests
will collapse to a single contract managed by the server.

Collapsing Equivalent Contracts
In order to reduce the number of transactions it is

important to make sure that equivalent calls collapse to
the same contract. As aliases assume their canonical
names when accessed via a client, they are unproblematic
in this regard. However, a de-facto alias (device number
instead of name) or an irregular array length or data type
could result in a transaction occurring multiple times.
Although possible to deal with via property registration, it
is generally up to the server to reject non-standard
requests with the appropriate error message.

Polling Intervals and Scheduling
Client applications sometimes need to know ‘the

moment something happens’ and therefore request an
update rate much faster than is otherwise necessary. A
server can gracefully coerce such impatient clients to use
a slower update rate by establishing a minimum polling
interval. Once again, 2nd order hand-shaking renegotiates
this with the client. A server can satisfy the needs of its
clients by scheduling the requested property the moment
there are new data to send, thereby reducing latency to
essentially zero and obviating any need for fast polling.

Steering the Acquisition Mode
The payload delivered in some transactions can be very

large (e.g. video frames or large traces). So even though
the number of transactions might be at a minimum, the
number of clients receiving the payload can result in a
drain on network resources. The best practice here is to
coerce all clients interested in large-payload transactions
to use TINE multicast. A property can automatically
renegotiate all asynchronous contracts to use multicast
access (and reject synchronous requests), if so registered.

In a similar vein, properties can also reject synchronous
calls in such a manner that an asynchronous listener is
inserted under the synchronous call at the client side.

On the other hand, asynchronous monitoring makes no
sense if the monitored data are static (do not change). An
attempt to monitor such data will result in instructing the
client layer to cancel the monitor.

Exclusive Read
A server can declare a property to have exclusive read

characteristics, making it available only to those clients
who pass through the same security screening applied to
write transactions (commands). This can be used to allow
time-consuming reads (e.g. extra large video signals) to
be available only to a subset of the total client space.

RESULTS
Making use of these 2nd order techniques generally

involves investing some time at the server front end,
registering properties so that transaction coercions can
take place. The benefits of doing this, however, can be
dramatic. Some examples follow.

The FLASH magnet control consists of approximately
260 PSCs and is realized by various TINE servers (a
primary server running on a Solaris host, and several
PC104 servers running embedded linux). The client side
applications are primarily DOOCS DDD [8] panels and
MATLAB applications, all of which acquire settings and
values from each PSC individually. Prior to introducing
the techniques described above, the primary server had a
constant background of ~1060 contracts, was being
synchronously polled with > 500 contracts per second,
and was at the high end of CPU usage. By introducing
MCA access and static listeners for most of the
synchronous polling, the number of background contracts
is now ~ 50, there are much fewer synchronous calls, and
the CPU usage is now back to 10 % or less. The client
applications themselves were not modified in any way,
other than relinking with the new libraries.

The mixed 100 Mbit/1Gbit infrastructure at PETRA3
introduces complications when delivering video images
via multicast, especially if Gbit video servers or routers
have 100Mbit video clients. As there is limited flow
control, data delivery parameters must be precisely tuned.
The most reliable performance was achieved by
enforcing, via property registration, multicast access and a
minimum polling interval.

The PETRA3 orbit server consists of ~270 Libera BPM
readout modules which are attached to a single Linux
CPU. Most properties are registered to provide MCA
access. A minimal polling interval of 10 Hz holds the
regular bevy of ~20 clients to a set of ~35 contracts and
with a total CPU load of ~6 %.

We have shown in this report various methods whereby
a server can take control over its clients. A server can
continue to provide all callers with the information
requested, but do so on its own terms.

REFERENCES
[1] http://tine.desy.de
[2] Duval et al., “TINE: An Integrated Control System for

HERA”, Proceedings, PCaPAC’99, 1999.
[3] http://www.aps.anl.gov/epics/
[4] http://www.cosylab.com/solutions/ICT/ACS/
[5] http://doocs.desy.de
[6] http://pfwww.kek.jp/stars/
[7] http://www.tango-controls.org
[8] http://jddd.desy.de/
[9] F.Schmidt-Foehre et al, “Control System Integration
of the PETRA III BPM System based on Libera
Brilliance”, Proceedings, ICALEPCS 2009.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WECOAA02

System Engineering Building reliable systems

21

FESA3
THE NEW FRONT-END SOFTWARE FRAMEWORK AT CERN

Alexander Schwinn, Solveigh Matthies, Dorothea Pfeiffer(GSI, Darmstadt)
Michel Arruat, Leandro Fernandez, Frank Locci, David Gomez Saavedra (CERN, Geneva)

Abstract

Currently the LHC (Large Hadron Collider, located at
CERN/Switzerland) is controlled by the use of FESA2.10
(FrontEnd Software Architecture v. 2.10) classes. FESA3
is not only an update of FESA2.10, but a completely new
approach. GSI plans to use the FESA system at the com-
plex FAIR facility.

One of the main reasons to introduce FESA3 was to pro-
vide a framework which can be shared between different
labs. This is accomplished by splitting up the FWK into a
common part, which is used by all labs, and a lab-specific
part, which allows e.g. a lab dependent implementation of
the timing-system.

FESA3 is written in C++, runs a narrow interface (Re-
mote Device Access, a middleware which encapsulates
CORBA), supports multiplexing of different accelerator-
cycles, is completely event driven and uses thread priori-
ties for scheduling. It provides all FESA2.10 functionali-
ties and additionally introduces several new features.

FESA3 is integrated in the Eclipse IDE as a plugin. Us-
ing this plugin, the user can easily create his FESA-class
design (xml file), generate the C++ source code, fill the
device-specific methods, and deploy the binary on a front
end.

As well as the framework the Eclipse plugin has a lab
specific implementation.

An operational release for FESA3 is planned end of
2010.

THE PURPOSE OF FESA3

FESA3 is a software framework which provides an easy
way for developers to produce device classes by generating
most of the code automatically. It supports multiplexing of
different accelerator-cycles and many other features which
can be used by the class-developer. The main purpose of
the framework is to provide an common and unified way to
develop device classes. This approach saves a lot of work
and simplifies debugging, documentation and code adop-
tion for the class-developer and all involved parties.

THE ROOTS OF THE FESA
FRAMEWORK

All early versions of the FESA framework were devel-
oped solely by the CERN facility. FESA3 is the first release

which is developed as an collaboration between CERN and
the GSI. This collaboration was the main reason to restruc-
ture some of the Fesa2.10 fundamental internal parts and to
finally go for a new major release.

FESA3 continues to provide all services from older ver-
sions and as well extends the common approach by addi-
tional services which where demanded by the CERN user
community.

FESA3 AT THE FAIR FACILITY

For the FAIR facility several new accelerator installa-
tions will be built at GSI.

Central aspect is an increased number of research pro-
grams resulting in up to five beams in parallel. The FAIR
facility will be controlled by a new control system which
will be able to support all aspects of the complex GSI/FAIR
operations on a common technical basis. The control sys-
tem for the FAIR facility currently is in the design phase.

One part of this new control system will be the device
software which runs on the front ends. FESA was choosen
as software framework since it already proved itself at the
LHC at the CERN facility and allows to pass the device-
specific implementation directly to the device expert.

CLASS DEVELOPMENT WORKFLOW

The FESA3 Eclipse-plugin guides the class developer on
his way to develop a FESA3 class. The following steps
have to be performed to do so:

1. Design

In the first step the developer needs to design his class
according to his needs. This process involves the spec-
ification of Properties, Fields, Server- and RealTime-
Actions and their dependencies on each other. The
design itself is done via a comfortable XML editor,
which is integrated in the FESA3 Eclipse-plugin and
coupled to an XSD schema for validation.
(see figure 1)

2. Code Generation

Code generation may be started in the plugin if the
class design is valid. An XSLT engine generates C++
code using the class design as input.

AND THE FAIR FACILITY

WECOAA03 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

22

Development and application frameworks

Figure 1: screenshot of the class-design in the FESA
Eclipse-plugin

3. Implementation

The code generation provides methods which need to
be completed by the class developer. Those Server-
and RealTime-Actions allow to use specific device
drivers for the hardware. External driver libraries can
be included in a class specific make-file.

4. Instantiation

Since the FESA3 class may run on different front
ends, the developer needs to create an instantiation
document per frontend. Inside this document all con-
figuration parameters for this specific frontend are
stored. Similar to the class-design, the instantiation
document is generated by the plugin and can be edited
within it’s xml editor.

5. Compilation

As soon as the implementation is finished, the com-
pilation and linking process may be started. The out-
come will be a class binary for a predefined platform,
which is ready to run.

6. Deployment

The resulting binary, the instantiation file and all other
dependent files need to be placed on the frontend for
which they were configured and to which the device-
hardware is connected.

7. Execution

Finally the class can be executed and debugged. The
FESA3 navigator-tool may help to build up a connec-
tion to the class and debug all possible scenarios.

The described workflow is not strictly forward but also al-
lows to roll back and redo any step which is necesarry.

FUNCTIONAL OVERVIEW

Basic Internal Design

As shown by the use-case diagram below, request-
handling and hardware control are the two complementary
services equipment-software has to model. The two dif-
fer very much in nature since request-handling is an on-
demand service, whereas hardware control is subject to
tight real-time constraints. Obviously, request handling
must run at a lower level of priority and shall not be able
to preempt the real-time task. In order to decouple the
two, equipment-software includes a software abstraction of
the device. Thanks to this abstraction, an operator does
not directly see the hardware device, but rather accesses it
through the so called Server side. (see reference [1])

Figure 2: Separation of Server and RealTime side. [1]

The system is split in two logical layers: RealTime,
which implements all parts that are directly triggered by
events and Server which models the equipment interface
and implements the middleware access. Both services are
physically implemented on the same hardware platform. It
is possible to run these two services in the same process,
or in two separate processes. Devices are implemented as
objects in the object-oriented software terminology. Each
FESA3 class represents a devicetype and allows to manage
different instances of this devicetype. A FESA3 equipment
can represent a collection of different FESA classes, which
depend on each other.

The event driven RT-system

In FESA3 RealTime-Actions can be triggered by differ-
ent types of event, from various event sources.(see figure
3) The possible source types are listed here:

• Timing Event

This event source is meant to be the real accelerator
timing. Different events corresponding to different cy-
cles and machines are received with this source if the
frontend is connected to the timing receiver hardware.

• Timer Event

A timer event is launched by a internal clock on a pe-
riodic interval. The developer can configure this inter-
val in the instantiation document per frontend.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WECOAA03

Accelerator Controls Development and application frameworks

23

Figure 3: Basic event based functional structure of the FESA3 framework

• Custom Event

In FESA3 the developer as well has the possibility
to implement his own customized event source. This
event source is used to support all other hardware and
software event sources which do not use the accelera-
tor timing.

• On Demand Event

To communicate between Server and RealTime part of
a FESA3 class there is not only the notification queue,
which connects the RealTime to the Server part, but
also the On-Demand mechanism, which works the
other way around. Via socket connections it allows
to trigger RealTime-Actions from the Server side.

• On Subscription Event

FESA3 allows to establish dependencies between dif-
ferent FESA3 classes. E.g. one FESA3 class can sub-
scribe to properties of another FESA3 class by using
this event source.

The client interface

The client has different possibilities, to communicate
with a FESA3 class using the RDA client interface. Access
methods for the client are Get, Set, MonitorOn and Moni-
torOff. The API to these methods is a narrow one. Figure
4 shows the relation between the RDA DeviceServer, the
middleware layer and the client.

To specify the proper attribute(s), there are several pa-
rameters:

• Property

The property describes a collection of data, which can
be obtained or modified with different client access
methods.

• Device

A FESA3 class represents a device type. A single
FESA class can control many devices of the same

type. Within the parameter Device the client can spec-
ify the proper device instance which is to access.

• CycleSelector

On a multiplexed property, with the cycle selector
string the client can select the cycle (virtual acceler-
ator), he wants to work with. On a property which is
not multiplexed the cycle selector can stay empty.

• Value

Get methods retrieve data as an instance of the type
rdaData. RdaData can store an array of mixed data
types. Besides the data itself, each entry allows to
store additional information.

• Context

The context is used to pass parameters (filters) to the
properties of a FESA3 class.

• ReplyHandler

Monitor on calls require the implementation of reply
handlers. As soon as new data arrives, the middle-
ware triggers the reply handler in which the data is
processed.

• Request

This class is the virtual handle to a subscription. It is
filled by the MonitorOn call and is used to keep track
on a subscription and to terminate it if it is not needed
any more.

WECOAA03 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

24

Development and application frameworks

Figure 4: The CERN RDA - middleware layer. (see reference [2])

class relationship

Unlike FESA2.10, FESA3 provides three different ways
of class relationship, association, composition and inheri-
tance:

• Association (see figure 5)

Figure 5: Association between two unique FESA3 classes

An association specifies a light coupling between two
FESA3 classes. The two classes run independently
and do not rely on each other (e.g. class A may shut
down while class B is still running). The two classes
can be deployed on different frontends.

• Composition (see figure 6)

Using a composition the developer can create a strong
coupling between FESA3 classes. The deployment
of class A means to deploy the whole class-tree. As
well it is possible to start B with only C and D as
sub-classes and without A as a smaller composition.
The lifetime of the composition depends on the life-

Figure 6: Composition of many FESA3 classes, repre-
sented as one class

time of the base-class. All classes need to run on the
same frontend. All classes within the composition are
standard FESA3 classes and can be used seperately as
well.

• Inheritance (see figure 7)

The definition of inheritance in FESA3 consists of tree
characteristics:

– Properties/RTActions defined by a baseclass are
available for any subclass.

– Properties/RTActions defined by a baseclass can
be overridden (explicitly).

– The device model of a derived class fully inherits
from the device model of its baseclass.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WECOAA03

Accelerator Controls Development and application frameworks

25

Figure 7: Inheritance between different FESA3 classes

The split between framework and lab part

The FESA2.10 framework was strongly coupled with the
CERN Oracle database, the CERN Timing and several file
paths. As one of the major changes this strong coupling
has been removed in FESA3. Each institute which is using
FESA3 now has to provide a sub-package where institute-
specific code can be used. This split does not only touch the
C++ code. The whole process of creating a FESA3 class is
involved. Now it is possible to have a specific metamodel
which triggers an adapted code generation. As well the
FESA3 Eclipse plugin can be adjusted to the needs of the
particular institute.

OUTLOOK

Currently FESA3 still is in the pre-beta phase. An oper-
ational beta for FESA3 will be released end of 2010. For
later releases the following features and tasks are planned:

• Transaction

On larger accelerators the possibility to synchro-
niously trigger a Set for many frontends is needed.
This service is called ”transaction”.

• On-change/deadband support for subsribers

This service allows clients to choose, if they will get
notified if a value did not change at all, or if it changed
only within a predefined deadband.

• Tests and benchmarks of the framework

Tests of the FESA3 performance in terms of reaction-
speed, data throughput and CPU usage need to be
done.

REFERENCES

[1] A. Schwinn, D. Pfeiffer, R. Baer, “GSI-FAIR Baseline Tech-
nical Report - Front-End Software Architecture”, GSI, Ger-
many.

[2] Kris Kostro, Joel Lauener, Nikolai Trofimov, Wojciech
Gajewski, Ilya Yastrebov, “http://cmw.web.cern.ch”, CERN,
Geneva

WECOAA03 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

26

Development and application frameworks

A

f
t
R
b

A
t
A
t
i
F
a
p

c
w
a
d

a
T
a

a
d
B
a
c
T
d
c

EMPLO

Abstract
At the Adva

flexibility of a
the Arcturus u
RTEMS, prov
beamline appli

In this pape
Altera FPGA
time-resolved
Altera Quartu
tools, as well a
its integration
Furthermore,
applied to oth
photon countin

By employi
can be quick
which realizes
and provide a
data to scientis

There exist
and detector a
The “Generic
application b
serving as our

Figure 1

The Input-

specific hardw
application. T
different signa
Bus adapters,
advantage of
commercial, su
Typically, the
developed or
connects to exi

* Use of the Adva
was supported by
Office of Basic En
06CH11357.
#skross@aps.anl.g

YING RT

D.M

anced Photon S
an Altera Cycl
uC5282 embed

vides a low co
ications.
er, we discuss
and the Arctu
32-channel sc

us-II design en
as an ASYN ba
n to the stan
we discuss h

her control syst
ng and flexible
ng this approa

kly developed
s real-time pe
a cost effectiv
sts and users.

INTROD
many approac

applications at
Digital” appro
ehaviours and
“design pattern

: “Generic Dig

Output (IO)
ware designed f
This may incl
al levels, such
such as PC/10

f IO module
uch as motion

IO compone
purchased tr

isting infrastru

anced Photon Sour
the U. S. Departm

nergy Sciences, un

gov

TEMS AND

M. Kline, S.

Source (APS),
lone-II FPGA
dded micropro
st solution for

the approach
urus uC5282 t
caler, developm
nvironment an
ased EPICS de

ndard scaler r
how this appro
tem applicatio

e CCD shutter t
ach, a variety

on one hard
erformance wit
ve EPICS IOC

DUCTION
ches for develo
various levels

oach we emplo
d compartme
n.”

gital” conceptu

component
for the particul
lude inputs a
NIM, TTL, L

04, can be dev
es developed
controllers and

ent connects t
ransition board
ucture.
rce at Argonne Na

ment of Energy, Of
nder Contract No.

D FPGAS
THE

K. Ross#, AN

 the power and
combined with

ocessor running
r implementing

of coupling an
to implement
ment using th
nd the RTEMS
evice driver and
record support
oach has been

ons, such as fo
timing control.
of application

dware platform
thin the FPGA

C for exporting

oping beamlin
of complexity

oy abstracts th
entalizes them

ual model.

represents th
lar needs of th
and outputs a
LVDS, or ECL
veloped to tak

d in-house o
d input sensors
to an in-hous
d, which then

ational Laboratory
ffice of Science,
DE-AC02-

S FOR BEA
E APS*
NL, Argonn

d
h
g
g

n
a

he
S
d
t.
n

or
.

ns
m
A
g

e
y.
e

m,

e
e

at
L.
ke
or
s.
e
n

The FP
base boar
such as A
handles th
as a media

The EP
[3] micro
real-time
carrier bo
are writ
Furthermo
been inclu
user interf

Genera
available
FPGA com
was deve
developm

Generat
The ge

Altera’s
targeted
require m
lower th
combinati
simple sca

Commu
a in-hous
Typically,
such as an
Poseidon
Systems C
rack mou
or desktop

Figure 2:

Generat
The gen

Cyclone-I
for the u
expansion
implemen
require m

AMLINE

e, IL 60439,

PGA compone
rds as well as

Altera’s Cyclon
he real-time asp
ator between th
PICS [1] comp
ocontroller as t

operating syste
oards develope
tten to inter
ore, EPICS da
uded to implem
face.

HA
lly, both in-ho
hardware is e

mponent uses
eloped in-hou

ment kits offered

tion I
eneration I (G
FLEX10K F
for less com

many logic el
han 50MHz,
ional logic co
alers.
unication betw
se developed
, this is implem
n EPICS brick
Single Board C
Corporation [5

untable chassis
p power supply

GEN-I/w EBR

tion II
neration II (G
II FPGA [2] in
uC5282, 24bit
n IO for ad
ntation is targe

more logic elem

APPLICA

 U.S.A.

ent includes i
s commerciall
ne or Stratix d
pects of the ap
he IO and EPIC
ponent uses th
the IOC and ru
em. It connect
ed at the APS
rface with t
atabases and M
ment the applic

ARDWARE
ouse developed
employed with
two generatio

use. More re
d by Altera.

GEN-I) base
FPGA. This

mplicated appl
ements and r

such as “d
nsisting of a

ween the IOC an
Serial Periphe
mented on a L

k (EBRICK) [6
Computer offe
5]. The FPGA

and uses an e
y.

RICK (left) and

GEN-II) base b
n a 3U VME
ts TTL IO, a

dditional daug
ted at higher-e

ments and frequ

ATIONS A

in-house deve
ly available bo
development k
pplication and s
CS component
he Arcturus uC
uns the RTEM
s to the FPGA
. ASYN [6] d
the IO hard

MEDM screens
cation behaviou

d and commer
hin the model

ons of hardwar
ecent versions

board consis
implementatio

ications that
requires freque
divide-by” cir
few logic gat

nd FPGA is th
eral Interface
Linux based sy
]. The EBRICK

ered by the Dia
A is housed in
external wall m

d base board (r

oard uses an A
footprint. It h

and 40bits LV
ghter boards.
end application
uencies greater

AT

eloped
oards,

kits. It
serves
ts.
C5282

MS [4]
using

drivers
dware.
s have
ur and

rcially
l. The
re that
s use

sts of
on is
don’t

encies
rcuits,
tes, or

hrough
(SPI).

ystem,
K is a

amond
a 1U

mount

right).

Altera
has IO
VTTL

This
ns that
r than

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WECOAA04

Control hardware and low-level software Control solutions with FPGAs

27

i
b

d
u
w
c
c
a
b
h
m

A

a
a
i
I
a
c

I
m
p
c
t

m
w

L
E
c
W

g
f

b

50MHz, but
include a 32-c
bunch intensity

The uC5282
developed at
uC5282 runni
were chosen b
costs, footprin
community, kn
and support, a
base board, u
housed in a 2
mount or deskt

Figure 3: GE

Altera Deve
Recently, de

advantages an
advantage is th
incurred, leavi
IO component
and the footp
constraints.

This platfor
such as detect
IO, frequenci
memory. In so
processing pow
cannot transfer
time. The FPG
storage of data
memory in an
waveform reco

Figure

Software de
Linux-based en
EPICS, synA
compiler. The
Windows vers
synApps mod
shared by APS
groups. This p
for support and

The IOC app
but is indepe
symbols deriv

less than 10
channel scaler,
y adjustment, a
2 is mounted
the APS. EP

ing the RTEM
because of licen
nt, usage at t
nown working
and developme

uC5282 carrier
2U rack mount
top power supp

EN-II chassis (

lopment Kits
evelopment ki

nd disadvantag
hat the develop
ing us to focus
t. Some disadv
print, particul

rm is targeted
tors, that requ
es greater th

ome cases, the
wer to handle
r the required a

GA handles the
a to local mem
n interleaved
ords.

4: Altera Strati

SOFTW
evelopment is
nvironments. L

Apps [6], IOC
e FPGA desi
sion of Altera’
dules are taken
S users as wel
proves to be sy
d consistency.
plication resid
endent from

ved from a scr

00MHz. Som
 CCD shutter
and bunch phot
in a carrier b

ICS is implem
MS operating
nsing, hardwar
the APS and
g designs, in-h
ent environme
r, and IO dau
table chassis a
ply.

left) and base b

s
its from Alter
es, are being e
pment effort ha
s more on the a
vantages are p
larly when th

d for high-en
uire more logic
han 100MHz,

uC5282 doesn
the interrupt

amount of data
e real-time asp

mory. The uC52
manner, to po

ix-IV developm

WARE
split between

Linux has the t
C, and the R
gn is develop
’s Quartus-II [
n from a cen
ll as developer
ynergistic amon

es on a central
other applica

ript provided b

me application
timing control
ton scaler.
board that wa
mented on th
system. Thes

re and softwar
in the EPICS

house expertis
ent. The FPGA
ughter board i
and use a wal

board (right).

ra, which hav
employed. On
as already been
application and

product lifetim
here are spac

d applications
c elements and

and on-board
n’t have enough
frequency, and

a within a shor
pects as well a
282 uploads th
opulate EPICS

ment kit.

n Windows and
tools to develop
RTEMS cross
ped using th
[7]. EPICS and
ntral repository
rs from variou
ngst developer

l server as well
ations. It use
by synApps to

ns
l,

as
e
e

re
S
e
A
is
ll

e
e
n
d
e
e

s,
d
d
h
d
rt
as
e
S

d
p
s-
e
d
y

us
rs

l,
es
o

reference
the synAp
of the box
platform,
ASYN dr
features, s
support to
doesn’t n
driver nee
MEDM s
is couple
modules,
functional

Altera’s
the FPGA
FGPA is
bridge, de
and interr
It gives
provided b

The “G
applicatio
years. M
platform w
The mo
componen
complexit
when GE
GEN-II ap

One o
Although
several re
lower har
without V

The pri
identically
EPICS su
was used
LVTTL to
and LED
front pane
cable.

modules and
pps EBRICK m
x” it supports R
including acce

river has been
such as the 24
o a variety o

need to write
ed be written.
screens are ava
ed with the I

providing the
lity required by
s Quartus-II d

A logic. Interac
by means of

eveloped at th
rupt processing
the applicatio
by the FPGA a

APPL
Generic Digital”
ons, of varyin

Most applicatio
which has beco
odel gives
nts to be int
ty. It did not m

EN-I hardware
pplications are
f these appli

commercial
easons for de
rdware cost, ab

VME, and mobi
imary requirem
y to existing s
upport and infr
and an IO boa

o TTL. A break
D indicators w
el and connects

Figure 5: S

EPICS base. O
module as a de
RTEMS and th
ess to the uC5
n written to a
4bits IO. ASYN
f EPICS reco
EPICS device
In addition, E

ailable. Any sp
IOC, EPICS
e framework
y the applicatio
esign software
ction between
f the “Avalon
he APS, media
g between the
on visibility o
and notifies it w

LICATION
” model has be

ng complexity,
ons use the
ome the “one h
flexibility a

terchanged ba
make sense to u

would be suff
e discussed belo
ications is a
ones are ava

eveloping one
bility to deploy
ility between b
ment of the sc
systems, and m
rastructure. Th

ard was develop
kout board wi
as developed
s to the IO boa

Scaler block di

Our application
eparture point.
he GEN-II hard
5282 and FPGA
access the com
N provides sta
ords. The deve
e support, onl

EPICS database
pecific functio
base and syn
and the unde
on.
e is used to de
the uC5282 an
Bus” [8]. Th

ate data transa
uC5282 and F

of the functio
when events oc

NS
een applied to
, for a numb

GEN-II hard
hardware platf

allowing hard
ased on applic
se GEN-II hard
ficient. Some o
ow.

32-channel s
ailable, there

in-house, su
y them in beam
beamlines.
caler was to b
make use of cu
he GEN-II hard
ped to level sh
th Lemo conn
that mounts t

ard with a flat r

agram.

ns use
. “Out
dware
A. An
mmon
andard
eloper
ly the
es and
onality
nApps
rlying

evelop
nd the

he bus
ctions

FPGA.
onality
ccur.

many
ber of
dware
form.”
dware
cation
dware
of the

scaler.
were

uch as
mlines

behave
urrent
dware

hift the
ectors
to the
ribbon

WECOAA04 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Control hardware and low-level software

28

Control solutions with FPGAs

The front panel consists of Lemo connectors, a power
ON/OFF switch and indicator. There is input for each
scaler, and an ARMIN and GATEIN for daisy chaining
with external equipment. There is a 10MHz CLKOUT
output for external synchronization, and an ARMOUT
output that is controllable through EPICS. Typically, for
time resolved applications, the ARMOUT is connected to
the ARMIN and the CLKOUT to the first scaler.

The back panel has a power input connector. Typically,
an external wall mount or desktop power supply is used
for electrical safety concerns. There are LEDs to indicate
activity from EPICS, ARMED, ARMIN, and GATEIN.

Figure 6: Scaler unit.

Most of the EPICS components were already written.

EPICS databases, MEDM screens, and scaler record
support were taken from the STD synApps module [6].
An ASYN driver was written to provide device support
and define interfaces that allow PVs access to the scalers
outside of the record context. Record support provides a
framework which calls methods from the ASYN driver in
a programmed sequence depending on its counting mode.
The driver responds by sending commands and read/write
data through the bridge to control the scalers.

The driver defines methods for initializing hardware
and scalers, reporting its status, processing scaler values,
and handling interrupts from the FPGA. During
initialization, the driver registers its methods with the
record using the Device Support Entry Table (DSET)
structure [9] hooking them into the framework. An
interrupt handler is registered with RTEMS to process
status and read out scalers, and post them to EPICS.

The FPGA component defines Programmed IO (PIO)
registers which hook into the bridge. Registers are
accessed by the ASYN driver as memory locations.
Commands and data received by the driver indicate what
function to perform, such as arm, preset, or read a scaler.
All scalers are up counters. Preset values are converted to
negative prior to loading into the scaler. When a scaler
reaches zero, it generates an interrupt to the driver and
dispatches it to a process which posts the status and data
to EPICS.

Similar to the scaler, other applications have been
developed which use the GEN-II hardware platform. A
flexible timing module was developed for CCD shutter
controls. It allows the user to delay and stretch timing
signals from field instrumentation with 20nS resolution.
For this application, no new hardware needed to be
developed. A “bunch scaler” was developed to count the
number of photons per accelerator bunch from an
Avalanche Photo Diode (APD) for a Laser-based pump

probe experiment. A new IO component board was
required because the field equipment had intermixed
signal levels, such as TTL, ECL, and NIM. Software
development for both these applications only required an
ASYN driver and MEDM screens for the application
specific behaviour and user interfaces.

CONCLUSION
The “Generic Digital” approach provides a design pattern
that can be employed to develop and rapidly deploy many
beamline and detector applications. The model allows
flexibility and the ability to adapt to applications of
varying configurations and complexities. Existing
hardware components can be easily interchanged and new
ones developed. Coupling the uC5282 with an FPGA is a
hardware configuration that has been proven to be reliable
at the APS and other laboratories throughout the
community. Using EPICS, RTEMS, and synApps,
reduces overall project cost and allows one to focus more
on the application development, thus minimizing the
hardware and software development time. Both future
beamline and detector applications and those currently
under development, along with the APS users, will
benefit by the approach discussed in this paper.

REFERENCES
[1] EPICS; http://www.aps.anl.gov/epics.
[2] Altera Cyclone-II Field Programmable Gate Array;

http://www.altera.com/products/devices/cyclone2.
[3] Arcturus Neworks, uC5282 microprocessor module;

http://www.arcturusnetworks.com/products/uc5282/.
[4] RTEMS; http://www.rtems.org.
[5] Diamond Systems; http://www.diamondsystems.com.
[6] synApps; http://www.aps.anl.gov/bcda/synApps.
[7] Altera Quartus-II Development Software Suite;

http://www.altera.com/literature/lit-qts.jsp.
[8] Avalon bus memory mapped interface specification;

http://www.altera.com/literature/lit-sop.jsp.
[9] M.R. Kraimer, et al., “EPICS Application Developers

Guide,” February 2010, p. 170 (2010);
http://www.aps.anl.gov/epics.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WECOAA04

Control hardware and low-level software Control solutions with FPGAs

29

QT EPICS DEVELOPMENT FRAMEWORK*
A. Rhyder#, A. Owen, G Jackson. Australian Synchrotron

Abstract
QCa is a layered software framework based on Qt for

accessing EPICS data using Channel Access on a range of
platforms. It is used on several beamlines at the
Australian Synchrotron. The QCa framework provides
object oriented C++ access to control systems using
EPICS (Experimental Physics and Industrial Control
System). It is based on Qt, a widely used cross-platform
application development framework. GUI or console
based applications can be written that use QCa at several
levels. QCa includes Qt plugin libraries, EPICS aware
widgets, data formatting classes, and classes for accessing
raw EPICS data in a Qt friendly way. QCa also includes
an application for displaying forms produced by the Qt
development tool ‘Designer’. Using this application a
complete EPICS GUI system can be generated without
writing any code. A GUI system produced in this way can
interact with existing EPICS display tools such as EDM.
QCa handles much of the complexities of Channel Access
including initiating and managing a channel. Applications
using QCa can interact with Channel Access using Qt
based classes and data types. Channel Access updates are
delivered using Qt’s signals and slots mechanism.

INTRODUCTION
Channel Access is described as ‘one of the core

components of an EPICS system. It is the software
component that that allows a Channel Access client
application to access control-system data which may be
located on different hosts throughout a network’ [1]

While CA is the default means to access EPICS data, its
use is not trivial. A significant understanding of how CA
works is required to execute the steps required to read or
write data. The complexity of setting up and terminating
CA requests leaves room for error. Also, CA uses a C
programming interface and so does not make use of
object oriented programming techniques.

Qt is a cross-platform application and UI framework. It
includes a C++ class library and a cross-platform IDE.

The QCa framework provides a Qt based C++
framework for easy CA access to EPICS data.

It provides access to EPICS data at several levels from
programmatic reading and writing of data, EPICS aware
widgets for developing GUI based applications through to
EPICS aware Qt plugins such as push buttons, sliders, and
text widgets. When these plugins are used within the Qt
form development tool ‘designer’ EPICS GUIs can be
developed without the need for any code development.

QCA FRAMEWORK HIERARCHY
OVERVIEW

The QCa framework is designed to allow access to CA
data in the most appropriate form. The framework is
based on a hierarchy of classes as shown in Table 1. This

hierarchy is open at all levels to the developer.
Appropriate use of the hierarchy is shown in Table 1.

Table 1: QCa framework hierarchy

Type of
access to CA
data.

Functionality Main classes

C++ access to
the CA library.

Provides
convenient C++
access to the CA
library.

CaObject

Qt based
access to CA.

Hides CA
specific
functionality.
Adds Qt
functionality
such as signals
and slots.

QCaObject

Data type
independent
access.

Hides EPICS
data types,
providing read
and write
conversions
where required.

QCaInteger
QCaString
QCaFloating

EPICS aware
graphical
widgets.

Implements
graphical Qt
based widgets
that provide
access to EPICS
data.

QCaLabel
QCaLineEdit
QCaPushButton
QCaShape
QCaSlider
QCaSpinBox
QCaComboBox
QCaPlot

EPICS
aware
graphical Qt
plugins.

Adds Qt plugin
interfaces to
EPICS aware
widgets.

QCaLabelPlugin
QCaLineEditPlugin
QCaPushButtonPlugin
QCaShapePlugin
QCaSliderPlugin
QCaSpinBoxPlugin
QCaComboBoxPlugin
QCaPlotPlugin

GUI support
widgets

Implements Qt
based widgets
that support
control system
GUIs. These
widgets do not
access the CA
library.

AsGuiForm
GuiPushButton
CmdPushButton
Link

 __

*Work supported by the Australian Synchrotron
#andrew.rhyder@synchrotron.org.au

WEPL002 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

30

Development and application frameworks

C++ ACCESS TO THE CA LIBRARY
The CaObject base class provides a C++ wrapper

around the CA library. While available to the developer, it
was written mainly to provide a level of abstraction
within the Qt based QCaObject class. It is recommended
to be used where a Qt framework is not available.

QT BASED ACCESS TO CA
The QcaObject class provides full access to EPICS data

while hiding most CA specific functionality such as link
status, connections and channels.

The QcaObject class adds Qt functionality. Data can be
written using a Qt slot and Qt signals are available for
data and status information as required. Qt data types are
used to represent all EPICS data.

The data in the update signals may be of any type and is
represented by a Qt variant.

DATA TYPE INDEPENDENT ACCESS
The classes QCaInteger, QCaString, and QCaFloating

are based on QCaObject and interpret all data as integers,
strings, and floating point numbers respectively. They are
used to provide access to EPICS data in a known format
regardless of the actual data type of the EPICS data. For
example, string data is always required for a text label
regardless of the underlying EPICS data type. While some
conversions are unlikely to be of much practical use, all
conversions are permitted.

EPICS AWARE GRAPHICAL WIDGETS
The classes QCaLabel, QCaLineEdit, QCaPushButton,

QCaShape, QCaSlider, QCaSpinBox, QCaComboBox,
and QCaPlot allow an application to add graphical objects
to a user interface that are EPICS aware. That is, they
interact directly with EPICS data. The application sets up
the EPICS process variable name and other parameters
that define how the widget interacts with EPICS data. The
application does not have to handle EPICS data or any
aspect of the CA interface.

The application may supply the EPICS aware widgets
with an object that the widgets can send Qt signals to,
including error and status messages signals.

EPICS AWARE GRAPHICAL QT PLUGINS
The classes QCaLabelPlugin, QCaLineEditPlugin,

QCaPushButtonPlugin, QCaShapePlugin,
QCaSliderPlugin, QCaSpinBoxPlugin,
QCaComboBoxPlugin, and QCaPlotPlugin are EPICS
aware widgets with a Qt plugin interface.

These plugins can be used by any Qt application that
can load plugins.

They are loaded into the Qt GUI design tool ‘Designer’
which can be used to generate GUI description files that
include EPICS aware widgets. These files can be loaded

at run time by any application code, or used as source for
any application. One application that loads these files at
run time is AsGui, an MEDM/EDM replacement. A
feature of these plugins is that they are active at design
time.

GUI SUPPORT WIDGETS
The classes AsGuiForm, GuiPushButton,

CmdPushButton and Link implement Qt based widgets
that support the development of EPICS control system
GUIs. They are not EPICS aware widgets.

The AsGuiForm class can contain any Qt based
widgets, including the QCa framework’s widgets. It is
used as the scroll area in the AsGui application and can be
used to create sub forms when developing control system
GUIs in ‘designer’.

The GuiPushButton class is used to launch new GUIs.
The CmdPushButton class is used to execute any

command. Typically it would be used within a GUI to
perform an action on the local machine, such as launch
another application, or interact with an MEDM session.

The Link class provides a generic mechanism for
configuring how widgets in a GUI interact. For example,
the value in one widget can control the visibility of
another. Examples of the GUI support for Qt plugins are
shown in Figure 1.

QCA BASED APPLICATIONS
The QCa framework currently includes a couple of

applications. The main application is AsGui.
AsGui is a graphical control system user interface. It

displays EPICS aware GUIs based on user interface files
created using ‘Designer’ as shown in Figure 1.

Figure 1: A sample GUI created in designer using EPICS
aware plugins and GUI support plugins

QCaMonitor is a console application that takes a list of
EPICS process variable names as an argument and
monitors changes to the data specified by the names. It
will perform the same task as the standard EPICS
application caget. It is an example of using QCaString
objects to generate a stream of textual based updates.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL002

Accelerator Controls Development and application frameworks

31

CLASS USAGE

Figure 2: Typical QCa class usage

REFERENCES

[1] Philip Stanley Channel Access Client Library
Tutorial. Los Alamos National Laboratory.
http://lansce.lanl.gov/EPICSdata/ca/client/caX5Ftutor
-1.html

WEPL002 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

32

Development and application frameworks

THE BEAMLINE E

Yuhong Yan#, Luden
ENCS, Concor

Abstract
Scheduling the experiments to the

synchrotron at the Canadian Light So
manual procedure so far. Once every
beamline scientists discuss before
schedule as many approved experim
There are so many constraints on reso
availabilities, user preferences, and exp
to consider that none has ever been ab
manual scheduling results are optimal
Canarie funded project Science Studio, w
automatic scheduling module as a part o
After the synchrotron users submit their
User Office, the automatic scheduling m
optimal scheduling solution that s
constraints modelled, if such a solution e
the results on a Web calendar. In this
our contributions on design and imple
scheduling module and our study on aut
of synchrotron experiments.

THE BACKGROUN
The automation of the scheduling act

is part of the Canarie funded project Sc
Science Studio project develops a com
management system [1] that allows t
control the experiment devices, observ
processes, and collect data from their
instead of travelling to the CLS site.

There are about 30 plus the CLS l
around the world. All the facilities have
approval procedures, regardless the dif
of calls-for-proposals and the length of
Scheduling the approved proposals is d
the CLS, the beamline scientists who
scheduling experiments on the beamlin
documents like spreadsheet and pdf as t
to communicate with the users and ma
schedules on a calendar. In order to
easier, the beamline scientists tend to
combinations they should consid
scheduling under conflicting constr
become intractable as the number of us
increase.

In this paper, we present our solutio
scheduling function. The User Office
Studio platform has a proposal manag
manage the proposal submission and rev
the CLS, the call-for-proposals occurs
 __

*Work supported by the Science Studio project wh
#yuhong@encs.concordia.ca

 EXPERIMENTS SCHEDULING SOF

eng Zhao, Zhiguo Wang, Yongxin Zhu, and Chu
ordia University, Montreal, QC H3G1M8, Cana

e beamlines of the
Source (CLS) is a

ery six months, the
 a whiteboard to
iments as possible.
esource capabilities,
experiment priorities
able to check if the
al or not. In the

o, we are building an
rt of the User Office.
eir proposals via the
module can find an

 satisfies all the
n exists, and display
is paper, we present
plementation of the
utomatic scheduling

UND
activities at the CLS
 Science Studio. The
omplete experiment

the researchers to
erve the experiment
ir own home bases,

 like facilitates [2]
ave similar proposal
different frequencies

 minimal time slot.
s done manually. In
ho are in charge of
lines use e-mail and
s their primary tools
anually scratch the

to make their lives
to limit the possible
sider. Furthermore
straints can easily
 users and proposals

tion to automate the
fice in the Science
agement module to
review procedure. In
rs every six months

(aka. a cycle). The approved p
into the next four cycles. Our
the proposal information, invoke
displays the scheduling resul
beamline scientists can review t
fine-tune the schedule over the
and the model of experiment sch
different facilitates as well.
scheduling model and the Web
are tuned for the CLS.

THE SYSTEM ARC
The Science Studio platform

Web application. Figure 1 show
The core of the system architec
composed by the User Interfac
Office, and the beamline service

Figure 1: System architectu

The major functions of the
management (PM in Fig. 1) and
1). The proposal management m
and manages the proposal revi
review process can be execute
YAWL. YAWL Editor is use
proposal review process. When
are decided, the scheduling func

The scheduling module gets
from the database or from the ex
and converts the informati
experiments into a text format th
ILOG - the automatic scheduler
converted data is the media
between Science Studio and t
invoked by the scheduling mod
scheduling results into a text fil
reads the results and shows th
meanwhile stores them into the

 which is funded by Canarie Network Enabled Platform Program cont

OFTWARE*

hun Wang,
anada

 proposals can be scheduled
ur schedule module reads in
okes the scheduling tool, and
ults a Web calendar. The

w the schedule and manually
he Web calendar. The design
 scheduling can be reused for
l. The parameters of the
eb UI of the implementation

RCHITECTURE
rm is a large J2EE enabled
ows its system architecture.

tecture is the application tier
ace (UI) services, the User

ices.

cture for Science Studio.

e User Office are proposal
and scheduling (SCH in Fig.

module accepts user inputs
view process. The proposal
uted by a workflow engine
used offline to design the
hen the approved proposals
nction is invoked.
ets the approved proposals
 excel sheets currently used,
ation about the defined
t that can be accepted by the
ler. A .txt file containing the
ia of transferring the data
d the ILOG. The ILOG is
odule. The ILOG writes the
 file. The scheduling module
 them on the Web calendar,
e database.

ntract number NEP-01

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL003

Data Networking and Web Technology Web 2.0 and SOA

33

The UI service generates the Web UI. The users interact
with the system through a common Web browser.

The beamline services offer the functions to observe the
experiments and operate the physical devices from a Web
browser. The underlying beamline control system is
implemented using EPICS based Input/Out Controllers
(IOCs) and with report access capability. This module is
not the focus of this paper.

MODELING THE SCHEDULING
PROBLEM

The experiment scheduling problem is modelled as an
integer programming model.

Suppose the CLS has m beamlines I = {1, …, m} and n
approved proposals J = {1,…, n}. Currently a proposal
defines one experiment. So we use experiment and
proposal interchangeably in the following text.
Experiments and beamlines are characterized by the
following parameters which represent the clients’
preferences and the scheduling constrains:

The cycle start time St defines when the synchrotron
scheduling cycle starts. A cycle is six months, e.g. from
2010/1/1, 0:00AM to 2010/6/30, 12:00AM. Therefore, St
can be the time point of 2010/1/1, 0:00AM.

The cycle end time Se defines when the synchrotron
scheduling cycle ends.

The experiment unacceptable start time Us[j, o], where ݆ ∈ ,ܬ and ∈ {1, … , indicates when the o-th ,{1ݔܽܯ
unacceptable period starts for the experiment j. Max1 is a
constant that an experiment can define up to Max1
unacceptable periods. In the CLS, Max1 = 6.

The experiment unacceptable end time Ue[j, o], where ݆ ∈ ,ܬ ∈ {1, … , indicates when the o-th {1ݔܽܯ
unacceptable period ends for the experiment j.

The experiment release time R[j], where ݆ ∈ is the ,ܬ
earliest possible start time of the experiment j. Before that
time, the experiment j cannot be scheduled.

The preferred end time D[j] where ݆ ∈ is the latest ܬ
preferred finishing time for the experiment j. The
experiment j should be scheduled before this time.

The processing time P[j], where ݆ ∈ is the time ,ܬ
duration to complete the experiment j.

The weight W[j], where ݆ ∈ represents the priority ,ܬ
given to the experiment j. Many factors can determine the
priority for an experiment. For example, the proposals
with biological samples have higher priority, and the
commercial proposals have higher priority than the
normal academic proposals.

The eligibility ܧ[݅, ݆] ∈ {0,1}, where ݅ ∈ ,ܫ ݆ ∈ is a ,ܬ
Boolean value. When E[i,j] = 1, the experiment j can be
conducted on the beamline i.

The beamline has some down time that is unusable for
experiments. The beamline unusable start time Ub[i,u],
where ݅ ∈ ݑ，ܫ ∈ {1, . . . , indicates when the u-th ,{2ݔܽܯ
unusable period starts. Max2 is a constant for the maximal
number of unusable periods. The beamline unusable end
time Ua[i,u], where ݅ ∈ ݑ，ܫ ∈ {1, . . . , indicates ,{2ݔܽܯ
when the unusable period ends.

The above variables contain the known facts of our
model. The following variables are going to be assigned
their values by the scheduling algorithm.

The experiment start time S[j], where ݆ ∈ is the ,ܬ
scheduled time for starting the experiment j.

The assignment X[i,j] ∈{0,1}, where ݅ ∈ ,ܫ ݆ ∈ is a ,ܬ
Boolean value. X[i,j]=1means the experiment j is assigned
to the beamline i.

The scheduling has to adhere to the following rules:
Only the eligible beamlines can be selected: ∀݅, ݆, ܺ[݅, ݆] ≤ ,݅]ܧ ݆] (1)
One beamline per experiment: ∀݆, ∑ ܺ[݅, ݆]ୀଵ = 1 s. t. ܺ[݅, ݆] ∈ {0,1} (2)
The experiment start time should be greater or equal to

the release time: ∀݆, ܵ[݆] ≥ ܴ[݆] (3)
The experiment start time should be greater or equal to

the cycle start time: ∀݆, ܵ[݆] ≥ (4) ݐܵ
The experiment end time should be less or equal to the

cycle end time:
 ∀݆, ܵ[݆] + ܲ[݆] ≤ ܵ݁ (5)
On a beamline, the experiments can't overlap: ∀݅, ݆, ݇, s. t. ݆ ≠ ݇, ݇ ∈ ,݅]ܵ ܬ ݆] ≥ ܵ[݅, ݇] + ܲ[݇] ∨ ܵ[݅, ݇] ≥ ܵ[݅, ݆] + ܲ[݆] (6)
An experiment should be out of the unacceptable time

window: ∀݅, ݆, ,ݑ ܵ[݅, ݆] + ܲ[݆] ≤ Ub[i, u] ∨ ܵ[݅, ݆] ≥ ܷܽ[݅, (7) [ݑ
An experiment can only be arranged in the beamline

available period:
 ∀݆, , ܵ[݆] + ܲ[݆] ≤ ,݆]ݏܷ [∨ ܵ[݆] ≥ ܷ݁[݆, (8) [
The objective of the problem is to minimize the total

weighted lateness which is defined as the sum of time
differences between the preferred end time of an
experiment and its actual finish time. It is a criterion
representing how much the schedule satisfies users’
expectations in terms of users’ preferred finish times. ∑ |ܹ[݆] ∗ (ܵ[݆] + ܲ(݆) − ୀଵ|((݆)ܦ (9)

SOFTWARE IMPLEMENTATION
The Web UI for the Calendar

The Science Studio platform has a common Web UI for
all its modules (Figure 2). The left vertical bar shows the
menu items, and the current item is the “automated
schedule”. A calendar in the content pane shows the
schedule for a beamline.

The color encoding represents the different operation
modes of the beamlines. For example, the normal mode is
in green. Our scheduling application is implemented for
two purposes: first, it supports manual scheduling by
providing the beamline scientists with a calendar liked
interface, on which the beamline scientists can define their
facility operation modes and manually schedule eligible
experiments onto the shifts; second, the scheduling
application is able to invoke the automated algorithm
resides the in ILOG and retrieve the results back for
displaying them on its calendar UI. Figure 3 shows some
of the manual operations. With a right click on a time slot,

WEPL003 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Data Networking and Web Technology

34

Web 2.0 and SOA

a drop-down list pops up, containing a
experiments. The user can check the det
an experiment by right-clicking the expe

Figure 2: Example screen shot showing
schedule results.

Figure 3: Example screen shot (enlarge
some manual scheduling oper

Testing with the real world data
We use the CLS proposals data for

2010 for testing the scheduling function
these proposals is in Table 1. Totally
about 100 spokespersons from about
approved, most of which are from Canad

Table 1: General user proposal

Beamline Total
Requests

01B1-1 (Mid IR) 5
02B1-1 (Far IR) 15
06B1-1 (SXRMB) 9
06ID-1 (HXMA) 25
07B2-1 (VESPERS) 5
10ID-1 (SM) 36
11ID-1 (SGM) 32
11ID-2 (PGM) 14
Total 141

These proposals are manually

beamlines. Each row in Table 1 shows
proposals scheduled on one beamline a
shifts used. We show we can do th
automatic schedule function in our modu

Figure 4 shows the input data file f
convert the shifts into nature numbers.
first shift is from 2010/1/1, 0:00am to 2

 all the schedulable
detail information of
periment in the list.

ing a calendar with

ged) for illustrating
perations.

or the first cycle of
tions. A summary of
ly 141 proposals by
ut 50 institutes are
nadian institutes.

al summary

Total Shift
Request

77
258

72
211

60
343
228
120

1369

 scheduled to 8
s the number of the

e and the number of
the same with the

odule.
e for the ILOG. We

. For example, the
o 2010/1/1, 8:00am,

and it is converted to 1. In Figur
the beamlines. N=141 is the num
scheduled. R is the array of
experiments. As all the experim
from the first shift in the cycle,
is the array of the weights o
numbers in W is a proposal re
100. P is the array of process
array of the eligibilities for
beamlines. We can see the first 5
beamline 1. Variable Ub and
unusable start time and end time
obtained from the real data. Va
the cycle start and end time.
between Ts and Te except pairs
numbers of Ub and Ua are 1 a
unusable.

Figure 5 shows the schedu
outputted by the ILOG. Each ite
index of beamline, the index o
start time, the allocated shifts].
[7, 122, 14, 1] means on beaml
experiment is scheduled from th

Figure 4: Example of the inp

Figure 5: Part of the scheduli
for beamline

REFEREN
[1] Canadian Light Source, Rem
http://www.lightsource.ca/opera

ect/
[2] Wikipedia Article, Synchro

encyclopedia. en.wikipe
March, 2009.

[3] Zahid Anwar, Zhiguo Wan
Yaofeng Xu, Yuhong Yan,
Model and Heuristic A
Scheduling in Synchrotron
Inter. Conf. on Systems,
(SMC'09), Oct. 11-14, 20
USA.

gure 4, M=8 is the number of
number of experiments to be
of release time for all the
iments have the release time
le, all the items in R are 1. W
 of the proposals. Each of
review score multiplied by

essing time. E is an 8×141-
or the 141proposals on 8
st 5 proposals are eligible for
and Ua are 8×30-array of
me. 30 is the value for Max2
Variable Ts and Te represent
e. The available shifts are
rs of Ub and Ua. As the first
1 and 14, shifts 1 to 13 are

dule results in a text file
 item is in the format of [the
x of proposal, the allocated

. For example, the first item
mline 7 (11ID-1), the 122-th
 the 14-th shift for 1 shift.

input data for the ILOG.

uling results from the ILOG
ine SGM.

ENCES
emote Instrument Control,
erations/remote_access_proj

hrotron, Wikipedia, the free
ipedia.org/wiki/Synchrotron.

ang, Chun Wang, Dan Ni,
an, “A Integer Programming
Algorithm for Automatic

ron Facilities”, 2009 IEEE
s, Man, and Cybernetics

2009, San Antonio, Texas,

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL003

Data Networking and Web Technology Web 2.0 and SOA

35

ACCURATE MEASUREMENT OF THE BEAM ENERGY IN THE CLS
STORAGE RING*

J.M. Vogt#, J.C. Bergstrom, S. Hu, CLS, Saskatoon, Canada

Abstract
Resonant spin depolarization was used at the Canadian

Light Source (CLS) to measure the energy of the beam in
the storage ring with high accuracy. This method has been
employed successfully at several other synchrotrons in the
past. At the Canadian Light Source, however, resonant
spin depolarization is an intrinsic capability of the
transverse feedback system, which is based on a Libera
Bunch-by-Bunch unit. The Bunch-by-Bunch system used
at the CLS was customized to include a bunch cleaning
feature based on a frequency-modulated oscillator. By
setting the frequency of this oscillator to the spin tune, the
beam can be depolarized and the effect can be observed
by watching the life time of the beam. No changes have to
be made to the permanent setup of the transverse
feedback system, and no special instrumentation is
required to make the energy measurement.

RESONANT SPIN DEPOLARIZATION
The theory of resonant spin depolarization as a means

of measuring the beam energy in a storage ring has been
described in detail in Ref. [1]. After injection, the beam
polarization builds up with a machine-dependent time
constant, usually in the range of a few tens of minutes.
Depolarization is then accomplished by applying an RF-
signal at the resonant frequency of the spin. The effect of
the resonant depolarization is observed either as an
increase in the amount of Touschek scattering, or as a
decrease of the beam life time. Several facilities have
used this method in the past [1-7].

The frequency at which resonant depolarization occurs
is a direct measure of the beam energy. Equation (49) in
Ref. [1] gives the spin tune ν as:

2
ecm
Eaa =γ=ν , (1)

where

00115965.0
2

2ga =
−

=

is the anomalous magnetic moment of the electron, E is
the beam energy, and me is the electron mass. At the
nominal beam energy of the CLS storage ring, which is
2900 MeV, the spin tune is ν = 6.5812.

*Work supported by NSERC, NRC, CIHR, WEDC.
#johannes.vogt@lightsource.ca

The expected resonant depolarizing frequency fdep is:

MHz0197.1ff ofracdep =⋅ν= , (2)
where vfrac is the fractional part of the tune and fo =

1.7544 MHz is the orbit frequency of the storage ring.
Note that there is an ambiguity between 5812.0frac =ν
and 4188.01 frac =ν− , so that another solution for the
depolarizing frequency is:

() MHz7347.0f1f ofracdep =⋅ν−= . (3)

INSTRUMENTATION AT THE CLS
The Transverse Feedback System

The transverse feedback system is based on a Libera
Bunch-by-Bunch unit, which was customized to include a
frequency modulated oscillator for bunch cleaning [8].
The frequency of this oscillator was set to the spin tune
and the amplifiers and the vertical kicker of the transverse
feedback system were used to depolarize the beam.

Detection of Depolarization
Because of signal-to-noise considerations, the preferred

method of detecting depolarization is by measuring
Touschek electrons. However, the arrangement of the
magnets in the storage ring and the shape of the vacuum
chambers make it impossible to set up Touschek detectors
at the CLS. Depolarization therefore had to be detected by
observing its effect on the life time of the beam.

MEASUREMENTS
Machine Setup

The machine setup was determined by the following
considerations:
• In order to maximize the Touschek effect on the life

time, the bunch current had to be as high as possible,
• The bunch current was limited by the head-tail

instability,
• In order to minimize the vacuum effect on the life

time, the total current had to be as low as possible,
• The total current had to be high enough for a

sufficiently accurate measurement of the storage ring
current and the life time.

As a compromise, three bunches in the storage ring
were filled with a current of about 10 mA/bunch.

WEPL004 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

36

Diagnostics

Frequency Sweep
The frequency-modulated oscillator was swept in a

range of frequencies that included the expected resonant
depolarization frequency. The product of life time and
beam current was observed (see Fig. 1). If the life time of
the beam is only determined by Touschek scattering, this
product is expected to be a constant as long as the
polarization of the beam does not change. When the beam
is depolarized, Touschek scattering increases and the
product of life time and beam current is expected to drop.
In reality the product increases slowly, probably due to a
contribution to the life time by the vacuum in the storage
ring, which slowly improves as the beam current decays.

Figure 1: The blue curve shows the product of beam
current and life time. The green curve is the frequency of
the oscillator. The blue curve drops between t=800s and
t=1200s as the beam is depolarized.

Because of the fluctuation of the current × life time
measurement, the depolarization frequency could not be
read with the desired accuracy. The measurement was
therefore repeated several times after the beam was
allowed to polarize again, and each time the range of the
frequency sweep was narrowed. In the end the sweep was
made narrower than the range necessitated by the energy
spread of the beam in the storage ring, and the beam was
partially depolarized.

RESULTS
The depolarization frequency determined in this

manner was
MHz001.0019.1fdep ±= .

The error is dominated by the energy spread of the
beam in the storage ring. Using Eq. (1) and Eq. (2), the
beam energy can now be calculated as:

MeV8.2899
a
cm

f
f

E
2

e

o

dep
int1 =⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ν= , (4)

where νint = 6 is the integer part of the spin tune. This
result is very close to the expected value of 2900 MeV.
However, at this point the ambiguity between νfrac and 1-
νfrac could not be ruled out. Using Eq. (1) and Eq. (3), the
second solution of the beam energy can be calculated as:

 MeV6.2828
a
cm

f
f

1E
2

e

o

dep
int2 =⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+ν= . (5)

In order to distinguish between these two solutions, the
beam energy was slightly increased and the measurement
was repeated. This time the depolarization frequency was
measured as:

MHz001.00205.1fdep ±= .
This leads to the solutions:

MeV2.2900E1 = , (6)
MeV2.2828E2 = . (7)

Since the beam energy had been increased, the results
in (4) and (6) must be the correct solutions.

REFERENCES
[1] S.C. Leemann, “Precise Energy Calibration

Measurement at the SLS Storage Ring by Means of
Resonant Spin Depolarization,” Master Thesis,
March 2002, ETHZ-IPP Internal Report 2002-02,
http://simonleemann.ch/work.html.

[2] A.-S. Müller et al., “Energy Calibration of the ANKA
Storage Ring,” Proceedings of EPAC 2004, Lucerne,
Switzerland.

[3] S.C. Leemann et al., “Precise Beam Energy
Measurement at the SLS Storage Ring,” Proceedings
of EPAC 2002, Paris, France.

[4] P. Kuske et al., “High Precision Determination of the
Energy at BESSY II,” Proceedings of EPAC 2000,
Vienna, Austria.

[5] C. Steier, J. Byrd, P. Kuske, “Energy Calibration of
the Electron Beam of the ALS Using Resonant
Depolarization,” Proceedings of EPAC 2000, Vienna,
Austria.

[6] L. Arnaudon et al., “Accurate Determination of the
LEP Beam Energy by Resonant Depolarization,”
August 1994, CERN SL/94/71 (BI).

[7] Ya.S. Derbenev et al., “Accurate Calibration of the
Beam Energy in a Storage Ring Based on
Measurement of Spin Precession Frequency of
Polarized Particles,” Particles Accelerators 10 (1980)
177.

[8] J.M. Vogt et al., “Bunch Cleaning at the Canadian
Light Source,” Proceedings of PAC09, 2009,
Vancouver, Canada.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL004

Accelerator Controls Diagnostics

37

STATUS OF THE FUTURE SPIRAL2 CONTROL SYSTEM

D. Touchard*, P. Gillette, C. Haquin, E. Lemaître, L. Philippe, E. Lécorché# (Ganil / Caen, France)
J.F. Denis, F. Gougnaud, J.F. Gournay‡, Y. Lussignol, P. Mattei (CEA-IRFU / Saclay, France)

P. Graehling, J. Hosselet, C. Maazouzi (CNRS-IPHC / Strasbourg, France)

Abstract
For the study of fundamental nuclear physics, the

SPIRAL2 facility, a driver accelerator followed by a rare
ion production process, will be coupled with the existing
GANIL machine to provide light and heavy exotic nuclei
at extremely high intensities. To ease the collaboration
with several institutes on the control system design,
EPICS has been chosen as the basic framework and a
specific care has been taken concerning the software
organization and management. While first operational
interfaces for power supplies, faraday cups or beam slits
are already operational, a triggered fast acquisition system
for beam diagnostics, a radiofrequency control system,
and an admittance measurement system are going to be
achieved. First EDM supervision screens and high level
tuning applications based on EPICS/XAL framework
have been designed. The use of relational databases, on
the one hand for the design of an environment to generate
the EPICS databases, on the other hand to manage, set
and archive meaningful values of the new facility, is
under investigation. From the beginning of last year, two
sources followed by their first beam line sections have
been tested. Promising results are presented.

THE SPIRAL2 PROJECT

Overview
Following the recommendations of international

committees and to fulfil the growing demand of the
international physiscists community, in May 2005 the
French Research Minister decided to build the new
SPIRAL2 facility at GANIL laboratory (CNRS-CEA) in
Caen (France) [1]. The project aims to enlarge multi-beam
production using Isotope Separation On Line (ISOL)
method. A superconducting LINear ACcelerator (LINAC)
for light and heavy ions preceded by a radio frequency
quadrupole (RFQ) will deliver up to 40MeV/A for 5mA
deuteron, respectively 14.5MeV/A for 1mA heavy ion
continuous wave (CW) beams [2]. These beams can be
used for the production of intense Radioactive Ion Beams
(RIB) involving the fusion, fission, transfer reaction
mechanisms. More specifically, production of RIB with
intense neutron-rich nuclei will be based on the fission of
uranium targets bombarded either by neutrons produced
by a first impact of the deuteron beam on a carbon
converter, or by the direct deuteron or heavy ion beam
impact. The RIB post-acceleration will be performed by
the existing CIME cyclotron, which is perfectly suited to
the separation and acceleration in the energy range up to
10MeV/A for the atomic masses between 100 and 150.
SPIRAL2 beams after CIME can be reused in present
experimental areas of GANIL (see fig 1).

Figure 1: The SPIRAL2 and GANIL facilities.

Milestones
The first primary beams are expected in spring 2012

(phase 1) while the production process is planned more or
less one year later (phase 2).

Some parts of the accelerator have been tested: the ion
source and its low energy beam line have been in test at
CNRS-LPSC (Grenoble) since 2008 and the deuteron
source and its coupled beam line are progressively tested
at CEA-IRFU (Saclay) since the beginning of this year[3].

Collaboration organisation
In order to build a large machine as SPIRAL2, an

international collaborative effort has been made to
establish the grounds for the design. A large team
composed of people from CNRS, CEA, and international
institutes is involved in the scheme. This is also the case
as far as the command control system is concerned. The
following three French laboratories, GANIL (Caen),
IPHC (Strasbourg) and IRFU (Saclay) are currently
designing and developing respectively the whole
hardware and software command control system phase 1
architecture. For the phase 2, collaboration with the
following three laboratories, LPSC (Grenoble), CENBG
(Bordeaux), and LPC (Caen) is presently under
consideration.

CONTROL SYSTEM

Main choices
The main choice of EPICS [4] as a common framework

was early decided to ease pieces of software development
and integration efficiency. A set of drivers already

*touchard@ganil.fr
#Spiral2 command control coordinator
‡
Injector command control coordinator

WEPL006 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

38

Development and application frameworks

developed inside this community has been picked to
control the majority of equipment. Mainly remote
terminal units are VME VxWorks crates with MVME
5500 CPUs and Red Hat Enterprise Linux PCs hosting
EPICS Input Output Controllers (IOCs). On the other
side, Siemens S7 programmable logic controllers (PLC)
are mainly dedicated to slow material protection systems
needed for radio frequency, cryogenic, vacuum, or
interlock systems[5].

Tuning applications read and write values via the
EPICS Channel Access protocol. These values are hosted
in EPICS IOCs accessing equipment directly with ADAS
VME I/O cards, or Modbus/TCP field bus networks.

Software development
To ease software sharing a unique EPICS SPIRAL2

working environment, an equipment naming convention,
and operational rules for interfaces have been specified.
The use of SVN server, a versioning control software
system, hosting specifics SPIRAL2 EPICS and JAVA
directory skeletons, was decided to centralize all the
pieces of software [6]. To tune a large facility as
SPIRAL2, supervision screens developed with EPICS
Extensible Display Manager (EDM), with the same
template files and more sophisticated JAVA high level
applications derived from the XAL [7],[8] framework, are
under way. In order to investigate new EPICS innovative
tools, an evaluation of the relatively new Control System
Studio (CSS) integrated development environment has
begun this year.

EQUIPMENT INTERFACES

Power supplies
To transport or control the beam along the facility, a set

of 600 magnetic or high voltage pieces of equipment with
specific power supplies driven through the
MODBUS/TCP network protocol are needed [9].
Although different kind of power supplies have been
already selected, for most of them a common mapping
interface will be enforced between IOC and power
supplies and a special care was taken about status
feedback and tuning application interface. A first EPICS
IOC database interface has already been developed and
enhanced with an EPICS/GENSUB record.

Faraday cups
Faraday cup, a beam interceptive diagnostic [10], aims

to measure through a VME/IOC beam intensity for either
pulsed or continuous beam. Specific EPICS drivers were
written for the fast acquisition boards ADAS ICV108/178
[11]. Last development improvements allow to set on the
fly acquisition rate from 100K to 1.2M samples/s and
dynamically select the piece of equipment to acquire. This
system is being validated during beam tests.

Beam profilers
Profile monitors measure and visualize the beam

dynamics. The EPICS IOC database and JAVA

visualisation interfaces of secondary emission profiler
have been recently developed. This development has
particularly confirmed the necessity of the interface rules
decided at the beginning of the project because of the
special work induced by the mapping of complex data
between IOCs and high level applications.

Emittance measurement system
Emittance measurement characterizes the horizontal

and vertical transverse optical behaviour of the beam. The
system is built over two scanner pods [12] that are
controlled with brushless motors connected to an Oregon
MaxV 4000S card. These pods require high voltage
power supplies controlled with an ISEG VHQ202 M
board or an ADAS ICV714 board. Even though an ADAS
ICV150 board presently acquires values inside the
faraday cups, the fast acquisition solution described above
will be used for nominal performances. A state machine
piece of software inside the IOC with a specific algorithm
controls the scanner pods in order to build a whole
emittance measurement.

Radiofrequency control system
Radiofrequency equipment such as choppers, bunchers,

RFQ and LINAC cavities work at 88.0525MHz. They are
independently powered by amplifiers controlled via the
MODBUS/TCP protocol. IRFU laboratory has developed
SPIRAL2 specific VME64x Low Level Radio Frequency
(LLRF) boards which integrate, Field Programmable Gate
Array (FPGA) to regulate the amplitude-phase of each
cavity. An EPICS device/driver has been developed for
this card, along with a new type of record. This record
also implements an acquisition mode needed for
commissioning any piece of software, electronic
development or cavities [13]. The prototype of the VME
board and RF card and the principle of the Proportional-
Integral-Derivative (PID) digital control of phase and
amplitude have been validated.

DATABASE ORGANISATION

Equipment characterization
Considering 4000 new pieces of equipment expected to

control the facility which will be mainly managed by non
EPICS users, led the team to consider a specific
equipment INGRES database associated to a friendly
JAVA user interface. Each type of equipment should be
driven by generic EPICS development which consists of
database files with macro substitution. A specific IOC
generator will produce start-up IOC files filled with each
equipment characterization. This organization was
successfully tested with a power supply generic
development.

Beam parameters
The SPIRAL2 facility will produce and accelerate a

range of beams including deuterons and heavy ions, with
different optics, and trajectories. In order to tune this
facility efficiently, a beam management process as the

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL006

Accelerator Controls Development and application frameworks

39

one already existing at GANIL is now foreseen [14]. A
first application based on the XAL framework described
below and based on an Ingres database has been
successfully tested this year.

Archives
The first evaluation of the EPICS CSS archiving

system based on a MySQL 5.5.1 database has shown a
need of disk space of about 10To to store continuous
activity 7d/7, 24h/24 during 8 weeks run for 400
significant machine parameter values having 10Hz
change rate. To keep performances compatible with the
CSS data browser, a study on MySQL is underway for
partitioning tables and tuning servers.

HIGH LEVEL APPLICATIONS

Simulations
Very extensive calculations using TOUTATIS and

TRACEWIN [15] codes developed by the IRFU
laboratory have been performed to simulate beam
behaviour and losses, especially in RFQ and LINAC
section. These codes could generate equipment theoretical
values that could be inserted in the beam parameter
database described above. The software gateway between
TRACEWIN and the parameters database has been
validated last year.

Common frameworks
The whole XAL software could not be reused as is, due

to SPIRAL2 specificities such as multi ion species
accelerated. The evaluation of this framework has shown
that it could increase significantly development
efficiency. First applications developed with this
graphical interface or reusing some code or pieces of
software, such as accelerator configuration, profiler
display, beam adaptation or optimisation, are underway.

BEAM TESTS
Beam line section LEBT1 tests performed at LPSC as

shown in fig. 2 were an important step to validate the
associated control command.

Figure 2: LPSC and IRFU beam tests.

A Labview PC controlling the heavy ion source and a
set of EPICS Linux/PCs and VxWorks/VME crates
controlling the line equipment communicate through a
Labview / EPICS gateway supplied by National
Instruments. For EPICS front end part, power supplies
and Faraday cups interfaces, the fast data acquisition
system, dialogue with the PLCs, emittance measurements

have been integrated. Tuning applications such as the
correlation of all parameters and analysis of the heavy ion
source have been validated. In order to study the beam
characteristics, a special use of TRACEWIN connected to
a Faraday cup and a legacy profiler diagnostics, and
controlling power supplies has successfully optimized the
beam transmitted. In the same state of mind, and in order
to control the deuteron source with a fully EPICS control
system, the beam line section LEBT2 is being tested at
IRFU.

ACKNOWLEDGMENTS
As the control system is the core interface with many

pieces of equipment, special thanks for the contribution of
many people at IRFU, IPHC, LPSC and GANIL
laboratories, without whom the SPIRAL2 control
command could come out.

REFERENCES
[1] S. Gales “SPIRAL2 at GANIL: A world leading ISOL
facility at the dawn of the next decade”, International
Workshop on Nuclear Physics 28th Course 2006
[2] T. Junquera, P. Bertrand, R. Ferdiand, M. Jacquemet,
“The high intensity superconducting LINAC for the
SPIRAL2 project at GANIL”, LINAC2006, Knoxville,
USA
[3] T. Junquera, “Status of the construction of the
SPIRAL2 accelerator at GANIL”, LINAC08, Victoria
BC, Canada
[4] Matthias Clausen, “EPICS FUTURE PLANS”,
ICALEPCS07, Knoxville, Tennessee, USA
[5] E. Lécorche, “Preliminary implementations for the
new SPIRAL2 project control system”, PCaPAC08,
Ljubljana, Slovenia
[6] D. Touchard, “The SPIRAL2 command control
software organization and management”, ICALEPCS
2009, Kobe, Japan
[7] J. Galambos, “XAL application programming
framework”, ICALEPCS2003, Gyeongju, Korea
[8] T. Pelaia, “XAL status”, Proceedings of
ICALEPCS07, Knoxville, Tennessee, USA
[9] D. Touchard, “A MODBUS/TCP-BASED power
supply interface”, PCaPAC08, Ljubljana, Slovenia
[10] C. Jamet, “Injector diagnostics overview of
SPIRAL2 accelerator”, Proceedings of DIPAC 2007,
Venice, Italy
[11] F.Gougnaud, “The first steps of the beam intensity
measurement of the SPIRAL2 injector”, ICALEPCS2009,
Kobe, Japan
[12] P. Ausset, “SPIRAL2 injector diagnostics”,
DIPAC09, Basel, Switzerland
[13] M. Di Giacomo, “Status of the RF system for the
SPIRAL2 LNAC at the beginning of the construction
phase”, LINAC 2006, Knoxville, USA
[14] E. Lécorché, “Use of the INGRES RDBMS inside
the new GANIL LINUX based control system”,
ICALEPCS2005, Geneva, Switzerland
[15] Logiciels at IRFU/SACM, http://irfu.cea.fr/Sacm

WEPL006 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

40

Development and application frameworks

SETTINGS MANAGEMENT WITHIN THE FAIR CONTROL SYSTEM
BASED ON THE CERN LSA FRAMEWORK

J. Fitzek, R. Mueller, D. Ondreka, GSI, Darmstadt, Germany

Abstract

A control system for operating the future FAIR (Facility
for Antiproton and Ion Research) accelerator complex is
being developed at GSI. One of its core components is the
settings management system.

At CERN, settings management and data supply for
large parts of the CERN accelerator complex is done using
the LSA (LHC Software Architecture) framework. Sev-
eral concepts of the LSA framework already fit the FAIR
requirements: Generic structures for keeping accelerator
data; modular design; separation between data model, busi-
ness logic and applications; standardized interfaces for im-
plementing the physical machine model. An LSA test in-
stallation was set up at GSI and first tests were performed
controlling the existing GSI synchrotron SIS18 already
with the new system.

These successes notwithstanding, there are issues result-
ing from conceptual differences between CERN and FAIR
operations. CERN and GSI have established a collabora-
tion to make LSA fit for both institutes, thereby developing
LSA into a generic framework for accelerator settings man-
agement. While focussing on the enhancements that are
necessary for FAIR, this paper also presents key concepts
of the LSA system.

FAIR

The international FAIR facility with its nine new accel-
erator installations will be built at GSI, using the existing
linac and synchrotron SIS18 as injectors (see Fig. 1).

SIS300

SIS18

Proton

Linac

HADES

CBM

HESR

Super-FRSAntiproton

Production

Target

F A RL I

CR

RESR

NESR

Unilac

SIS100

Protons produce Antiprotons

Ions produce Radioactive Ion Beams

for storage rings

or for fixed target experiments

Ion beams for plasma physics

Ion beams for atomic physics

Ions or protons for
compressed baryonic matter CBM

PANDA

Rare Isotope

Production Target

SPARC

BIOMAT

WDM

HEDgeHOB N S Au T R

SPARC

HITRAP

LSR

USR

ER

Figure 1: GSI/FAIR beamlines, P. Schuett, GSI 2010.

Central aspect is an increased number of research pro-
grams resulting in up to five beams in parallel with pulse-
to-pulse switching between different particle types. The
future facility will be controlled by a new control system
which will be able to support all aspects of the complex
GSI/FAIR operations on a common technical basis [4]. The
future control system is designed at the moment, keeping
well working and proven principles while adopting new
methodologies where beneficial.

Important aspects of the control system are generation
of settings and data supply. It was evaluated and decided
to use the existing LSA framework from CERN for set-
tings management and data supply within the FAIR control
system. A collaboration with CERN was set up with joint
development effort put into future LSA development [1].

LSA - THE LHC SOFTWARE
ARCHITECTURE

LSA was developed at CERN starting in 2001 and is now
the core controls software component for settings manage-
ment and data supply within the CERN control system. For
a detailed description of LSA see [2].

LSA - Functional Overview

The LSA system was designed in a generic way and pro-
vides clear separation between data model, business logic
and applications. Its modular structure allows institute spe-
cific implementation to be easily plugged in.

The system covers all important settings management
aspects: optics (twiss, machine layout), parameter space,
settings generation and management, settings modification
(trim), propagation from physics to hardware parameters,
operational and hardware exploitation (equipment control,
measurements), and beam based measurements.

An accelerator within LSA is modeled by defining its
parameter hierarchy – from top level physics down to hard-
ware parameters. Using the optics, the LSA system can
already calculate good initial settings. Corrections can be
applied to any level of the hierarchy, resulting in a con-
sistent change of many devices at the same time. As an
example for a part of such a hierarchy at GSI, see Fig. 3.
The LSA system consists of different functional building
blocks, which among other benefits entitle physicists to im-
plement the machine model themselves in a structured and
simple way.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL008

Accelerator Controls Development and application frameworks

41

LSA - Technology Stack

LSA is written in Java and uses the Spring framework,
that provides a light-weight container for the Java plat-
form, dependency injection, aspect oriented programming
(AOP), testing framework, remoting and transactions. An
overview of the LSA software stack is shown in Fig. 2.

Figure 2: LSA software stack, G. Kruk, ICALEPCS 2007.

LSA is visible to the applications trough a series of
façade classes that group the functionality of LSA by topics
(setting management, hardware access etc.). They repre-
sent a stable and backward compatible interface which sep-
arates applications from business logic, thus applications
can concentrate on presenting information.

Communication with the devices is done through a pow-
erful abstraction layer called JAPC (Java API for Parame-
ter Control) [3], that hides middleware specifics and thus
allows access to all devices through the same interface.

LSA AT GSI

The collaboration on LSA started in 2007 with two soft-
ware developers from GSI working for 1.5 years on site in
the LSA team during the LHC commissioning and startup.
Since then the collaboration is well established. In 2008,
an LSA test system was set up at GSI.

Setting up an LSA test system

The LSA system runs out-of-the-box given an empty
LSA database with just a few tables prefilled. First steps
include setting up an Oracle database instance and an
LSA test server, which is a standalone Java process. For
the small number of missing software references (e.g. to
CERN’s online model server or role based access system),
a dummy implementation needs to be provided which ful-
fills the interface. Since the LSA system is data-driven,
the next step is to import the accelerator layout into the
database, such as static information about accelerators,
beamlines and devices. As a result of this initial setup,
generic LSA applications deployed via Java WebStart are
already running.

After a new JAPC plug-in for the existing GSI middle-
ware was developed, first calls to devices proved that the
environment was correctly set up.

Implementing GSI accelerators within LSA

A project team consisting of machine physicists and soft-
ware developers from different groups at GSI started mod-
eling the existing synchrotron SIS18 within the institute
specific part of LSA: defining the parameter hierarchy, im-
plementing propagation rules, importing optics and defin-
ing test cycles. Since the implemented rules were written
in a generic way, even test cycles for the future FAIR syn-
chrotron SIS100 have already been successfully generated.
Next step will be to look at the existing GSI storage ring
and its representation within the new system.

Figure 3: Example of an LSA parameter hierarchy at GSI.

While modeling the existing accelerators in LSA, the
project team mainly focusses on the LSA concepts and the
question, whether they are really generic enough to fit all
needs of complex and parallel accelerator operations.

First test with beam

Keeping in mind the challenge of putting the new con-
trol system for FAIR in place while the existing facility is
running, it is however vital, that the new system will be
commissioned with parts of the existing machine.

For the settings management and data supply part with
LSA, this includes testing the new system already with the
existing accelerators. As a first milestone, a successful test
with beam was performed in march 2010 with the existing
synchrotron SIS18. Several scenarios were tested: opera-
tions with one and two cavities and one and two shot ex-
traction using a cycle with fast extraction.

Figure 4: SIS18 test: single shot extraction.

WEPL008 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

42

Development and application frameworks

Extending LSA

The flexibility of accelerator operations at GSI put a new
view on the LSA system. In particular while modeling the
SIS18, certain restrictions were found within the LSA ma-
chine model, resulting from the rather static operation of
the accelerators at CERN. Based on these observations, re-
quirements were collected. For some of these topics a final
solution has been agreed upon and implementation has al-
ready started.

One new feature within LSA which will be implemented
within the collaboration is the flexibility of cycle length:
length of cycles and therefore length of specific functions
like the dipole current can vary due to applied trims. This
feature will be heavily used at GSI, where e.g. extraction
energy is frequently trimmed and the corresponding adap-
tation of the cycle length is indispensable for the optimiza-
tion of the duty cycle. This of course presumes a flexible
timing system with no predefined base cycle length.

Another feature will be the support for modeling a full
chain of accelerators, especially modeling inter-accelerator
dependencies, which is necessary for FAIR. Also at CERN,
the focus shifts towards controlling the full accelerator
chain. This change in perspective is related to the fact, that
now the same control system is used for many accelerators
at CERN. The idea is e.g. to connect the extraction energy
of one accelerator with the injection energy of the next ac-
celerator in the chain and automatically trim settings for
the whole affected chain when changed in one place. First
brainstorming on this topic has started and will be contin-
ued in the near future.

So far, it seems that all of the requirements now coming
from GSI are also of interest for CERN and that their im-
plementation will be part of the LSA core system. The goal
of both involved parties is clearly to make LSA as generic
and flexible as necessary to be able to really fulfill all re-
quirements, that arise from complex accelerator operations.

Technically implementing new features in the LSA core
system is encouraged by the use of the Spring framework.
It easily allows plugging in test implementations by one
party using XML configuration while the existing imple-
mentation remains untouched. This also supports using one
repository for the LSA core system even while realizing
new features.

However, also institute specific implementation like ac-
cess to devices, accelerator specific physics propagation
rules etc. fit into the LSA concept: they reside in institute
specific modules which complement the core functionality
by implementing the respective interfaces. Even though it
is planned to manage those specific software modules lo-
cally at the institute site in the future, at the moment the
GSI modules still reside at the CERN repository, benefit-
ting from CERNs build and release environment.

Development of LSA based applications

In addition to the existing generic LSA applications there
is the need for new applications developed at GSI which

fit the operators workflow. Since the LSA business logic
is well separated from the applications and encapsulated
by GSI specific façade classes (where only a subset of full
LSA features is made visible to application developers), ap-
plications can focus on displaying information. Addition-
ally standard prefilled GUI elements and a stable API sub-
stantially ease application development and also encourage
others to write applications based on LSA.

Figure 5: LSA application showing a SIS18 supercycle.

SUMMARY/OUTLOOK

The prototype installation and successful first tests with
beam proved that the LSA framework already fits the re-
quirements for settings management and data supply for
single accelerators within the FAIR control system. From a
technical perspective it was easy to install and to set up the
system in its initial state. The biggest effort was to imple-
ment the accelerator model using the LSA framework.

New requirements arise from the flexible GSI/FAIR ac-
celerator operations and from the necessity to model the
whole accelerator complex within LSA. The correspond-
ing enhancements of the LSA framework are implemented
within the collaboration. In this way LSA evolves into a
generic and flexible settings management framework for
complex accelerator facilities.

REFERENCES

[1] R. Mueller, J. Fitzek, D.Ondreka, “Evaluating the LHC Soft-
ware Architecture for data suppy and settings management
within the FAIR control system”, ICALEPCS’09, Kobe,
Japan, THP012.

[2] Grzegorz Kruk et al, “LHC Software Architecture
(LSA) - Evolution Toward LHC Beam Commissioning”,
ICALEPCS’07, Knoxville, Tennessee, USA, WOPA03

[3] V. Baggiolini et al, “JAPC - the Java API for LHC Timing
Parameter Control”, ICALEPCS’05, Geneva, Switzerland,
TH1.5-8O.

[4] Ralph C. Bär et al., “Development of a New Control System
for the FAIR Accelerator Complex at GSI”, ICALEPCS’09,
Kobe, Japan, TUP107.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL008

Accelerator Controls Development and application frameworks

43

INTEGRATION OF PROGRAMMABLE LOGIC CONTROLLERS INTO
THE FAIR CONTROL SYSTEM USING FESA

R. Haseitl, C. Andre, H. Bräuning, T. Hoffmann, R. Lonsing, GSI, Darmstadt, Germany

Abstract
For the upcoming 'Facility for Antiproton and Ion

Research' (FAIR) at GSI, the Front End Software
Architecture (FESA) framework built by CERN has been
chosen to serve as front-end level of the future FAIR
control system [1]. All beam diagnostic devices of FAIR
will be controlled by FESA classes that are addressable by
the new control system. The connectivity to the old
control system is retained, since both control systems will
be in operation contemporaneously for several years.
Commercially available Programmable Logic Controllers
(PLCs) have been installed as part of Beam Induced
Fluorescence (BIF) monitors to replace outdated network
attached devices and to improve the reliability of the BIF
systems. The new PLC devices are controlled by FESA
classes which are addressed from the existing C++
software via Remote Data Access (RDA) calls. This
contribution describes the system setup and the involved
software components to access the PLC hardware.

THE BIF SYSTEM
Beam Induced Fluorescence monitors determine the

transverse beam profiles with minimum beam disturbance
[2]. The measurement principle is based on the excitation
of gas molecules by the passing ion beam in the beam
pipe. The emitted photons are measured by digital CCD
cameras with image intensifiers to ensure single photon
detection. Using two cameras installed above and
sideways of the beam pipe, the horizontal and vertical
beam profiles are measured simultaneously. Currently,
there are four BIF monitors installed in GSI accelerators
and transfer lines. For the next years, a final number of
seven monitors is anticipated.

Hardware
Each camera has a remote controllable iris to adjust the

light intensity illuminating the image intensifier. A
smaller aperture of the iris also increases the depth of
field. This results in a larger properly focused area in the
obtained image. The amplification of the image
intensifiers can be adjusted by setting two voltages for the
different amplification stages.

The aperture of each iris as well as the amplification of
the image intensifiers has formerly been controlled with a
self-built, Ethernet connected module, containing several
digital-to-analogue converters (DACs). During long term
runs of the system, these modules crashed non-
deterministically after some hours or days of operation.
For the FAIR project, a more reliable solution was
desired. The setting of voltages is a common task for
PLCs, so this commercially available and field-tested
solution was selected.

Software
The software controlling all BIF devices, including

irises and image intensifiers, is called ProfileView [3].
The communication with the old hardware is performed
via a standard TCP connection. New settings are sent to
the device, which replies with an acknowledge message.
The communication channel is kept open continuously, to
detect failures as soon as possible.

After extensive testing of the system, it was decided to
replace the faulty devices by PLCs. To control the new
hardware, the ProfileView software was adapted to
support both hardware variants.

Figure 1: One of the 'satellites' of the BIF installation. It controls two BIF monitors and features two sets of control
devices (from left to right): Power Supply, ET 200M controller, SM322 relay element with eight outlets, two SM332
12-bit DACs.

WEPL009 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Control hardware and low-level software

44

Integrating Industrial PLC Technology

 PLC HARDWARE
As PLC hardware, the SIMATIC system from Siemens

[4] was selected (see Fig. 1). The PLC is able to set
voltages for each iris, the intensifiers and calibration
LEDs which had to be controlled manually before.
Furthermore, an easy to use remote reset capability for
supplemental hardware devices of the BIF system is
realized by relay modules. The relays support switching
of 230 volt supply voltage. Devices of the BIF system like
the cameras or the gas flow control can be restarted
remotely in case of errors.

The hardware was installed at different locations along
the linear accelerator. A schematic of the system is
depicted in Fig. 2. The main controller and the Ethernet
communication module are located in an electronics
room. The distributed sub-systems with local control
units, relays and DAC devices, so-called 'satellites', are
located near the BIF hardware in a radiation safe area.

The system consists of the following Siemens
SIMATIC components:
• S7-300 - the main controller
• CP343-1 Lean - for Ethernet communication
• ET 200M - the satellite controller
• SM322 - relay with eight outlets
• SM332 - 12-bit DAC with four outlets

Communication from the main controller to the
satellites takes place via Profinet.

To ensure correct voltages at the BIF hardware, the
connections from the DACs to the devices are made in 4-
wire technique, to sense the voltage loss over the cable
length. In this way, conduction losses are compensated
and the applied voltage at the hardware matches the
desired voltage in the software.

FESA CLASS AND PLC SOFTWARE
The FESA framework developed by CERN [5] will be

the front-end level of the FAIR control system. A FESA
class is typically developed by the hardware specialist of
a device and provides read/write access on the device's
registers. FESA runs on PowerPC or Intel based VME
CPUs and on standard Linux PCs. The connection from

the control system to the FESA class is established via
RDA calls defined in the CERN Middleware (CMW)
library. A FESA class allows incoming connections from
multiple applications. If an application subscribes to data
changes in the device, the FESA class will notify the
application in case of new values.

FESA classes
To access the PLC via the control system, two FESA

classes are in operation: One very simple class ('BIFPLC')
for basic communication with the PLC and a more
complex class to perform calculations and monitor the
PLC status ('BIFControl'). The BIFControl class uses the
communication functionality via an FESA equipment
link. It performs the transformation of values from the
graphical user interface (GUI) into the bitwise register
representation needed for the DACs in the PLC.
Furthermore, the instantiation of BIFControl defines
failsafe values for each DAC. To protect the image
intensifier system, all voltages are limited within
BIFControl between defined thresholds. The relay
contacts for 230 volt switching are controlled by
BIFControl, too.

Communication with the PLC
The BIFControl class has full read/write access to the

memory of the PLC controller via the network. Write
cycles are usually initiated whenever the class gets new
settings from the GUI. Read cycles can be initiated by the
GUI or periodically by the class itself.

From the PLC controller's point of view, the data
transfer consists of reading from or writing to the same
memory space. This is typically done from within the
periodically executed organization block 'OB1'. This
memory access is completely asynchronous to the access
by the BIFControl class. To facilitate the access to
complex data structures from within the PLC, scripts and
a web interface exist [6]. These tools analyse the design
of the BIFPLC class and create short function blocks to
access the data structures in the PLC's memory. The
scripts are able to generate Step 7 code for the Siemens
PLC used at GSI as well as code for Schneider PLCs.

SOFTWARE INTEGRATION
The ProfileView software for BIF monitors is entirely

written in C++. To access the BIFControl class for PLC
control, a directory server is asked via CMW for a device
handle. The returned handle offers access to get, set and
subscribe methods. CMW exists as a static library and is
linked into the ProfileView executable. It contains the
RDA functions and data access methods to connect to
FESA classes and to extract user data from RDA
telegrams. RDA itself is based on CORBA.

It is possible to set single values as well as multiple
data fields at once. The BIFControl class can be accessed
from different applications or expert programs at the same
time. Therefore, a notification on any value change is

Figure 2: PLC installation.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL009

Control hardware and low-level software Integrating Industrial PLC Technology

45

desirable. For this purpose a subscription handler is
installed, listening to value changes of BIFControl. By
invoking the monitorOn() function on the device handle, a
user defined callback function can be declared. Every
change of any value in the class leads to a call of the
specified callback function, containing the new values.
This way, ProfileView gets notified, if PLC values are
changed by any other application.

 The subscription handler is programmed as a separate
thread to avoid blocking the application when it is waiting
for new data. Once an updated data set arrives at the
handler, the new data is processed inside ProfileView and
shown in the GUI (see Fig. 3).

The values of the image intensifier amplification are

directly passed to the GUI and shown in millivolt units.
Iris values are treated specially: since there are small
differences between the remote controllable iris devices,
each iris has to be calibrated separately before it is built
into a BIF monitor. The calibration provides a millivolt
value for each aperture of a particular iris. These settings
are stored in the initialization file of the BIF monitor. If a
new iris value is set, ProfileView sends the appropriate
millivolt value to the FESA class, which in turn sends the
bitwise representation to the PLC. The chain is executed
in reverse when the FESA class pushes a new iris value to
subscribed client applications.

The relays are implemented as a bit array inside
ProfileView and the FESA class. If a relay should be
toggled, the others have to keep their state. If the user

wants to set a new relay value, it is matched with the
stored state of the bit array and sent to the hardware.

The integration of the PLC functionality into
ProfileView hides the hardware specific part from the
user. The GUI looks the same, no matter if the old
hardware or a PLC is used for iris and image intensifier
control. The relays are only available when a PLC is used.

CONCLUSION AND OUTLOOK
Since there are several applications for PLC controllers

planned for the future FAIR facility, this prototype is a
good test of the system reliability and the integration into
the existing control system.
The PLC hardware turned out to be very stable and
reliable in operation. Using the 4-wire technique, the
voltages at the hardware are accurate to ± 0,01 volt.
During commissioning and several weeks of tests, the
PLC did not crash and never lost its connection to the
FESA class.

Currently (2010) one BIF monitor is equipped with a
PLC system and one more is prepared for the hardware
exchange. During 2011, the existing and any additional
BIF monitors will be updated with PLCs. One PLC
system will be installed in a radiation exposed area in the
transfer line from the linear accelerator to the
synchrotron. The dose will be measured directly at the
PLC to gather information about the system's radiation
hardness.

In 2011 a new version of FESA (3.0) will be finalized
by CERN in collaboration with GSI. It will simplify the
development of PLC FESA classes. Instead of having two
FESA classes for PLC control, the complete PLC
functionality will be a static library which can be linked
to any FESA class.

REFERENCES
[1] T. Hoffmann, M. Schwickert et al., FESA at FAIR -

The Front-End Software Architecture, PAC'09,
Vancouver, Canada, FR5REP009, (2009).

[2] F. Becker, P. Forck et al., "Beam Induced
Fluorescence Monitor for Transverse Profile
Determination", DIPAC'07, Venice, (2007).

[3] R. Haseitl et al., "ProfileView – A Data Acquisition
System for Beam Induced Fluorescence Monitors",
DIPAC'09, Basel, May 2009, MOPD42, p.134
(2009).

[4] Company Siemens, www.siemens.com
[5] M. Arruat et al., "Front-End Software Architecture",

ICALEPCS'07, Knoxville, TN, (2007).
[6] Frank Locci, CERN, BE/CO-FE,
 Frank.Locci@cern.ch

Figure 3: Original BIF image with GUI elements for iris
and image intensifier control.

WEPL009 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Control hardware and low-level software

46

Integrating Industrial PLC Technology

FESA BASED DATA ACQUISITION
FOR BEAM DIAGNOSTICS AT GSI

T. Hoffmann, H. Bräuning, R. Haseitl, GSI, Darmstadt, Germany

Abstract
In view of the upcoming Facility for Antiproton and Ion

Research (FAIR) at GSI with its increased complexity in
beam control and diagnostics, the decision was taken to
use the well-tested CERN made Front-End Software
Architecture (FESA) as the lowest level of the new
control system [1,2]. In the past years, the current stable
FESA framework (Version 2.10) has been adapted and
installed at GSI, with the major part of the adaptation
being the different machine timing models of GSI and
CERN. With a stable environment at hand, all current and
new beam diagnostic related data acquisition systems will
be implemented with FESA. To demonstrate the
suitability of FESA for demanding data acquisition
problems with high data rates or large amounts of data,
two different projects such as the Tune Orbit and
POSition measurement (TOPOS) and the Large Analog
Signal Scaling Information Environment (LASSIE) are
presented. Experiences with implementing standard
interfaces such as CAN, GigE and PLCs in FESA
applications as well as a move towards low cost Intel
based controllers like the Men A20 VME controller or
industry PCs running a real time Linux will be discussed.

THE FESA ENVIRONMENT AT GSI
Besides the development of the next generation FESA

3.0 environment by staff of the GSI controls department
in collaboration with CERN CO/FE, the GSI beam
diagnostic department (BD), which is responsible for the
layout of the FAIR beam diagnostics DAQ system, is
developing FESA 2.10 classes for dedicated BD systems.
These efforts are made to show the feasibility of all
expected data acquisition requirements and to train
programming of the front-end part of the new control
system for FAIR. At the beginning of 2010 the FESA 2.10
installation and integration at GSI was fully
accomplished. The environment resides on a powerful
blade system, which is the new mainframe of the GSI
control system providing NFS based access to all front-
end controllers (FEC) and to all branches of code
development. Basic information on FESA is given in
[1,2]. The main parts of the FESA systems are:

Operating System
At present the operating system (OS) of the GSI control

system is a Red Hat Enterprise Linux Server release 5.5
with kernel 2.6.18-92 - x86_64. The OS for the FECs is
Scientific Linux CERN 5.4 with kernel 2.6.24.7-rt27,
which contains patches for real-time support.
Supported FEC Hardware

FESA 2.10 provides cross compilers for Intel and

PowerPC based CPUs. For maintainability reasons the
following FEC systems are supported by GSI:

• Standard Industry PC
• Kontron KISS PCI760 with PXEBoot, diskless,

Intel AMT remote management system
• MEN A 20 VME CPU with PXEBoot, diskless.

For applications requiring real time behaviour the CES
RIO3 CPUs with Lynx OS can be used as an exception.

For the time being the upcoming xTCA for Physics
standard [3] as a new form factor is under evaluation for
the usage at FAIR. For the tests an Adlink AMC-1000
CPU in an ELMA xTCA-6 frame were chosen. After
integration of the diskless system into the control system,
the installation will be tested with high bandwidth
applications such as GigE video imaging and analog data
sampling.

Timing
FESA 2.10 is strongly dependent on the CERN timing

system and its timing receiver hardware, which is
different to the existing GSI timing. To gain efficient use
of the FESA RT action feature a dedicated FPGA based
GSI-CERN timing converter was developed. It allows to
use the CERN timing receiver hardware with the GSI
timing. Although some purely CERN specific features are
not available, this converter allows to trigger RT actions
by accelerator timing events in a multiplexed beam
operation for all three GSI accelerators (UNILAC, SIS,
ESR).

JAVA Graphical user interface
To provide GUIs for the developer as well as for the

users such as machine operators or system experts the
JAVA based concept of CERN was chosen. It consists of
the Java API for Parameter Control (JAPC, [4]) and
CERN libraries such as the JDataViewer and the CERN
middleware (cmw-rda). Due to the JAVA web-start
functionality and the general JAVA platform
independence, the GUI may be used at any office at GSI.

TUNE, ORBIT, AND POSITION
MEASUREMENT (TOPOS)

The first test project for FESA and its related
middleware and GUI solutions at GSI was a development
for the tune, orbit and position measurement (TOPOS) at
the heavy ion synchrotron SIS in collaboration with
Cosylab and Instrumentation Technology, Slovenia. The
development of the modular extendible TOPOS was
performed also in preparation for the FAIR project and
the usage at the FAIR synchrotrons. The data acquisition
concept is well described in [5].

This very demanding system, with data rates up to

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL010

Control hardware and low-level software Front-end (Hardware Interface) Software

47

700MByte/s, showed good results with respect to
performance, stability, and usability. After benchmarking
tests with the former beam position monitoring (BPM)
system it will be raised to operational status at GSI. Fig. 1
gives an impression of the online tune measurement.

LARGE ANALOG SIGNAL SCALING
INFORMATION ENVIRONMENT

(LASSIE)
LASSIE is the new FESA based DAQ project to

distribute and analyze a large quantity of beam diagnostic
related analog and digital signals. It consist of FESA
based data acquisition classes and JAVA GUIs. Recently
the readout of a scaler array with 192 channels for SIS
and connected beam line data was implemented in FESA.
It is based on a VME system with six SIS3820
Multiscalers [6] and a dedicated timing receiver board.
Scaler input consists of signals from beam loss monitors,
experiment counters and other data like accelerator rf,
current transformers etc. via a voltage-to-frequency

converter. The scalers can be latched with a frequency of
up to 1 MHz which provides fine-grained information
about the spill structure. The GUI framework provides
general GUI and non-GUI components like for example
data structures, settings manager and a help system for
rapid application development. Current applications
include integrated counter values between selected
machine events, spill structure analysis and trending.

The system is now accessible from the accelerator
control room for testing and will replace the Kylix based
ABLASS [7] system with all functionalities. At typical
scaler latching frequencies for normal operation around
100 to 1000 Hz, the FESA class can easily handle the
readout of all 192 scaler channels. Using two memory
banks, the FESA class allows GUIs to access the data of
the just completed spill while acquiring the data for the
current spill. In order to reduce the network load, the GUI
applications use the filter mechanism of FESA to request
for example the spill structure of only those channels
which are displayed.

Another bottleneck for high latching frequencies is the
transfer of data via the VME backplane. According to the
SIS3820 specifications [6], the transfer rate via the VME
backplane is limited to about 50 MByte/s for MBLT64
block transfer. To compare the rate capabilities of the
older PowerPC based CES RIO3 CPUs and the new Intel
based Men A20 CPUs, a test system with a single 32
channel scaler and a virtual machine cycle of 2000ms
runtime and 150ms pause was set-up. Figure 3 shows the
maximum number of scaler channels which could be read

out by the FESA class without any connected GUI clients
as a function of the latching frequency. Scaler access was
done via block transfer (BMA) on the RIO3 and DMA on
the Men A20. The Men A20 board consistently has a
higher data throughput with a maximum measured rate of
34 MBytes/s. A total CPU load of only 10% indicates that
this rate is limited by the transfer from the scaler module
to the memory and not by data handling in the FESA
class. In contrast, a maximum data rate of 22 MBytes/s

Figure 1: The FESA based TOPOS system showing
horizontal and vertical tune measurements on excitation
of the beam at 2*108 U73+ ions per bunch.

Figure 2: LASSIE: FESA based spill structure analysis of
synchrotron signals (from top to bottom: current
transformer, quadrupole ramp and beam loss monitors).

Figure 3: Number of scaler channels which can be
readout as a function of the latching frequency.

WEPL010 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Control hardware and low-level software

48

Front-end (Hardware Interface) Software

was measured with the RIO3. This is accompanied by a
strong increase in the CPU load, which indicates that the
processor power is the limiting factor. However, it must
be noted that this superiority of the Men A20 is only valid
in the case of DMA usage. For direct access of a single
register, the RIO3 has a slight advantage with a measured
data rate of 1.4 MBytes/s as compared to 1.2 MBytes/s
for the Men A20 board. In addition, setting up the DMA
transfer takes some time and is thus suitable only for the
transfer of large blocks of data via the VME bus.

Moreover, the Men A20 CPU with its 1000 Mbit/s
Ethernet interface also allows a higher data transfer rate to
the GUI application as compared to the RIO3. Thus the
RIO3 CPU has been phased out in beam diagnostics
applications and is replaced with the Men A20 CPU.

Future applications of the LASSIE system may include
direct readout of ADCs for pulse-height analysis or TDCs
for even more detailed spill structure analysis. For FAIR
it is estimated that more than 1000 channels, distributed
over the complete campus, will have to be read out.
Preparatively the current system will be used as a test
setup for a distributed DAQ system for proper intra-cycle
data correlation.

SCADA APPLICATIONS
In addition to sophisticated DAQ systems, beam

diagnostic devices depend strongly on technical
subsystems such as pressurized air actuators, stepper
motors, gas flow meters, high voltage power supplies and
remote control operations. Such control requirements are
also to be handled with FESA as the connector between
the device and the GUI.

For devices like actuators, flow meters and such, a
field-bus system will be established. For the time being
the Programmable Logic Controller (PLC) Simatic S7-
300 from Siemens is under evaluation. A description of
the system and the connected beam induced fluorescence
(BIF) measurement is given in [8]. Essential for this PLC
setup was the interfacing with FESA, which was achieved
using the IEPLC tool [9] from CERN. It creates Simatic
code for data block exchange via Ethernet, which
exchanges data with a predefined FESA 2.10 PLC class.
The handling of the BIF system, e.g. control power for
micro channel plates and camera iris regulation by use of
FESA is now operational. The required calls to get and set
data from the FESA class are implemented in a QT [10]
based GUI.

The integration of the multi-channel high-voltage
power supplies like the CAEN SY1527 into the control
system is a must. A FESA class was developed which
accesses the SY1527 system via Ethernet connection. The
FESA class provides access to all channels at once for e.g.
shutdown procedures, but also single channel access from
application GUIs, where only a subset has to be
controlled. This is achieved by extensive use of the filter
mechanism provided by FESA for its properties. Safety is
easily enhanced by the FESA class included monitoring,
logging and alarm options.

A strict demand for all FAIR DAQ systems is the
remote control access to all crates and systems, preferably
via Ethernet. In some cases hardware has to be used,
which allows only CAN bus access, for which a FESA
class was developed.

OUTLOOK
In preparation for the FAIR project and the realization

of the beam diagnostic DAQ system, all significant BD
requirements, such as readout of high data rates, video
imaging, distributed systems, slow controls, etc. were
realized with FESA. The results are very satisfying and
give confidence for the usage of FESA at FAIR. All new
BD-DAQ systems for the existing accelerators will be
realized with FESA to train developers and operators on
the new technology. The new FESA Version 3.0 is
expected to be released soon. By separating the FESA
framework into a general and a lab-specific part, the new
version will accommodate the GSI environment more
suitably. As soon as a production quality will be reached,
the current BD FESA classes will be ported to the new
version. Although some differences between the current
and the new FESA version exist, no major problems are
visible at the moment.

The next important development will be the DAQ for
the beam position monitoring in the UNILAC at a cycle
frequency of 50 Hz to demonstrate the real-time
performance of FESA.

REFERENCES
[1] T. Hoffmann, "FESA – The Front-End Software

Architecture at FAIR", PCaPAC 2008, Ljubljana,
Slovenia.

[2] T. Hoffmann, M. Schwickert, G.Jansa, "FESA at
FAIR", PAC 2009, Vancouver, Canada., to be
published

[3] www.picmg.org xTCA for large scale physics
applications, PICMG-no.: phyTCA

[4] V. Baggiolini et al, “JAPC - the Java API for
Parameter Control”, ICALEPCS’2005, Geneva, Italy

[5] G. Jansa et al., "A New DAQ Installation for the
SIS18 Beam Position Monitoring System at GSI",
ICALEPCS2009, Kobe, Japan

[6] www.struck.de
[7] T. Hoffmann, P. Forck, D. A. Liakin, “New spill

structure analysis tools for the VME based data
acquisition system ABLASS at GSI”, BIW’06,
Batavia (USA), p. 343-350.

[8] R. Haseitl, C. Andre, .H. Bräuning, T. Hoffmann, R.
Lonsing, "Integration of Programmable Logic
Controllers into the FAIR Control System using
FESA", PCaPAC2010, these proceedings

[9] Frank Locci, BE/CO/FE, CERN, Switzerland
[10] http://qt.nokia.com/

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL010

Control hardware and low-level software Front-end (Hardware Interface) Software

49

FAIR TIMING MASTER

Mathias Kreider, Tibor Fleck, GSI Darmstadt, Germany

Abstract

In the scope of building the new FAIR facility, GSI
will implement a new timing distribution system based on
WhiteRabbit. The FAIR system will resemble a tree topol-
ogy, with a single master unit on top, followed by sev-
eral layers of WR switches, down to about two thousand
timing receivers throughout the facility. The Timing Mas-
ter will be a mixed FPGA/CPU solution, which translates
physical requirements into timing events and feeds them
into the WR network. Macros in the FPGA resemble a
32x multicore with a strongly reduced instruction-set, each
event processor responsible for a specific part of the facil-
ity. These processors interact in real time, reacting to inter-
locks and conditions and ensuring determinism by parallel
processing. A powerful CPU prepares the timing event se-
quences and provides an interface to the control system.
These tables are loaded into the RAMs of each participat-
ing processor, controlling their behaviour and event output.
GSI is currently working on the WR timing system in close
collaboration with CERN, making this system the future
of GSI/FAIR. This contribution covers technical details on
the expected timing scenario, macro internals and discus-
sion on possible future development.

INTRODUCTION

Purpose

Future GSI/FAIR facility will use timing events to con-
trol machine actions. The FAIR Timing Master will cen-
trally generate all necessary events for the whole accelera-
tor facility. These will be used to trigger all beam guiding
components as well as all beam diagnostic measurement
devices where individual event filters apply for each sin-
gle front end controller. The timing receiver is integrated
into the standard FAIR frontend controller used mainly for
power supplies. For all other use cases, especially all beam
diagnostic devices, special timing receiver interface cards
will be supplied in different form factors. Typical event
reaction will be direct trigger output or IRQ. Furthermore
a separate high precision clock distribution system called
BuTiS for RF components where highest requirements to
accuracy and synchronization apply will be closely coupled
to the FAIR timing system.

The WhiteRabbit Transport Layer

The future Timing System of GSI/FAIR and CERN will
be based on the WhiteRabbit architecture. WR is a deter-
ministic field bus [2], the physical system consists of a non-
meshed GbE network topology, running timing services on

OSI layer II. Custom switches and endpoints are used for
timing measurements and the WR protocol.
WR provides phase compensation and absolute time dis-
tribution with an accuracy down to a nanosecond. Forward
error correction algorithms are employed to get highest sys-
tem reliability. Deterministic lag times are made possible
by using Quality of Service (QoS). This makes preferring
marked high priority packets possible. Since the lag time
to destination is reliably known in advance, this allows ma-
chine control packets to always arrive on time.

The FAIR Timing Master

To provide an interface to the general control system of
the facility, a powerful CPU handles the abstract beam pro-
duction down to the creation of sequence programs for con-
trol of Event Processing Units (EPU).

Every abstract physical part of the accelerator facility
like the linear accelerators, synchrotron rings and storage
rings, will be represented by a dedicated timing event gen-
erator unit.

Figure 1: Mapping components to EPU programs

Interaction between these machine parts requires fast
synchronisation between their timing schedules. For exam-
ple, a synchrotron ring needs to time its ejections precisely
with the receiving collector ring. The design therefore in-
cludes a fast mechanism for exchanges between generators.

WEPL011 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Control hardware and low-level software

50

Control solutions with FPGAs

PLANNING

The Timing Master (TM) is a mixed approach between a
powerful CPU for easy integration into operating software
as well as easy use of existing libraries and middleware.
However, CPUs have underlying core and power manage-
ment functions which make response times in the desired
range unpredictable. An FPGA is used for event generation
and time critical communication.

Figure 2: Timing Master Functional Blocks

ARCHITECTURE

Figure 2 shows the details of the current implemen-
tation in testing. It shows the data flow from Operating
through machine translation, conversion to programmatic
format and real time execution inside the FPGA submitting
data to the transfer layer.

DATA FLOW

The TM’s CPU gets instructions for a production line
(Isotope, Amount, Energy, Source, Path, Target) from Op-
erating. Physical requirements are translated into machine
requirements by the LSA middleware. The resulting event
sequences with their dependencies are transformed into
event generator programs, compiled and loaded into the
FPGA’s memory where they will be executed.

IMPLEMENTATION

CPU

The top interface to the control system is based on FESA,
a device model framework and driver package. An inter-
face to the LSA core provides machine behavior descrip-
tions calculated from physical parameters. Below this is
the event sequencer, compiler and FPGA communications
module. As soon as a production line is fully defined, rel-
ative execution time of all necessary events and dependen-
cies between the indiv To allow reload of new programs
during runtime without interruption, memory write access
is managed by CPU only to write in places not currently
locked for execution. Preinserted conditions in the EPUs
program allow branching off to new program code on de-
mand. Sequences for all interlock, beam abort or beam re-
quest scenarios can be predefined for all EPUs. The timing
masters real-time decision logic will then always switch to
safe, consistent alternative event sequences.

FPGA

The FPGA houses multiple processor macros, each with
its own memory and controller. These Event Processing
Units (EPUs) are all equal in implementation, their behav-
ior is fully determined by the programs loaded into their
RAM.

EPUs are made dedicated to certain parts of the facil-
ity or serve public functions, like collecting and process-
ing beam requests from experimental stations. This has
the benefit of having a human readable program for each
timing generator. and interaction between involved com-
ponents is easily traceable because it follows the supposed
beam path. This leads to well defined modules and in-
terfaces, which can easily be tested standalone, therefore
speeding up system development.

Their programs run in parallel, are able to listen to ex-
ternal signals and interlocks, generate timing events and
synchronise themselves with other processors by an n by n

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL011

Control hardware and low-level software Control solutions with FPGAs

51

flag matrix in a single cycle. In order to achieve fast syn-
chronisation, the flag matrix (each EPU can signal all other
EPUs) is completely realised as FlipFlops for fastest ac-
cess. An EPU can set its own flag vector and read the Bit
concerning itself from all other flag vectors, clearing it in
the process.

EPU and Instruction Set

The EPUs opcodes define mainly programmatic courses,
like jumps, branches and nested loops. They are not gen-
eral purpose processors but specialised sequencers. An
EPU instruction contains an Opcode, IO select instructions
and dedicated data fields for event codes, time values and
constants. This is not an optimal use of the FPGAs mem-
ory, but certifies execution times for each opcode and com-
pletely circumvents memory fragmentation.

WR Interface

For issues of load balancing, the Timing Master will
have a 100 µs collection cycle or granularity window for
outgoing events. The event concentrator macro then sends
a compact stream of events to the WR module, where they
are channel encoded and grouped into Ethernet packets.
Packet size also has an impact on the effectiveness of the
Forward Error Correction algorithm used in WR [4]. Cur-
rent settings expect a packet length of at least 200 byte for
the FEC to work efficiently, otherwise padding bytes must
be added.

Since the Timing Master broadcasts all events facility-
wide and only a few events are valid for an individual node,
predefined event filters will run in each nodes FPGA. When
an event is received, a node typically issues special trigger
signals or interrupts.

CONCLUSION

The concept of dedicated EPUs representing accelerator
components showed promise in early simulations.

A small number of EPUs were run with hand written
test programs, covering scenarios with up to four cooper-
ating EPUs. The task at hand is scaling these scenarios in
simulation to copy real scenarios. As soon as the simula-
tion is able to reproduce slowed down event sequences of
the current controls system, modules will be prepared for
synthesis.

OUTLOOK

A prototype system is planned to be set up in parallel
to the current pulse centre in 2011. By comparing control
sequences, a continuous test for aptability to the task of
running the current facility can be done. First test is run
with pre-written event programs, this allows testing in pro-
ductive conditions without further concern about schedul-
ing and machine calculations done above or transfer down
below.

After a first design stop of the EPU macros, the next goal
is an early implementation of the TMs software modules
most importantly the Event Sequencer and compiler. The
sequencer will be a solver tool able to synthesise the LSA
output sequence by reducing it to programmatic structures
and event numbers. The current compiler for the EPUs lan-
guage can be converted to a JIT-Compiler module for the
master.
A productive system is planned to be put into service at
GSI/FAIR in 2016.

REFERENCES

[1] P. Moreira et al., “White Rabbit: Sub-Nanosecond Timing
Distribution over Ethernet”, ISPCS 2009, Brescia, Italy, Oct
2009

[2] J. Serrano et al., P. “THE WHITE RABBIT PROJECT”,
TUC4 ICALEPS2009, Kobe, Japan, Oct 2009

[3] WR Switch Specifications http://www.ohwr.org/

[4] C. Prados Boda, T. Fleck, “ FEC in Deterministic Control
Systems over Gigabit Ethernet”, THPL011 PCaPAC2010,
Saskatoon, Canada, Oct 2010

WEPL011 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Control hardware and low-level software

52

Control solutions with FPGAs

FROM AN EMPTY PC TO A RUNNING CONTROL SYSTEM: A KNOPPIX
LIVE-CD FOR DOOCS

G. Grygiel, DESY Hamburg, Germany

Abstract
Software deployment of operating and control systems

is a hard task for beginners and can be an error prone one
for experts. As an evaluation of a potential, fast
deployment technique, a Linux/Knoppix Live-CD [1] for
the DOOCS [2] control system software has been
developed. This CD contains a DOOCS core system,
some example and middle layer server programs and
basic client applications. Optionally, one can install a
Knoppix and DOOCS system directly from the CD. All
DOOCS and operating system software are provided as
Debian [3] packages. This paper will describe the Live
system CD in more detail and discuss the interaction of
Java Web-start based applications, other control system
client applications, DOOCS name service and device
servers.

Figure 1: DOOCS Architecture

MOTIVATION
The idea is to run the DOOCS control systems with all

major programs directly from a CD. The 'experts' have
then an always available and workable system and this
e.g. is an USB flash drive on the keychain. It's ment to
provide an overview of the entire system, without
complex installation and configuration. A beginner
receives a fully equipped and functional system. It is
possible to start immediately with the development of
control system servers and having all tools at hand. The
Live-CD also demonstrates the integration of the various
controls system architectures, like DOOCS, EPICS [4] or
TINE [5], used at modern accelerator facilities.
Features of the CD are:
• Any time, every where available.
• Quick start for beginners.
• Debug tool for experts.
• Demonstrates the whole chain, from the name

service, device servers, up to the display.
• Demonstrates the interaction of the various control

systems (DOOCS, TINE, EPICS).

CHOICE OF DISTRIBUTION
For almost all components, DOOCS Debian packages

have been developed, therefore it should be a Debian
based distribution. Currently at DESY the Ubuntu [6]
distribution is used. Various tests have shown that the
Live-CD made by Klaus Knopper is significantly faster
than the Live-CD of Ubuntu or Debian. The KNOPPIX
distribution has a very good driver support; it is fast and
designed to be run directly from a CD / DVD (Live-CD)
or USB stick. The first attempt to remaster a KNOPPIX
live CD was immediately successful.

RECIPE TO BUILD THE LIVE-CD
Start with booting from the KNOPPIX CD. A

minimum of 3 GB free disk space should be available.
Then copy the complete disc to the free space. Then again
one can boot the usual Linux system and start changing
the content of the KNOPPIX CD. Use 'chroot' to install
and configure all control system and other software. With
chroot one is able to run a command or interactive shell
in a special root directory. Also Internet access is possible
out of the chroot environment. Change the look and feel
to give the CD a personal note e.g. titles, graphics, menus.
All it takes to remaster a KNOPPIX CD is described in
the KNOPPIX_Remastering_Howto [7]. There are many
UNIX commands to execute; therefore a good
UNIX/Linux knowledge is required. It took a view
interactions until everything worked and looked as
expected.

To speed up the development process:
• Create the CD image.
• Start this image under qemu [8] (processor emulator)

with KVM [9] support.
KVM (Kernel-based Virtual Machine) with native

virtualization support helped a lot to speedup the
development process. The boot up process takes less than
a minute. If KVM with native virtualization support is
present, it will be used by qemu automatically.

CONTENT
The CD contains a DOOCS example server

(SINGENERATOR) which talks also the TINE protocol.
Furthermore DOOCS, EPICS and TINE command line
tools (CLI) and some graphical java programs.

In detail:
• DOOCS

o Server programs
 ENS (equipment name server).

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL012

Accelerator Controls Operator interface software and human factors

53

 watchdog (controls other DOOCS
servers).

 sine generator which also talks TINE
o Client programs

 CLI tools (doocsget, doocsput).
 jddd [10] (Java DOOCS Data Display)

talks also TINE, EPICS and Tango .
 jDTool (Tool for displaying and

changing DOOCS data.
• TINE

o CLI tools (tget, tput, …).
o InstantClient (Tool for displaying and

changing TINE data).
• EPICS Base R3.14.11

o CLI tools (caget, caput).
o Server (excas).

 A complete development environment for creating
your DOOCS server is also available. In addition, the
original content of the KNOPPIX CD is available
(MPlayer, Internet access software, Mozilla Firefox and
Thunderbird, GIMP, Open Office and a lot more). The
latest version can be downloaded from
http://doocs.desy.de/.

Figure 2: Knoppix with DOOCS Singenerator

BUILD A DOOCS SERVER
• Enter the following commands in a terminal:
 cd doocs/source/server/test/example
 make
• And run it:
 /home/knoppix/doocs/Linux/obj/server/test/exam

ple/example_server

• Try to change the files eq_example.h and
example_rpc_server.cc, Add a further D_float
property.

• Create an operator panel with jddd.

JAVA CLIENT PROGRAMS
The control system client programs are mainly java

based. JavaWS (Java Web Start) is a clever mechanism to
start java programs. JavaWS guarantees that you are
always runs the latest version of the application and it
eliminates complicated installation or upgrade
procedures. The disadvantage is the dependence on a
functioning Internet connection. That is why all Java
programs are installed directly on the CD; it does not
depend on the network to use the CD.

GOODIES
• Explore the DOOCS system and its capabilities by

using the ready-to-go runtime version of DOOCS
and TINE/EPICS/TANGO clients.

• Build your own DOOCS server and run it.
• Build your own DOOCS client as graphical user

interface using the JDDD framework.
• Connect to the internet to browse the web, read mail,

and ...
• Change your environment to access extern control

systems
o DOOCS ENS host:

set ENSHOST
o EPICS gateway:

set EPICS_CA_ADDR_LIST
o TINE:

set TINE_HOME
unset TINE_STANDALONE

REFERENCES

[1] KNOPPIX http://www.knopper.net/knoppix/
[2] DOOCS http://doocs.desy.de/
[3] Debian http://www.debian.org/
[4] EPICS http://www.aps.anl.gov/epics/
[5] TINE http://tine.desy.de/
[6] Ubuntu http://www.ubuntu.com/
[7] Knoppix_Remastering_Howto
http://www.knoppix.net/wiki/Knoppix_Remastering_How
to
[8] qemu http://wiki.qemu.org/Main_Page
[9] KVM http://www.linux-kvm.org/page/Main_Page
[10] jddd http://jddd.desy.de/

WEPL012 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

54

Operator interface software and human factors

CONSOLIDATING THE FLASH LLRF SYSTEM USING DOOCS
STANDARD SERVER AND THE FLASH DAQ

O. Hensler, W. Koprek, H. Schlarb, V. Ayvazyan, C. Schmidt, DESY, Hamburg, Germany
Q. Geng, SLAC, Menlo Park, CA, U.S.A.

Abstract
Over the last years the LLRF group developed many

different flavors of hardware to control the RF systems at

the ���� ������	
 ���� �
 ������� �������. This led to
a variety of firmware versions as well as control system
programs and display panels.
A joined attempt of the LLRF and the controls group was
made over the last year to consolidate hardware, improve
the firmware and develop one DOOCS front-end server
for all 6 RF stations. Furthermore, DOOCS standard
server are used for automation, like simple state
machines, and the FLASH DAQ for bunch-to-bunch
monitoring tasks, e.g. quench-detection.

An outlook of new developments for the upcoming
European XFEL, using xTCA technologies, will be given.

INTRODUCTION
Over the last 15 years FLASH has evolved from a small

test facility with a gun and one 8 cavity-accelerator
module, running at about 100 MeV, to a photon science
user facility. After the last shutdown in 2009/10 FLASH
has been upgraded to 7 accelerator modules with eight 1.3
GHz cavities each, plus a 3rd harmonic module with four
3.9 GHz cavities. This set-up allows FLASH to run at a
maximum beam energy of about 1.2 GeV. Presently, six
RF stations are required to supply the gun, the 3rd

harmonic- and the seven 1.3 GHz modules with RF.
Over this long period, the controls for the Low-Level

RF (LLRF) evolved alongside the modifications of the
accelerator. Many different flavours of LLRF controller
hardware, starting from a pure analogue-based system for
the first gun, a successfully used DSP[1] system for the
modules and different versions of Simcon and
SimconDSP[2] systems were developed. All these systems
came with dedicated firmware, device server software and
operator display panels, leading to a very inhomogeneous,
global control system. Such a system was hard to maintain
and applying global automation procedures was very
difficult, because of the different structure and naming
convention of every device server.

The effort to consolidate the LLRF system during the
last shutdown will be described.

DOOCS
The Distributed Object Oriented Control System

DOOCS[2] is the leading system for the FLASH
accelerator. DOOCS is a standard client/server control
system and based on an object-oriented approach at the

front-end/server and client/display side. It is mainly
implemented in C++, but there is now a Java client-side
implementation called jDOOCS, on which the new
display tool jDDD[3] is based. An interface for MATLAB
clients is provided. The communication protocol is based
on ONC Remote Procedure Calls (RPC), but a strong
effort is on the way to replace them by the TINE[2]
protocol.

HARDWARE

In order to achieve a homogeneous LLRF system, it is
very important to start at the hardware level already. It
was decided to use only two types of SimconDSP VME
boards, which are equipped with ten 14 bit ADCs. One
type has a Virtex V50 FPGA from Xilinx installed, which
is suitable to run all control algorithms needed and is used
as master card. If only additional analogue I/O is required,
a SimconDSP board, equipped with a Virtex V40 is used
as a slave card. The two boards are interconnected via 1
Gb fibre link to exchange the real-time data.[4]

FIRMWARE

After coming up with a common hardware platform,
only a few different version of the FPGA firmware are
needed, which have many parts in common, like the VME
interface structure. The VME part has been optimized to
allow the new 10 Hz operation of FLASH. A mapping
file is provided for all VME register and tables allowing
to change the firmware independent from the device
server. The following firmware versions are needed :

� RF gun: This version is special, because the RF gun
has no hardware probe signal. This has to be
calculated from the forward and reflected power
signals. In addition, the gun is a normal conducting
cavity, which requires different control algorithms.

� Master board: This version includes all LLRF control
and regulation algorithm as well as beam based
feedbacks.

� Slave board: A simplified version to readout the
ADCs and calculate the partial vector-sum is needed.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL014

Control hardware and low-level software Front-end (Hardware Interface) Software

55

LLRF CONTROLLER SERVER
The LLRF controller server is the interface between the

SimconDSP board and the control system and
programmed using the DOOCS tool kit. The server runs

on a local SPARC CPU inside a VME crate. As operating
system Sun Solaris is being used. The CPU board has a
hard-disk attached to store the server binary, shared
libraries, configuration files, archiving and the FPGA
firmware, providing complete network independent
operation.

The main design goal is to have just one device server
binary, which should be configurable to the needs of the
individual RF stations. This was achieved by
programming individual classes e.g. for cavity read-out,
vector-sum, main control or board set-up. These classes
are activated during start-up of the DOOCS server, while
reading the server configuration file, the locations are
created with its individual properties. Complex control
algorithms are separated in a C library, which allows to
use these algorithms in several projects and is provided by
the LLRF team. All classes recover its values into the
firmware after a power-up or firmware reload.

The LLRF controller server uses the FLASH
nomenclature now, e.g. one location name per cavity. This
eases the correlation by date with other server information
and simplifies the design of operator panels. The
following classes are implemented :
Board class

This class loads the FPGA firmware, in case the system
is powered up or a new firmware version should be
loaded. By monitoring a firmware counter, the overall

operation of the firmware is monitored. In case of a
failure, the RF is switched off via the FLASH timing
system.
Main Class

This class is the central part of the LLRF controller
server. Most of the controls, like amplitude or phase set-
point, is done here. All control tables for the firmware are
generated in this class and downloaded to hardware.

Due to thermal effects during startup of the accelerator,
it is required to change the output rotation matrix in feed-
forward mode in order to speed up. During feedback
operation, these values are drifting back, though they need
to be adjusted slowly. Beam based feedbacks are closely
connected with the LLRF regulation and handled in this
class as well.

A similar version of this class is used for the RF gun.
Cavity Class

This class reads the I and Q values of one cavity probe
for one macro bunch and calculates amplitude and phase
from it. A calibration parameter for each cavity is stored
in this location.
Vector-Sum Class

The vector-sum class is similar to the cavity class, but
is reading the partial or total vector sum of the system.
The total output rotation matrix is calibrated here.
Learning Feed-Forward Class

This class monitors the error signal of the LLRF
system, which is the difference between set-point and the
driving output. In case this error signal gets too big, the
learning feed-forward (LFF) algorithm tries to
compensate by calculating new feed-forward correction
tables.
Toroid Class

This class is monitoring the attached toroid signal. This
channel is needed for beam-loading compensation (BLC).
Pyro Class

The Pyro signal, which allows to measure the
compression in the bunch compressors, is connected to
one of the ADCs. This class monitors this signal and sets
a parameter needed for the pyro feedback into the
firmware.
ACC1-ACC39 Class

The purpose of the 3rd harmonic module ACC39 is to
linearise the 1.3 GHz RF signal. The two RF stations for
ACC1 and ACC39 have to be operated in parallel. This
class takes care, that amplitude or phase is set
simultaneously to both stations between macro bunches.

DAQ ATTACHED SERVER
The FLASH DAQ[5] system pushes so called spectrum

data (2K float array) from many front-end computer to a
central shared memory with the 10 Hz repetition rate of
the accelerator. This shared memory synchronizes this
data on a macro-pulse basis. This allows to correlate data

Figure 1: This picture shows the overall concept for one
RF station with all required front-end computer and
middle-layer server using DAQ and standard
communication

WEPL014 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Control hardware and low-level software

56

Front-end (Hardware Interface) Software

from the whole machine easily. A second advantage of
this scheme is, that this huge amount of data is
transported only once over the network, but may be used
by several DAQ attached server. A library called
DOOCSddaq is provided to read spectrum or float data
from the Buffer Manager directly. A trigger to the server
is issued, after the data buffer are filled.
This concept is used by the following LLRF server :

� Quench-detection: calculates from the I and Q values
the Q loaded and detuning of each cavity. With
these values a quench event can be derived. The
server generates in case of a quench a flag per
klystron section. This flag is used by the finite state
machine to switch off the RF.

� LLRF diagnostic: this server calculates values like
flattop mean, RMS, flattop slope, bunch to bunch
stability and others for every cavity to generate
performance statistics.

� PIEZO calculation: this server calculates the Lorenz
force detuning of the individual cavities and drives
the piezo front-end server accordingly.

AUTOMATION

The concept to automate the RF is based on a simple
finite state machine (FSM) approach. The main purpose is
to simplify the on/off-switching procedure and faster
recovery from trips.

This FSM is realized in the standard DOOCS server
framework with the addition of the DOOCSdfsm library,
which provides simple classes for monitoring float values,
recover set-values or resetting interlocks. The FSM is the
central server for the automation, it starts up or switches
off the whole RF. All actions in other server are triggered
by the FSM, giving the operator one central location to
look for the status or problems of the RF system; no other
software should switch the RF.

The FSM runs with a repetition rate of 2 Hz, checking
several things, like interlocks, coupler vacuum, klystron

status or quenches. In case of a problem in one state, the
so called tripaction() function is triggered to bring the
system to a save condition, then the FSM tries to recover
the RF system. The same states are checked, when
starting-up or recovering from trips.

OUTLOOK
For the upcoming European XFEL project, it is planned

to use xTCA as hardware platform, because of the modern
PCIx communication and the standardized remote
monitoring capabilities. The required down-converter and
fast ADCs µTCA cards are already available, the LLRF
controller board is in the design phase. Porting of the
LLRF controller server code from the old SPARC VME
CPU to a INTEL x86 CPU is in progress. The goal is to
have one source code base only by exchanging the
hardware interface through compile flags. Due to the
much better performance of the INTEL CPUs, it will be
possible to run most of the middle layer server, like
quench detection locally.

SUMMARY
The LLRF system at FLASH has been consolidated to

one unified set-up for all RF stations in terms of
hardware, firmware, software and naming conventions.
Operator panels have been simplified and better expert
panels have been designed.

The concept of a simple FSM is in standard operation,
but some improvements have to be implemented to sort
out conflicts between operator intervention and FSM
recovery action.

The learning feed-forward algorithm has been ported
from a MATLAB tool to the LLRF controller server and
is in standard operation as well. Applications like vector-s
um calibration or quench detection are implemented as
DOOCS server already, but need more commissioning
and tighter integration into the FSM framework. Further
work is needed to improve the reproducibility of the RF
system behaviour.

It is reasonable to say, that the first user run showed
already improved performance of the LLRF controls and
the new structure will be well-suited to be the base for the
European XFEL.

REFERENCES
[1] DSP-Based Low LEevel RF Control as an integrated part of

DOOCS Control System, V.Ayvazyan EPAC2006
[2] http://doocs.desy.de
[3] JDDD”: A Java DOOCS Data Display for the XFEL

E.Sombrowski, K.Rehlich, ICAEPCS 2007
[4] LLRF Control System Upgrade at FLASH, V.Ayvazyan

PCaPAC2010
[5] Buffer Manager Implementation for the FLASH Data

Acquisition System, V.Rybnikow, PCaPAC2008

Figure 2: This picture shows the FSM concept for one RF
station

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL014

Control hardware and low-level software Front-end (Hardware Interface) Software

57

AN ORBIT FEEDBACK FOR THE FREE ELECTRON LASER IN

HAMBURG (FLASH)

R. Kammering DESY (Hamburg, Germany), John Carwardine ANL (Argonne, IL, USA)

Abstract
The lack of knowledge of the exact energy profile of

the Free Electron Laser in Hamburg (FLASH) and

thereby of the orbit response matrix, made the

implementation of a conventional orbit feedback in the

past very difficult.

The new run period started this spring after extensive

modifications of the facility, showed that the responses

matrixes seam now to be in good agreement with the

theory, thereby allowing the application of standard orbit

feedback techniques.

The physics concepts and the chosen architecture to

implement such software on the middle layer and

interplay with other high-level software components will

be discussed. The development and implementation of

this software using the DOOCS servers in combination

with the dynamic components of the Java DOOCS data

display (jddd) allowed a flexible and scalable

implementation, which could also serve as a prototype for

future implementations at e.g. the European XFEL.

MOTIVATION

The task of stabilizing beam jitter, as it is the case at

most synchrotron radiation facilities, is not feasible for

the FLASH linac, because the orbit can only be sampled

at the maximum of pulse repetition rate of 10 Hz.

So the task of compensating fast-varying errors, for

example in magnetic fields of corrector magnets or

vibrations due to ground movements is here not the main

focus of this orbit feedback implementation.

Instead of this the main objectives for an orbit feedback

at a linear accelerator are to:

- restore saved orbits

- compensate long-term drifts

- stabilize the orbit downstream while tuning the

machine further upstream

- making localized orbit changes

These are only the most important objectives an orbit

feedback could attack. For FLASH it is even further

envisioned to change the today practice of using

individual steerers (dipole magnets) to tweak the orbit

at a certain position along the machine (we will call this

the longitudinal position in what follows), but instead

of this modify beam positions using the orbit feedbacks

target values at this longitudinal position.

BASIC SCHEMA OF A BEAM BASED

ORBIT FEEDBACK

The basic principle of the FLASH beam based orbit

feedback follows the standard techniques as e.g. described

in [1]. A linear response matrix (R) describes the action

of small changes (I = [h, v]) in the corrector magnet

fields (dipoles) on the beam position (X = [x, y])

measured at the beam position monitors (BPMs).

R I = X

Inverting the response matrix allows to derive the

needed values to be applied to the correctors to yield a

certain change in the beam position. In cases of unequal

numbers of BPMs and correctors, the response matrix is

non-square which can be inverted using the pseudo

inverse or singular value decomposition.

Ij = g R
-1

 (Xref – Xmeas) + Ij-1

With the gain factor g = 1 this would lead to a full

correction of a given difference between the desired Xref

and actual beam position Xmeas, if the new current Ij will

be written to the correctors in step j. One will usually

work with a gain factor << 1 and also apply some filtering

to the Xmeas data to avoid ringing and overcorrection.

Figure 1: Basic structure of the beam based orbit
feedback loop

ARCHITECTURE

The main objectives of the FLASH orbit feedback are

not to damp high frequency position jitter, but more to

assist operation and decouple actions within the machine.

Therefore it was planned from the beginning to

implement this as a pure software feedback with moderate

operation frequency (0.5-2 Hz).

The basic architecture for such a software-based

feedback therefore follows the classical design of a

middle layer server as described in the following section.

DOOCS as basic software infrastructure

The dominant control system at the FLASH facility is

the Distributed Object Oriented Control System

(DOOCS) [2]. Therefore a logical choice for the orbit

feedback is to implement this software using C++ and the

existing DOOCS application-programming interface

(API). DOOCS offers a natural mapping of the monitors

(BPMs) and correctors (steerers) to C++ objects, which

significantly eases working with many devices, and thus

understandablity of the code.

WEPL015 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

58

Diagnostics

Optics Toolbox

In standard operation the machine optics and hence the

beam transfer matrix will not change, provided the energy

and quadrupole magnetic fields variations are negligibly

small. Therefore we excluded the determination and

manipulation of the transfer matrix from the core

feedback function and instead used the well-proven optics

functions from the optics toolbox used at FLASH [3].

This toolbox is a collection of Matlab functions providing

all relevant beam optics operations needed for standard

optic tasks. This toolbox is used to create inverse

response matrixes and stores these in files, which are read

by the orbit feedback (see Figure 2).

The orbit server

The orbit feedback server is not reading the actual

beam position from the front end servers attached to the

beam position monitors (BPMs), but rather it is read from

a server instance (called orbit server) used for

synchronizing and pre-processing (e.g. the intra bunch

train average) as shown in Figure 2.

The orbit server itself is embedded in the FLASH data

acquisition system (DAQ), from where it collects the

BPM readings (for details about the DAQ system see e.g.

[4]).

Figure 2: Architecture and data flow

The orbit feedback

The orbit feedback uses standard DOOCS RPC

communication to collect BPM data and perform the

calculations needed to create the corresponding vector of

corrector setpoint changes. The updated corrector

setpoints are written to the TINE-based magnet server,

which distributes them to the relevant power supply (PS)

controllers (for TINE see [5]).

The management of the reference orbits (vectors of

setpoint values) will be handled through the existing

FLASH Save and Restore system.

The display level

Java DOOCS data display jddd [6] is used for

monitoring and control of internal states of the orbit

feedback server.

Defining BPMs and steerers as DOOCS objects and

subsequent mapping to jddds dynamic lists makes it

possible to work with many devices as if they were a

single instance. (FLASH, even though its length is only

about 300m, contains ~ 50 BPMs and ~ 70 correctors.)

This is realized by the simple technique of “draw once,

use many times”.

Figure 3 shows the jddd editor with the line

representing a single BPM instance while in the lower

right corner the same panel in run mode is showing the

full list of BPMs.

Figure 3: Java DOOCS data display, showing the
BPM pane in edit and run mode

STATUS

The basic software interface for reading the beam

positions and writing the corrected currents has been

implemented using C++ as a standard DOOCS server.

Rough estimates for total loop times (150-300 ms) have

been made and show that operation with the targeted

operation frequencies of 0.5–2 Hz are well suitable.

First routines for accessing response matrixes delivered

by the optics toolbox have been integrated and the whole

data flow chain is already operational.

All implementations have been accompanied by the

continuous development of jddd panels mainly aimed for

debugging, but these will also serve as a good starting

point for final monitor and control panels.

First tests with the beam are planned to take place in

the end of this year.

CONCLUSIONS

The implementation of a software based global orbit

feedback for the FLASH facility using the existing

software landscape is well on its way. The lose coupling

and combination of the different control system

components and protocols has allowed this new software

to be developed without any need for modification of

existing parts.

The combination of DOOCS object oriented approach

and the dynamic generation of the displays and panels,

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL015

Accelerator Controls Diagnostics

59

have proven to ease the development a lot. Such methods

will be a must for working with the high device

multiplicities, as one will have at e.g. the European

XFEL.

REFERENCES

[1] Herman Winick, “Synchrotron Radiation Sources”,

World Scientific Publishing, Singapore, 1994

[2] K. Rehlich et al, “DOOCS: an Object Oriented

Control System as the integrating part for the TTF

Linac”, Proceedings ICALEPCS ’97, Beijing China,

1997

[3] V. Balandin and N. Golubeva, "Current Status of the

Online MatLab Toolbox for the FLASH Optics",

XFEL Beam Dynamics Group Meeting, October

2007.

[4] K. Rehlich et al, “Integrating a Fast Data Acquisition

System into the DOOCS Control System”,

ICALEPCS’05, Geneva Switzerland, October 2005

[5] P. Bartkiewicz, P. Duval, “TINE as an accelerator

control system at DESY”, Meas. Sci. Technol. 18

(2007)

[6] E. Sombrowski, A. Petrosyan, K. Rehlich, P.Tege,

"jddd: A Java Doocs Data Display for the XFEL",

ICALEPCS'07, Knoxville, Tennessee USA, October

2007

WEPL015 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

60

Diagnostics

STATUS, APPLICABILITY AND PERSPECTIVE OF TINE-POWERED
VIDEO SYSTEM, RELEASE 3

Stefan Weisse, David Melkumyan (DESY, Zeuthen)
Philip Duval (DESY, Hamburg)

Abstract
Experience has shown that imaging software and hard-

ware installations at accelerator facilities needs to be
changed, adapted and updated on a semi-permanent basis.
On this premise, the component-based core architecture
of Video System 3 was founded. In design and implemen-
tation, emphasis was, is, and will be put on flexibility,
performance, low latency, modularity, interoperability,
use of open source, ease of use as well as reuse, good
documentation and multi-platform capability. Special
effort was spent on shaping the components so that they
can easily fit into small-scale but also into area-wide in-
stallations.

Here, we describe the current status of the redesigned,
almost feature-complete Video System, Release 3. Indi-
vidual production-level use-cases at Hasylab [1], PITZ [2]
and Petra III [3] diagnostic beamline will be outlined,
demonstrating the applicability at real world installations.
Finally, the near and far future expectations will be pre-
sented.

Last but not least it must be mentioned that although
the implementation of Release 3 is integrated into the
TINE control system [4], it is modular enough so that
integration into other control systems can be considered.

OVERVIEW
The origin of the featured Video System 3 (VSv3) is the

Photo Injector Test Facility Zeuthen (PITZ). It is a test
facility at DESY for research and development on laser
driven electron sources for Free Electron Lasers (FEL)
and linear colliders [5, 6].

Currently, VSv3 is almost feature-complete. Since
2008, it has emerged out of its predecessor [7], now
known as Video System 2 (VSv2). The current software is
a result of more than 10 years experience on video con-
trols at particle accelerators.

As the lifetime of an accelerator facility can be a few
years or decades, in contrast to the fast-pace IT world, a
few design criteria should be kept in mind. Some API or
operating systems can be potentially obsolete just a few
years after commissioning. Both environmental consid-
erations (radiation level) and customer demands can re-
quire frequent exchange of components and/or software
evolution and upgrades. Thus there is a strong motivation
to incorporate flexibility, modularity and interoperability
in the design.

VSv3 was designed and implemented to meet all of
these requirements, as well as those general requirements
any video system must meet. These include high perform-
ance and low latency.

Selection of key characteristics/capabilities:

• raw greyscale images up to 16 bits per pixel
• raw colour images (24 bit RGB)
• integrated JPEG compression/decompression (grey

and colour)
• production-level interfaces and experience in opera-

tion of: Prosilica GigE cameras, analogue cameras,
JAI GigE cameras, JAI/Pulnix GigE cameras and
equipment possible to attach using MS Directshow
interface (Webcams etc.)

• high-bandwidth possible [8]
• low latency possible (what you steer is what you get)
• production-level 1.4 megapixel transfer, 16 bit grey,

at 10 Hz update rate
• up to 30 frames per second can easily be reached
• Area of Interest (AOI)-only transfer
• shared memory interconnection of server-side com-

ponents
• multicasting of video images

COMPONENTS
The video system comprises of several different com-

ponents, selected ones are described in details below (see
Figure 1).

The VSv3 Transport Layer (VSv3 TL) specifies the
layout of a well-defined flexible image data type (header
and bits) plus ways of transport which is integrated but
not limited to TINE control system. Structure, header
fields and pixel data formats are well documented.
Small Grabber Part (SGP) is the central front-end
server-side component to acquire video images. To keep
the C++ code simple, one SGP process will deal with only
one camera at a given time. Various editions of SGP exist.
Edition means it supports exactly one API to interface
image sources / hardware. Most important editions at the
moment are Prosilica, JAI and MS Directshow SDK, all
on Windows platform. The C++ source code is kept plat-
form independent as much as possible and references only
widely available open source libraries. Thus, migration to
other operating systems is expected to be on the order of
hours or days. This of course depends on the availability
of SDK for the chosen platform.

The connection from image source to SGP can be
switched from one image source to another remotely. For
example, if only two video streams are wanted in parallel,
20 cameras can be supported with just two SGP server
processes. SGP provides one TINE control system output
interface with VSv3 TL and one interface to shared mem-
ory (SHM).

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL016

Accelerator Controls Diagnostics

61

VSv2 Compatibility Layer is an intermediate C++
server-side component dedicated to provide backward
compatibility. Its purpose is to receive image stream via
VSv3 TL (using TINE or shared memory), convert the
image to VSv2 format and provide VSv2 output connec-
tions (TINE and pure TCP sockets) to legacy VSv2 cli-
ents.

Raw to JPEG intermediate C++ server-side component
was designed to provide easy translation of raw uncom-
pressed images to JPEG images, with a tuneable compres-
sion factor. Input is possible via VSv3 TL (TINE or
SHM), output is provided as TINE VSv3 TL. Supported
are greyscale and colour images. Near-real time operation
is possible. The CPU load required for this needs to be
considered but resources are easy to provide on today’s
powerful commodity PC hardware.

TINE ACOP Video bean is a fundamental client-side
component which displays video streams and provides
basic functionality for image enhancement as well as in-
tegrated analysis made by Cosylab [9]. As Java has been
selected as the target platform for future control system
client-side at DESY, native Java has been used as the pro-
gramming language. This gives the immediate benefit of
platform independence. One might expect Java to reduce
the code execution speed of the software. However, even
if this does play a role (for example in low-level network-
ing functionality), overall performance figures so far are
satisfactory. With the high processing power of today’s
PC hardware and the periodic increases in power, Java

can be considered a real alternative to native code in
video system client software. As a Java bean integrated
into the ACOP framework [10], it is easy to include along
with other ACOP beans in Java clients (from rich clients
to simple panel clients). In lieu of a dedicated client ap-
plication, ACOP beans also provide a generic Video Ap-
plication, which is designed to work out-of-the-box.

A well-defined Universal Slow Control (USC) Solu-
tion found within VSv3 provides abstraction and mecha-
nisms to control slow parameters of hardware devices.
The server part contains various connections to interface
hardware, layout of parameters in hardware and well-
defined TINE property interface. The USC client uses this
to present hardware parameters to operators in a conven-
ient, platform-independent Java GUI.

A MATLAB client-side image acquisition interface
provides a simple, easy to use interface for users of Mat-
lab. The interface supports all image features of VSv3 as
well as a VSv2 input which is provided for backward
compatibility. Operators are currently making good use of
this interface, writing their own scripts and clients.

USE CASES
As of September 2010, most components necessary for

a full-scale operation have been finished and are already
installed in stable production environments at PITZ
(DESY Zeuthen), Hasylab and Petra III (DESY Ham-

 Fig. 1: Simplified layout of VSv3 components are their interaction

WEPL016 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

62

Diagnostics

burg). The process of rolling out components at EMBL
Hamburg has recently been started.

The Hasylab installation is focused on having many
Prosilica Gigabit Ethernet (GigE) cameras all running in
parallel at slow update rate (~2 Hz). Currently about 45
server processes are distributed across two machines. Im-
ages are acquired at defined positions on user beamlines
in the newly built Petra III experimental hall [11]. Imag-
ing is used for online beam centering and position moni-
toring. On the client side, the ACOP Video Application is
used as video display. USC is used for tuning of camera’s
image acquisition parameters (gain, shutter speed, etc.). A
special challenge has been transporting data on the 1 Gbit
network interface at the server machine which is shared
with the general mixed Gbit/100-Mbit controls network.

The Petra III installation consists of a VSv3 Prosilica
GigE camera installation at Petra III diagnostics beamline
[12] as well as an already existing VSv2 analogue camera
readout which provides images of beam positions at pre-
accelerators and beam distribution paths in-between.
Cameras are driven with a slow update rate of about 2 Hz.
On the client-side, the ACOP Video bean has been inte-
grated into rich Java clients custom-made for Petra III
control. The earlier mentioned Java-based video analysis
collection of components (made by Cosylab) is a vital
part of the controls setup. A special challenge at Petra III
was that due to limitations in the existing control network
bandwidth, certain mechanisms had to be implemented /
configured in order not to exhaust limited network re-
sources.

The PITZ setup consists of various camera types. At the
moment analogue JAI cameras (M10 RS, M10 SX),
Prosilica GigE (GC-1350, GC-1350C) and JAI/Pulnix
GigE (RM-1405GE) are installed. Foreseen are installa-
tions of more JAI/Pulnix (RM-2030GE) and JAI GigE
cameras (JAI BM141GE). In contrast to Hasylab installa-
tion, PITZ has about 25 cameras but only about 10 server
processes. A camera assignment/switching panel has been
provided to the operators, who use this to route video sig-
nals from source to destination. On the client side, PITZ
is mainly using VSv2 software, which interfaces with
VSv2 Compatibility Layer component that has been in-
stalled at server-side. VSv3 software is used directly with
the VSv3-based Universal Slow Control solution for cam-
era setup (e.g. adjusting gain and shutter in order to tune
image quality at place of acquisition). Special challenges
here are the demands of PITZ regarding imaging: loss-
less image quality, near-realtime and low latency. Fur-
thermore constant changing of hardware and software
requires a robust and flexible setup in order to avoid sig-
nificant investment of time to keep it all up and running.

EMBL Hamburg has used VSv2 for sample changer
monitoring and control to great satisfaction. As step by
step EMBL user beamlines are commissioned at Petra III,
VSv3 components are foreseen to be installed there. As a
first step, an interface for Labview readout of VSv3 TL
outputs has recently been provided. This is used to moni-
tor video from Hasylab screens, which is very useful for
EMBL operation.

ON THE HORIZON, PERSPECTIVE
Effort in the next months will be put on finishing in-

tended features at the server-side. For example, applying a
unique trigger event number obtained from a central
source to each video frame is foreseen. Likewise, the in-
tegration of recording and playback of video sequences to
Archive or DAQ installations is foreseen. At the client
side, an image import/export API with stable methods to
load/save the transport layer’s image data type to/from a
PNG file will be released, followed by an extension to
sequences of images to PNG files in a ZIP container.

Over the coming years, the extension and upgrade of
currently existing installations will transpire. Apart from
documentation and Video System website updates, the
client libraries will provide a range of APIs so that a user,
no matter his software experience will be able to interface
the Video System with his own tools (e.g. ROOT, Mat-
Lab, Labview, C/C++ library, Java, or .NET). VSv3 and
ACOP video tools already comprise a collaboration span-
ning several institutes. At the same time, new collabora-
tion partners are very welcome and are encouraged to
contact us.

ACKNOWLEDGEMENTS
We would like to thank Markus Degenhardt and Gero

Kube for on-site support, valuable feedback and beta-
testing.

REFERENCES
[1] http://hasylab.desy.de
[2] http://pitz.desy.de
[3] http://petra3.desy.de
[4] http://tine.desy.de
[5] F. Stephan, C.H. Boulware, M. Krasilnikov, J. Baehr

et al., “Detailed characterization of electron sources
yielding first demonstration of European X-ray Free-
Electron Laser beam quality”, PRST-AB, Vol. 13,
No. 020704 (2010)

[6] S. Rimjaem et al., “Measurements of Transverse Pro-
jected Emittance for Different Bunch Charges at
PITZ”, FEL 2010, Malmö, Sweden

[7] S. Weisse et al., “Status of a versatile Video System
at PITZ, DESY-2 and EMBL Hamburg”, ICALEPCS
2007, Knoxville, TN, USA

[8] S. Weisse et al., "TINE Video System: Proceedings
on Redesign", ICALEPCS 2009, Kobe, Japan

[9] J. Bobnar et al., “TINE/ACOP state-of-the-art video
controls at Petra III”, PCaPAC 2010, Saskatoon,
Canada

[10] J. Bobnar et al., “The ACOP Family of Beans: A
Framework Independent Approach”, ICALEPCS
2007, Knoxville, TN, USA

[11] M. Degenhardt et al., “CVD Diamond Laser Align-
ment and X-Ray Fluorescent Screens for Petra III”,
SNI 2010, Berlin, Germany

[12] G. Kube et al., “Petra III Diagnostics Beamline for
Emittance Measurements”, IPAC 2010, Kyoto, Japan

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL016

Accelerator Controls Diagnostics

63

THE FERMI@ELETTRA CCD IMAGE ACQUISITION SYSTEM

G. Gaio, F. Asnicar, L. Pivetta, G. Scalamera, Sincrotrone Trieste S.C.p.A. ELETTRA

Abstract

FERMI@Elettra is a new 4th generation light source
based on a linac-driven Free Electron Laser (FEL) which
is currently being built in Trieste, Italy. The CCD image
acquisition system is a fundamental diagnostic tool for the
commissioning of the new accelerator. It is used for the
characterization and tuning of the laser, electron and
photon beams. The Tango based software architecture, the
soft real-time performance and the embedded image
processing algorithms are described.

ACQUISITION SYSTEM

CCD
Three Basler CCD cameras (model scA780-54,

scA1390-17 and scA1400-17) are currently integrated in
the image acquisition system. All of them provide a
Gigabit Ethernet connection and a hardware trigger input
for the synchronization, and mainly differ for the number
of pixels.
A total of 84 CCD cameras are installed:

• 16 are dedicated to the diagnostics of the
photo-injector and seed lasers; their purpose is the
measurement of the laser beam trajectory along the
optical path and the characterization of the laser
beam profile;

• 52 are integrated in the fluorescent screen system,
which allows the analysis of the electron and photon
beams along the linac and the FEL undulators;

• 16 are installed in the photon beam transport system
and will be used for the measurement of the
parameters of the photon beam provided to the
experimental stations.

Up to 18 among the above mentioned CCD cameras
have to be concurrently and continuously acquired.

Image servers
In the final configuration five server computers will

take care of the acquisition of all the CCD cameras.
Each of them consists of a one-unit 19-inch rack mount

server configured with two Xeon QuadCore 3.0GHz
processors, 4Gb of DDR3 RAM and up to six Gigabit
Ethernet links. One of them is connected to the control
system network, three are dedicated to the acquisition of
the CCDs and one is used for the real-time
communication through the Network Reflective Memory
(NRM) [1].

The servers run a GNU/Linux 2.6 kernel patched by the
Xenomai real-time extension [2], which provides them
with deterministic capabilities. This is used in particular
by the Ethernet driver to share time-critical data among
the control system computers using the NRM.

IMAGE PROCESSING
For each CCD, a Tango [3] device server is dedicated

to the control of the main parameters like exposure and
gain, performs the image processing and makes the results
available to client applications running in the control
room.

Performance and flexibility to adapt to the beam
changes are the requirements that the processing software
have to fulfil. The performance must guarantee to meet
the deadlines because the acquisition and analysis of the
image have to be done shot-by-shot. The maximum
repetition rate of the linac is 50Hz, which means that a
maximum of 20 ms is available to process each image.
For this reason, it is convenient to analyze only the
portion of image containing the beam profile,
conventionally called Region Of Interest (ROI).

The image processing is divided into three steps:
automatic ROI detection, calculation of the beam profile
moments and data storing with a precise timestamp.

Automatic ROI Detection
Searching the beam spot inside an image could be a

complicated task. Sometimes it is easier to find the parts
of the image where there is no beam instead, i.e. to define
the background.

In order to perform the ROI detection efficiently, the
full scale image is under-sampled. The resulting samples
size should be at least twice the minimum size of the
beam spot in both planes in order to have at least a few
points of the beam in the under-sampled image.

If necessary, the image is smoothed by a low pass filter
to mitigate the presence of artifacts. A thorough design of
the low pass filter parameters can dramatically enhance
the magnitude of the beam profile with respect to the
noise due to reflections on the vacuum pipe surface (Fig.
1).

px

px

Full image

200 400 600

100

200

300

400

500

px

px

Undersampled filtered image

20 40 60

10

20

30

40

50

Figure 1: image of the electron beam measured at the exit
of the photo-cathod gun, before (left) and after (right) the
under-sampling/filtering process.

The background level is estimated through the analysis
of the complementary cumulative distribution function of
P(X<=x), which represents the probability that a pixel
value X is lower then x. This task is performed in three
steps:

WEPL018 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

64

Diagnostics

• subdivide the amplitude range of the image into N
equally spaced values and store them in the array
vec_lev[1..N];

• For each vec_lev[] element, count how many pixel
values in the image are higher and store this count in
the array vec_area[]

• Compare each element of the array vec_area[] with
the predecessor. If the difference between
vec_area[n] and vec_area[n+1] for n=1..N-1 is a
above a predefined threshold T, then the background
level is found (Fig. 2) and corresponds to
vec_lev[n+1].

The experience demonstrates that for most of the beam
shapes, with an 8-bit resolution image, a couple of
optimal values is N=20, T=0.4.

We can assume that the pixel with maximum value in
the under-sampled image corresponds to the centroid of
the beam.

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Background level

X[2]

X[3]

X[2]−X[3] > 0.4
Background detected

Figure 2: complementary cumulative distribution function
calculated from the under-sampled image of Fig. 1

In order to find the ROI, each border of the square that
initially contains the centroid is expanded until there is at
least one pixel on the border which value is higher than
the background level.

px

px

Full image with autoROI

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550

Figure 3: Final result of the image processing. ROI is
highlighted directly on the image.

Once the expansion of the ROI around the beam has
terminated, the coordinates of the ROI found in the under-
sampled image are converted into the original image
scales (Fig. 3).

Moments estimation
In order to estimate the moments of the beam profile,

besides the “raw” algorithm (average and σ), three
possible fitting functions can be used: gaussian,
asymmetric gaussian and a seven-parameter function
called “Confiteor” [4], of which the gaussian fitting
function is a particular case. With the exception of the
raw algorithm, the calculation of the fitting function
parameters is based on the GNU Scientific Library (GSL)
[5] non-linear least-squares algorithm.

A software library for the calculation of the jacobian
matrix of derivatives needed in the iterative GSL
algorithm has been developed. The fitting iterations stop
when the predefined fitting error or a time limit is
reached. The first and second moments are then
analytically calculated.

The comparison of different algorithms shows that for a
beam shape that is far from being gaussian, the gaussian
fits could differ a lot from the correct result (Fig. 4).

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

px

a.
u.

Raw data

Gauss

Asym. Gauss

Confiteor

Figure 4: Comparison of the fitting functions applied to a
beam which has not a gaussian distribution.

Table 1 shows the horizontal σ calculated by different
algorithms and their performance. The results obtained
with the raw algorithm and with “Confiteor” are in good
agreement; the latter is slower but much more robust in
case of “salt and pepper” noise.

Table 1: Comparison between different moment
estimation methods (image with full scale size
782x582px, ROI size 120x200px)

Calculation mode Processing time σx

Raw 2.4 ms 0.309 mm

Gaussian 4.8 ms 0.255 mm

Asymmetric Gaussian 5.2 ms 0.254 mm

Confiteor 9.6 ms 0.326 mm

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL018

Accelerator Controls Diagnostics

65

Data storage
The proprietary binary libraries provided by the CCD

cameras vendor can only be used in the Linux user space
domain , therefore it is not possible to acquire and store
the CCD data in real-time. Despite this limitation, a
thorough tuning of the priorities in the Tango device
server and the overruling in the assignment of interrupts
and processes to the eight CPU cores, allows anyway the
acquisition of the beam image shot-by-shot in a reliable
way.

The bunch number, a sort of time stamp which
identifies each of the accelerated bunches, is distributed in
real-time via the NRM along the accelerator. It is used to
tag every acquired image and eventually unveil any
misalignment (two images with the same bunch number)
in the acquisition. The tagged images can be easily
correlated with other diagnostics data (e.g. from BPMs,
Charge Monitors, …) or with the strength of the
accelerator magnets that can also be driven on a
shot-by-shot basis.

The beam parameters calculated by the image
processing are stored into circular buffers, which support
both storing and retrieving operations in kernel and user
space. The buffered data can be extracted specifying
either the time limits or the bunch numbers. A number of
filter methods (mean, median, Kalman, etc.) can be used
to extract already de-noised data.

CLIENT APPLICATIONS

Graphical User Interface (GUI)
A GUI developed using Q-Tango [6] supervises

the operation of the CCD cameras (Fig. 5). The graphical
panel allows to deal with the CCD Tango device server
API (attributes and commands) and visualizes the beam
image at a selectable refresh rate and with the preferred
false colour palette. It is possible to magnify the image,
save a snapshot (TIFF) and store the image raw data
(CSV).

Figure 5: CCD control panel

Moreover, the panel features a smart interface for the
CCD calibration process and for measuring distances in
the beam image (pixel and mm).

Real-time Machine Physics Applications
The emittance is one of the most relevant parameters

that must be optimized in a FEL. It could be measured by
changing the focusing characteristics of a quadrupole
magnet and measuring the corresponding size of the
electron beam using a downstream fluorescent screen. By
driving the quadrupole magnet current synchronously to
the acquisition of the screen images, it is possible to
obtain a good estimation of the emittance in less than 20
shots [7].

Another measurement that takes advantage of the
shot-by-shot acquisition is the evaluation of the timing
jitter of the electron bunches. The measurement consists
in titling each electron bunch by means of a RF deflecting
cavity with the proper phase, and intercepting it with a
fluorescent screen. The projected image acquired by the
CCD represents the longitudinal profile of the bunch and
the movement of the centroid in the vertical axis
corresponds to the beam timing jitter.

CONCLUSION
The CCD camera acquisition system is one of the most

important diagnostics tools for the commissioning of the
new accelerator. The capability to acquire beam images
and correlate them with the other machine parameters on
a shot-by-shot basis has contributed significantly to the
success of the commissioning operations.

The auto-tuning of the image processing algorithms, the
optimization of the processing code and the introduction
of an abstraction layer to allow the integration of other
CCD camera vendors, are some of the new developments
foreseen for the future.

REFERENCES
[1] M. Lonza et al., “Beam-based feedbacks for the

FERMI@Elettra Free Electron Laser”, IPAC’10,
Kyoto, May 2010.

[2] http://www.xenomai.org
[3] http://www.tango-controls.org
[4] A. Lutman, Private communications, May 2010.
[5] http://www.gnu.org/software/gsl/
[6] G. Strangolino et al., “QTango: a Library for Easy

Tango Based GUIs Development”, ICALEPCS’09,
Kobe, October 2009.

[7] S. Di Mitri et al., “Recent Commisioning Experience
on the FERMI@Elettra First Bunch Compressor
Area: Investigations of Beam Dynamics, Modeling
and Control Software”, FEL’10, Malmö, August
2010.

WEPL018 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

66

Diagnostics

EPICS APPLICATIONS IN THE CONTROL OF SPES TARGET
LABORATORY

M. Giacchini, A. Andrighetto, G. Bassato, N. Conforto, L. Giovannini,
 INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova), Italy

Abstract

The project of a new facility for the Selective
Production of Exotic Species (SPES) has started at LNL.
Radioactive ions will be produced by impinging an UCx
target by a 70MeV, 200µA proton beam delivered by a
commercial cyclotron. Then, the unstable ions will be
accelerated by injecting them into the LNL
superconducting LINAC. The construction of Target
and Ion source prototype (Fig. 1) is at an advanced stage
and, after more than two years spent in its construction,
preliminary extraction tests were carried out with non-
radioactive beams. The control of Target instrumentation
is based on EPICS; we describe here the basic choices on
hardware and software tools on both IOC and client side
and give a brief description of last developments.

THE TARGET LABORATORY
INSTRUMENTATION

The target instrumentation controls the beam extraction
and transport up to a diagnostic station where the
physical characteristics of the beam are measured. The
beam production is obtained by heating the target to a
temperature of about 2000 C, necessary for the optimal
extraction of ionized fragments.

The power required for heating is delivered by an array
of high current power supplies (LAMBDA GENESYS
series) configured in a master-slave chain and providing a
current in excess of 1300 A. Other heating methods are
foreseen for the future (i.e. using a laser or a microwave
source) but currently only the ohmic dissipation has been
used. Once extracted, the beam is focused by an
electrostatic lens of three quadrupoles f ed by a set of HV
bipolar power supplies (a special assembly of rack mount
units manufactured by Ultravolt).
The target and the power supplies are placed on an
insulated platform that is brought at about 60KV from
ground by a FUG (HCP series) power supply. The
electrical power required by GENESIS modules is
transferred to the platform through a 20KW insulation
transformer. An Ethernet transceiver from copper
(100Base-T) to fiber optic is used to link the control
network to the instrumentation placed over the HV
platform; a multi-port Ethernet to serial converter
(Comtrol Device Master) is then used to connect the
devices equipped with a serial interface.

 Figure 1: The target chamber and ion source

CONTROL DEVICES
The devices used to control the beam production and

extraction are Linux-based IOCs. The LAMBDA-
GENESYS master unit has a serial RS232 link to the host
controller, which is a standard PC running on CentOS
Linux. This OS distribution has been chosen because it is
open-source, stable and completely compatible with
RedHat. The device support is derived, with minimal
modifications, from the driver developed at PSI, based on
StreamDevice[1]. The HV power supplies (both Ultravolt
and FUG) have an analog interface and are controlled by
means of three microIOCs manufactured by Cosylab (SI).

These devices are embedded controllers based on a
PC104 board and running under Debian Linux (preloaded
on a flash disk). Each unit has three I/O boards, providing
an adequate number of analog and digital I/O channels.
EPICS drivers and debugging utilities come built-in with
the controller software.

BEAM DIAGNOSTICS

 A diagnostic station has been placed at the output of
the electrostatic triplet to measure the beam current and
profile. The beam current is measured by means of a
faraday cup, while the profile is reconstructed by
sampling the currents acquired by a set of horizontal and
vertical grids. Stepper motors are used to insert/extract the
devices along the beam line. The data acquisition system
is implemented in a VME crate and runs under Vxworks.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL020

Accelerator Controls Development and application frameworks

67

The controller is an Emerson (formerly Motorola)
MVME3100, the ADC is a XYCom XVME566 board,
while the stepper motor controllers are home made
devices. A modified version of the diagnostic box has
been realized to measure the beam emittance: the main
difference in hardware setup consists in a sliding slot
moving in front of the grid array and a linear encoder to
acquire the slot position. Once the raw data have been
acquired, they are transferred to a host computer where
the beam emittance is calculated and displayed (Fig.2).

Figure 2: sample of emittance measure in a CSS screen

THE OPERATOR INTERFACE
A long term evaluation has been carried out to select

the best tool to create graphic interfaces. First applications
(the control of LAMBDA PS) were developed using
MEDM that, despite its age, still remains an effective tool
for fast prototyping and debugging. It was clear, however,
it couldn’t be the right choice for a project that will
require maintenance over a period of twenty years at
least. Then we decided to test the capabilities offered by
LabView which provides a great graphic rendering and a
big amount of customizable control widgets (Fig. 3).

Figure 3: Control screen of HV power supplies

 There are two possible approaches in using LabView as
EPICS client: the most traditional is based on the “shared
memory” method developed at SNS[2]; the most recent,
available since the release 8.6, makes use of NI native
“network shared variable” technology. We tested both,
with particular attention to the SNS solution. Figure 3
shows a LabView screen of the user interface realized for
HV power supplies.
At the end, however, we decided to focus on CSS
(Control System Studio)[3], that resulted, by far, the most
innovative and promising tool for new developments.
CSS is based on Eclipse, a customizable framework, that
allows the developer to extend its functionality by adding
new control plug-ins. Thanks to this feature, different
CSS versions are available; we decided to adopt the SNS
version that includes a rich set of graphic widgets (BOY),
a new implementation of Alarm Handler and a new
interface to Channel Archiver.

THE ARCHIVER
The Archiver is, in an EPICS system, the basic tool

for archiving and retrieving the process variables. The
Archiver can work using its embedded data base or in
conjunction with an external RDB. At LNL we tested
both configurations, using, as external data base, the
freely distributed software mySQL. Due to the limited
number of PVs currently in use, the performances of
mySQL are more than acceptable. However, a new
project was started, in collaboration with Brookhaven
National Laboratory, to study the possibility of using the
Archiver in connection with the non-relational data base
HyperTable [4], which is based on a novel concept of file
system and exhibits very promising performances in
terms of speed: this project is HyperArchiver and will be
shortly presented in the next paragraph.

The HyperArchiver project
 The initial idea was triggered by the observation that
the most famous and fast search engine in the world
(Google) makes use of a proprietary distributed data
base system (BigTable) that allows managing an
enormous quantity of data with a surprising efficiency
and speed. Most of algorithms used for data searching
are property of Google and not published but the
concepts underlying the data base structure are known
and can be found in other commercial DBs. One of this
products, HyperTable (by Zvents), is available either in a
professional version and in an open source distribution
under GNU public license. We decided to test this latter
version and realize a connection to the Archive engine.
We compared the store/retrieve speed with the
configuration based on mySQL and it resulted that
HyperTable is faster of about a factor of three in writing
and more than a factor of ten in reading. A collaborative
test was carried out at SNS to compare the HyperTable
solution to their Archiver implementation, based on a
connection with an Oracle server; also in this case it came

WEPL020 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

68

Development and application frameworks

out that HyperTable is faster in both reading and
writing, with a significant improvement in data
retrieving.
We also designed the necessary plug-in to retrieve data
and display them into CSS (Fig.4). The interface to CSS
works but causes a significant slow-down in data reading
that still has to be fixed. The collaboration on HyperTable
continues and our goal is to reach a stable configuration
to be used as the default Archiver installation for SPES
project.

Figure 4: Snapshot of PV retrieval (simulated ramp of
analog values) in CSS.

THE CONTROL NETWORK

 Special care has been dedicated to the design of the
control network. The following services were
implemented:
• Gateway, to provide access to external services

together with isolation from LNL network
• DHCP server, to manage IP addresses of control

computers.
• Firewall, to protect the network from

unauthorized accesses.
• Backup server, based on a Network Attached

Storage (NAS) device, to allow full or
incremental backup of control machines.

• Nagios [5] server, whose function is monitoring
the operation of all installed IOCs and
dispatching alarms in case of malfunction.

• CVS and Wiki servers: the CVS repository keeps
trace of code versions and NamingConvention
updating, while the Wiki server is very useful to
maintain the documentation on team activity.

• PXE boot server for Vxworks and automatic
reinstallation of operating system plus Epics
development environment for Linux computers.

CONCLUSION

The control system of Target Laboratory has been a
test bench for hardware and software technologies that
will be used for SPES facility. Some technical options
have been investigated enough to lead to strategic choices
(i.e. using CSS for the development of user interface).
Other key points must still be tested. A very important
one is the integration of PLCs used for safety
applications into the EPICS network. A solution based on
dedicated drivers is possible for many families of PLCs,
but we are strongly oriented to focus on the usage of an
OPC server[6]. This approach has the considerable
advantage of being independent from the PLC brand.

We also plan to continue the development of
HyperArchiver, encouraged by the great interest shown
for its possible application in large projects [7] where the
capability of managing a huge amount of PV data in a
fast way is of extreme relevance.

ACKNOWLEDGEMENTS

 We sincerely thank Bob Dalesio and Robert Petkus

for supporting the HyperArchiver project and for the
fruitful discussions during the stage of one of authors (M.
Giacchini) at Brookhaven National Laboratory. We are
also grateful to Michael Davidsaver and Daron Chabot
(BNL) for their valuable work in customizing the
XVME566 driver [8] and writing the device support for
our stepping motor controllers.

REFERENCES
[1] http://epics.web.psi.ch/software/streamdevice/
[2] http://neutrons.ornl.gov/diagnostics/documents/epics/
 LabVI/SNS_LabVIEWEPICS.html
[3] http://ics-web.sns.ornl.gov/css/index.html
[4] http://www.lnl.infn.it/~epics/Hypertable.pdf
[5] http://www.lnl.infn.it/~epics/NAL.html.
[6] http://www-csr.bessy.de/control/SoftDist/OPCsupport
[7] http://www-arch.iter.org/sites/epics2010/slides/
[8] http://epics.hg.sourceforge.net/hgweb/epics/xycomioc

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL020

Accelerator Controls Development and application frameworks

69

SOFT REAL TIME CONTROL WITH CLIENT/SERVER CONTROL

SYSTEM

Y. Furukawa, Spring-8/JASRI, 1-1-1 Kouto, Sayo-cho, Hyogo, JAPAN.

Abstract

Real-time properties have studied for client/server

control system on single CPU system with Linux and

Solaris operating system (OS) with real-time scheduler.

Time jitters were within one msec for Linux OS and for

Solaris OS on the MADOCA control system[1] that is the

SPring-8 standard control system (CPU was 1.6GHz Intel

Atom processor). These results are small enough for

many synchrotron radiation experiments such as x-ray

diffraction experiments with continuous scanning method.

The client application can be described using scripting

language, so real-time applications are developed and

modified easily. The system has been used in the diffuse

scattering beamline at the SPring-8.

INRODUCTION

There are many request on real time controls with msec

order time resolution on synchrotron radiation

experiments, such as scanning micro probe XRF,

continuous scanning x-ray diffraction experiments, etc. In

these applications, exact timing is not required because

the counting results can be normalized by each step time

or integrated intensity of incident x-ray. So the sub-msec

order soft real time controls are suitable for these

appllications.

To realize real-time application, real time operating

system (OSs) has been used, it is, however, difficult to

develop the real time applications on theses OSs because

it required low-level (device driver or kernel level)

software development and there are poor development

support tools.

Modern OSs, like Linux or Solaris, have been

improved its real time properties and became to be used

for real time applications. Under these OSs, soft real time

can be realized only set the framework software and these

applications to use real time schedulers, such as RT-class

on Solaris or FIFO and round robin scheduler on Linux.

There are many single program implementations to

realize the real time properties. It requires the detailed

knowledge for device control libraries and frame work, it

is hard task for x-ray beamline scientist because most of

them are not specialist of the control software.

If real time applications can be described using simple

scripting languages, many non control specialist can

develop the real time applications. It is possible if the

client/server type system provides real time properties. In

this paper, results of the real time property measurements

in the case of the MADOCA control system on the single

CPU system and it has enough for the synchrotron

radiation experiments.

MEASUREMENTS OF THE REAL TIME

PROPERTIES

Real time property measurements were made on Solaris

10 and Linux (vanilla kernel 2.6.34 and real time patch[2]

applied kernel 2.6.33.7-rt29). In the Solaris case,

parameter hires_tick=1 was set in /etc/sysconfig for 1

msec tick. For the Linux case, tickless kernel and 100Hz

tick were set in kernel parameters. All the software were

installed on the Atom Z530 (1.6GHz) processor based

control sysmte called “Blanc-4” developed at the

SPring-8[3]. The blanc-4 has 512MByte main memory

and 16Gbye flash memory based storage. All the

softwares were set RT-class in the Solaris case (using

priocntl command) or FIFO scheduling for the both Linux

case (using chrt command).

Figure 1: Software scheme of the measurements.

Software scheme based on the MADOCA control

framework is shown in Fig.1. Each program communicate

using system-V IPC (message queue). Command

Interpreter (CI)[4], used as a client software, issued

messages to the Message Server (MS). The MS transfers

the control message to the Equipment Manager Agent

(EMA) which controls actual devices and send back a

result message to the CI via the MS. In the measurement,

the EM was set as a timer, which returns a result message

to the client (CI) after sleeping a given time by the

message from the CI as shown in Fig. 2. The time

WEPL021 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Control hardware and low-level software

70

Front-end (Hardware Interface) Software

durations from send a message to receive the result

message were measured for 1,000,000 loops.

Figure 2: Time chart of measurements.

The results of time measurement are shown in Fig.3, 4

and 5 as a function of trail number for Solaris, Linux

2.6.34 and Linux 2.6.33-rt29 for first 30,000 loops. The

statistics of the results were summarized in the Table 1.

For the case of vanilla kernel of the Linux is not suitable

for the real time applications. For the case of Solaris, time

deviation is with in 0.8msec, it can be applicable some

synchrotron radiation experiments. Time deviation for the

Solaris 10 seems to come from SYTEM-class processes

that have higher priority than RT-class processes.

Figure 3: Result of loop time measurement for

Linux-2.6.34

Figure 4: Result of loop time measurement for

Linux-2.6.33.7-rt29

Figure 5: Result of loop time measurement for Solaris 10

Table 1: Statistics of results

OS/kernel Meam

time

(msec

)

Standard

deviation

(msec)

Min.

(msec)

Max.

(msec)

Linux-2.6.34 3.917 1.30 685.6 2.698

Linux-2.6.33

.7-rt29

2.759 0.0091 2.731 2.969

Solaris 10 4.000 0.0175 3.349 4.417

Results for the RT-patched Linux kernel is with in

0.1msec and it is good enough for most synchrotron

radiation experiments like scanning XRF, x-ray

diffraction experiments. In the vanilla kernel is not

pre-empt if the process is in the kernel space, while in the

RT-patched kernel, the process is pre-empt in both kernel

space and user space, so in the RT-patch kernel is assign

the CPU time to real time process faster.

APPLICATION TO THE CONTINUOUS

SCANNING X-RAY DIFFRACTION

MEASUREMENT

As an application of the real-time controls, continuous

scanning diffraction measurement system has been

developed with Linux-2.6.33.7-rt29 system. A schematic

view of the measurement system is shown in Fig.6.

Diffracted X-ray by the sample is counted using x-ray

detector and the detector is scanned using stepper motor.

The x-ray counts are recorded as a function of the

detector angle and from an analysis of the result, atomic

structure is obtained.

In a conventional way, step scan was used, i.e, before

counting a x-ray intensity, the detector was moved some

angle. It had a dead time to waiting for end of detector

motion. In continuous scanning method there is no

overhead, it is, however, required msec order timing

accuracy because counting duration is a few ten msec to a

few seconds.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL021

Control hardware and low-level software Front-end (Hardware Interface) Software

71

Figure 6: Schematic view of the diffration measurement.

A test of the continuous scanning was made using

1.00MHz clock instead of the x-ray counting, so the

timing accuracy could be checked by uniformity of the

counteing results. The result of the continuous scanning

for 100msec step is shown in Fig.7. The speed of stepper

motor rotation was 1000 pulse/sec. Deviation of the

counting results is within 0.3%, this is good enough for

most x-ray diffraction measurements. The 0.3% deviation

of the counting data is corresponding to 0.3 msec timing

deviation.

The counting result is not 100,000 but around 104000

counts, this measn the each loop time is 104 msec and it

take 4 msec to obtaining motor position and counter data.

This can be adjustable by changing the timer sleep time.

There are periodical spike on the counting data in the

Fig.7. The period of the spike is about 1000 pulse, i.e. 1

sec. A motor position backing-up script was running at

the same time, so the access racing to the stepper motor

controller occurred. Under these racing condition to the

device, timing deviation is small enough, less than

required 1msec.

Figure 7: The result of the continuous scan for 100msec

step with 1MHz input.

CONCLUSION

Real-time properties for the client/server system on

Linux and Solaris OS were investigated and for Solaris 10

and RT-patched Linux case, it is shown that there are

good timing accuracy. Especially for the RT-patched

Linux, timing deviation is within 0.3msec.

To develop the client program, a scripting language can

be used, so real-time software development becomes very

easy. Note that some scripting languages invoke garbage

collection and it deteriorates the real-time property. The

CI is designed not to cause garbage collection.

REFERENCES

[1] R.Tanaka S. Fujiwara, T. Fukui, T. Masuda, A.

Taketani, A. Yamashita, T. Wada and W. Xu, Proc of

ICALEPCS’95 (1995) p.201

[2] http://www.kernel.org/pub/linux/kernel/projects/rt/

[3] M. Ishii and T. Ohata, Proc. ICALEPCS2009 (2009),

p.465..

[4] Y.Furukawa, M.Ishii, T.Nakatani and T.Ohata, Proc.

ICALEPCS2001 (2001), p.349

WEPL021 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Control hardware and low-level software

72

Front-end (Hardware Interface) Software

STARS ON PLC

T. Kosuge, K. Nigorikawa, KEK, Japan

Abstract
The Simple Transmission and Retrieval System

(STARS) [1][2] is a message transfer software for small-
scale control systems having TCP/IP sockets; STARS can
work on various types of operating systems. In this study,
we have successfully run the STARS server and client on
the F3RP61 (Yokogawa Electric Corporation).

At present, PLCs are used for beamline interlock
systems (BLISs) and PCs are used for monitoring and
permission control system (CCS) of BLISs at the Photon
Factory. Running STARS on a PLC makes the integration
of BLIS and CCS possible. This paper provides a detailed
description of the process of running STARS on a PLC.

BLIS AND CCS
Over 20 beamlines are in use at the Photon Factory and

each beamline has a beamline interlock system (BLIS) for
ensuring radiation safety and maintaining a vacuum
environment in the beamline (Fig. 1). A PLC is used as a
controller for the BLIS; it controls the beamline
components (beam shutters, experimental hatches, gate
valves, vacuum gases, etc.).

Figure 1: Beamline and BLIS.

The CCS monitors the status of BLIS and controls the

permission signal, which permits beamline usage, through
the PLC interface installed in each beamline (Fig. 2).

Beamline components

Device Net

PLC

Station
controller

Main controller

RS-232C

PLC interface
STARS Client
(Embedded Linux)

Ethernet
(to CCS STARS server)

Figure 2: BLIS and PLC interface of CCS.

At present, the RS-232C is used for communication
between the BLIS and PLC interfaces. The number of
monitoring points that the CCS can support is limited
because of the low speed of communication. Integration
of the BLIS and PLC interfaces is one of the solutions to
this problem.

F3RP61
F3RP61 (e-RT3 2.0/Linux) is a CPU module that can

be installed on the Yokogawa FA-M3, which also has
EPICS running on it [3]. In this study, we used F3RP61-
2L as a test bench (Fig. 3).

Figure 3: F3RP61 on FA-M3.

STARS
STARS is an extremely simple software for small-scale

control systems having TCP/IP sockets as well as the
provision for text-based message transfers (Fig. 4). A
STARS server can work on various types of operating
systems (the STARS server is written in Perl).

STARS
Server

I/O
Client

Device

TCP/IP
Device
driver

Device

I/O
Client

Device
driver

Device

Application
program

Bridge

Application
program

Other
System

Figure 4: STARS server and clients.

STARS consists of client programs (STARS clients)

and a server program (STARS server). Each client is

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL022

Control hardware and low-level software Front-end (Hardware Interface) Software

73

connected to the server via a TCP/IP socket. STARS
users can upgrade the system by writing client programs,
and STARS clients can participate in the system at any
time without system stoppage. Recently, STARS was
used for the CCS, beamline control system (see Table 1),
and access control system of the experimental hall at the
Photon Factory.

Table 1: Installation Status of STARS-based Beamline
Control System (as on September 2010)

Category Installed Beamline

PF-2.5GeV
Ring X-ray

BL-1A, BL-3A, BL-4B, BL-5A, BL-
6A, BL-6C, BL-7C, BL-8A, BL-8B,
BL-9A, BL-9C, BL-12C, BL-14A, BL-
17A, BL-18B

PF-2.5GeV
Ring VUV and
Soft X-ray

BL-2A, BL-11B, BL-13A, BL-16A,
BL-19A, BL-20B

PF-AR NE-1A, NE-3A, NW-2A, NW-10A,
NW-12A, NW-14A

Other Slow Positron Facility

STARS SERVER ON F3RP61
Various scripting languages are available for

installation by means of RPM packages. In this study, we
used Perl as our scripting language because the STARS
server is written in Perl and therefore, it would not be
necessary to modify the server program code.

STARS CLIENT ON F3RP61

STARS C Library
The Yokogawa Electric Corporation provides C

libraries that enable access to IO devices or other CPUs
available on the FA-M3. In addition, the C language is
used for the development of a STARS client that can
access IO devices available on the FA-M3.

STARS uses TCP/IP sockets and can only handle text-
based messages. Skilled programmers will not find it
difficult to program the STARS client. In addition, the
task of programming is made easier with the availability
of the STARS C library. The various functions that are
part of the STARS C library are shown below.

• stars_alloc: Allocates memory for a STARS

connection.
• stars_open: Opens a connection to a STARS server.
• stars_free: Releases the memory allocated for a

STARS connection.
• stars_close: Closes a STARS connection.
• stars_set_timeout: Sets a time out value for the

“receive” function.
• stars_get_timeout: Gets the time out value for the

“receive” function.

• stars_get_handle: Gets the file handle value for a
STARS connection.

• stars_send: Sends a message to a STARS server.
• stars_receive: Receives a message from the STARS

server.
• stars_add_callback: Sets the function pointer for a

STARS call-back function.
• stars_mainloop: Starts a call-back sequence.

STARS IO Client in C Language
A STARS client program that handles hardware is

called an “IO client.” The IO client waits for commands
from a STARS server and executes methods on receiving
such a command. Fig. 5 shows the flow chart of the IO
client program.

Figure 5: Flow chart of IO client.

STARS Perl Client
The STARS client program written in Perl is also

available on the F3RP61. If the IO hardware of the FA-
M3 cannot be accessed using the Perl program directory,
then it can be accessed by the program using the STARS
IO client written in C.

EXAMPLE OF APPLICATION
We have coded a simple example using the F3RP61 as

a test bench (Fig. 6). A STARS server and an IO client
written in C are running on the F3RP61 and a GUI is
running on the PC (Windows 7 Professional).

WEPL022 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Control hardware and low-level software

74

Front-end (Hardware Interface) Software

Figure 6: Overview of test bench.

When the GUI client named “testGUI” sends a
command to the IO client named “ert3io” through the
STARS server, the IO client executes the method that
corresponds to the command and returns a result message
to the GUI client through the STARS server.

 The GUI is written in VB.NET and can also run on a
Linux OS having MONO. Fig. 7 shows a snapshot of the
GUI.

CONCLUSION
In this study, we have successfully run a STARS server

and STARS clients on the F3RP61. In addition, we have
verified that the STARS IO client written in the C
language works efficiently on the F3RP61. Therefore, it
can be concluded that the use of STARS on a PLC
represents an effective solution for the integration of the
BLIS and CCS at the Photon Factory.

REFERENCES
[1] Takashi Kosuge, Yuuki Saito, “RECENT

PROGRESS OF STARS,” Proceedings of
PCaPAC2005, Hayama, Japan, 2005.

[2] http://strs.kek.jp
[3] J. Odagiri, et al., “APPLICATION OF EPICS ON

F3RP61 TO ACCELERATOR CONTROL”
Proceedings of ICALEPCS2009, Kobe, Japan.

Figure 7: Snapshot of test GUI.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL022

Control hardware and low-level software Front-end (Hardware Interface) Software

75

IMPROVEME TS FOR SIMPLE OPERATIO AT SAGA-LS
ACCELERATOR

Y. Iwasaki#, T. Kaneyasu, Y. Takabayashi, S. Koda, SAGA Light Source, Saga, Japan

Abstract
The SAGA Light Source is a medium-size synchrotron

light research facility located at Kyusyu Island, Japan.
The control system of the SAGA Light Source has been
developed in the early phase of the machine
commissioning. The application programs were
developed using PC-LabVIEW. Commercial off-the-shelf
input/output devices, such as PLC with a MS-Windows
PC server, compose the input output controller with a
high cost-performance ratio. ActiveX CA is used for the
communication protocol between the server PCs and the
client PCs. All of the components of the accelerator
except the timing system are now controlled using PCs.
Although the control system is stable, having many client
PCs complicated the daily operation. Thus, we developed
a multi-purpose client program, which is running on MS-
Window 7 with a touch panel display. Furthermore, we
constructed communication interface between the
accelerator control system and the radiation interlock
system to set the interlock mode from the accelerator
control system. By using the developed multi-purpose
client program and the interface to the radiation interlock
system, the numbers of procedures necessary for daily
accelerator operation have been significantly reduced,
making the daily operation simple.

SAGA-LS CO TROL SYSTEM
The SAGA Light Source (SAGA-LS) is a medium-size

synchrotron light research facility located at Kyusyu
Island, Japan, and the accelerator consists of a 255 MeV
injector linac and 1.4 GeV electron storage ring [1], [2].
At this time, all of the accelerator components are
controlled by a digital system except for the timing
system. For connectivity to the accelerator hardware, we
selected commercial off-the-shelf distributed input/output
(I/O) devices, such as a programmable logic controller
(PLC) (Yokogawa: FA-M3) and distributed I/O controller
devices (National Instruments: Fieldpoint). A difficulty at
the SAGA-LS facility is its tightly restricted budget,
which limits the number of staff in the facility. Thus, the
control system for SAGA-LS should be simple and robust,
yet inexpensive, easy to develop, and easy to maintain.
One of the solutions to this problem is the use of off-the-
shelf products, including PCs. The off-the-shelf I/O
device and server PC works as the PC Input Output
Controller (PC-IOC). Figure 1 shows a schematic view of
the control layer of the SAGA-LS control system. For
clarity, many of the accelerator components are omitted.
We developed applications in the PC-LabVIEW
environment because accelerator staffs are familiar with

the PC-LabVIEW.
The PC-based control system is widely used in many

facilities because of the high cost-performance ratio of
using PCs. Especially recent improvements in the
performance and the cost effectiveness of PCs have made
them attractive for use in the accelerator control system.
There are sophisticated and well-established control
systems based on workstations or PC-UNIX, such as the
Experimental Physics and Industrial Control System
(EPICS). However, it is difficult to modify and expand
the EPICS system with limited accelerator staff.
Fortunately, the number of control items of the SAGA-LS
is now approximately 600 and there are very few
demands for real-time control. The only exception is the
synchronous operation of power supplies for the four
minutes of the energy ramping in the storage ring. In this
case, a PLC with a preloaded ramping pattern is suitable.
Hence, we designed a MS-Windows PC-based control
system with off-the-shelf I/O devices [3], [4]. For the
communication protocol between the server PCs and the
client PCs, we used ActiveX channel access (CA) [5],
which emulates the EPICS CA protocol. MySQL was
adopted as the database system. Recent progress on the
control system for both the linac and the insertion devices
are summarized in reference [6]. The feedback control
system for the magnet power supplies using external DC
current transformer, feed-forward orbit, tune and coupling
correction systems have been developed in past years.

Accelerator LAN ActiveXCA

Control Room

CA Client CA Client
Multi-purpose
CA ClientDatabase

Linac Vacuum

PLCFP-1601

LCW

Linac
Vacuum&LCW

PLC

Ring Magnet

Ring Magnet
CA Server

Control/Monitoring Objects

Figure 1: Schematic view of the control layer of the
SAGA-LS.

#iwasaki@saga-ls.jp

WEPL023 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

76

Operator interface software and human factors

 MULTI-PURPOSE CLIE T
APPLICATIO

Design Concept
As the accelerator improving, the numbers of client

PCs have been growing, since each client application is
created in each PC independently. Although good stability
and a rigid framework of the accelerator components do
not require complicated manipulation of the machine
parameters in daily operation, increasing the number of
client PCs increases the complexity to the operation. The
necessity of setting many control knobs sometimes causes
human errors. In our facility, during the injection
operation, we have to carry out more than 20 processes.
Although a small number of machine staff is enough for
stable and safe operation in the SAGA-LS accelerator,
only one accelerator staff and one assistant are actually
assigned as machine operators. Thus, to avoid human
errors and to simplify the machine operation, we recently
constructed a multi-purpose client application program.
Figure 2 shows the front panel of the application. Several
operation procedures are automatically processed by the
multi-purpose client application. The design concepts of
the application program are as follows:

• Development in the LabVIEW environment.
• Inclusion of the major functions of each CA client

program in one application program.
• Switching to these client functions by selecting the

relevant tab keys.
• The application procedures are sequentially

processed in the operation scheme.
• Use of MS-Windows 7 and the touch panel display.

Implementation
We have started the machine commissioning of SAGA-

LS in 2004, and we used MS-Windows 2000 on the

control PCs. The client programs were constructed as
single-task programs for robust operation.

The construction of the multi-purpose application was
made possible by recent improvements in PC CPU power
and memory size. The multi-purpose client program runs
on an Intel (R) Core (TM) i3 3.07 GHz CPU with 2.0
Gbyte memory and treats more than 110 EPICS CA
process variables. The CPU usage is less than 10%. The
application includes the electron gun, linac klystron
modulator, ring power supply, global closed orbit
distortion (COD) correction program, two undulators, and
injection magnets (septum and kicker magnets). These
client functions are switched between using tab keys, as
illustrated in Figure 2. The original CA clients were
constructed as “multi-stand-clients”; in other words,
simultaneous and multiple runs on different PCs are
possible. Such a performance is realized by using “set
value” and “read back value” in ActiveX CA with
LabVIEW programming [5]. Due to the “multi-clients”
structure of the program, translations of the CA client
programs to the multi-purpose application have become
straightforward. Both the multi-purpose client program
and the original client programs can be used
simultaneously. In the multi-purpose application program,
the “Event Structure” and “Stuck Sequence Structure” are
mainly used for the automation operation processes.

The touch panel display is supported formally by
Windows 7. Actually, the touch panel and the touch panel
PC capability existed before Windows 7. But, with
Windows 7, the high-resolution touch panel display can
be used without any device driver and at low cost. We use
iiyama ProLiteT2250MTS (1920x1080) for the multi-
purpose client touch panel display. The resolution of the
touch panel display of the system is sufficient for creating
such accelerator application program. Though the touch
panel display is not necessary device, it significantly
increases the intuitive manipulation of the machine
control.

Figure 2: Front panel of the multi-purpose application program on MS-Windows 7 with touch panel. Each client
function is displayed by selecting the relevant tab keys.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL023

Accelerator Controls Operator interface software and human factors

77

The ring RF system, the RF-knockout (RF-KO) system
for the bunch filling pattern, and the master trigger are not
yet contained in this application. The master trigger
system will on-line in 2011, and the RF-KO system will
be added to this application in the near future. The ring
RF control system will be contained with slight
modification of the original ring RF CA client program.

I TERFACE TO THE RADIATIO
I TERLOCK SYSTEM

The radiation interlock system was originally
constructed independently of the accelerator control
system for rigid operation. The radiation interlock system
only produces permission signals for operation of the
accelerator control system at injection and ramping up.
Due to the independency of these systems, the operation
has become stable and the maintenance is easily
performed. But, for easy accelerator operation, it is better
to have an interface between the accelerator control
systems and the radiation interlock system. Hence, the
next five signal interface to the accelerator control system
and radiation interlock system were constructed:

• Injection Mode Set/Off.
• Beam Switch On/Off.
• Acceleration of the storage ring and Accumulation

Mode Set/Off.
• Acceleration Permission for the storage ring.
• Experimental Operation Permission.
• Monitoring of each status.
For constructing interface, a new PLC is installed in the

accelerator LAN. By sending a signal from the multi-
purpose client application to the accelerator PLC, the PLC
produces the prescribed pulse to the PLC of the radiation
interlock system. The status signals from the interlock
system are also captured using the accelerator PLC.
Figure 3 shows the communication interface between the
accelerator control system and the radiation interlock
system. For secure communication, the signals are
hardwired and not directly connected with the Ethernet
LAN.

PLC
Yokogaw

a (FA
-M

3) Status Monitoring

Injcetion Mode Set/Off

Experimental Operation Permission

Multi-purpose
CA Client

Acceleration Mode Set/Off
Acceleration Permission

Beam Switch On/Off

Accelerator Control
System

Radiation
Monitoring

Radiation & Human
Interlock System

PL
C

Fuji E
lectric (FPU

)

E
thernet

T-L
ink

Figure 3: Interface between the accelerator control
system and the radiation interlock system.

TOTAL PERFORMA CE
Before installing the multi-client application program,

we had to carry out more than 20 steps from the injection
to the user’s experimental operation. Using the new multi-
purpose application program, following eight steps for
injection operation are eliminated:

I. Set Injection Mode.
II. Beam Switch ON.
III. Set Linac Klystron Shutdown.
IV. Set Ramp up Permission.
V. Set Acceleration and Accumulation Mode.
VI. Set Ring PS Tuning and Feedback ON.
VII. Set Global COD correction.
VIII. Set Insertion Devices to their home position.
In the injection processes, we only use three PCs

(multi-purpose application, RF-KO, and ring RF system)
and a switch (master trigger). The manipulation of the
radiation interlock system is completely automated in the
injection processes. Furthermore, the shutdown process
was partially automated by setting the insertion device to
the full open position and by setting the interlock mode of
the acceleration and the accumulation to off.

By including the master trigger and the RF-KO systems
on the multi-purpose application, a total of 10 steps will
be reduced. We are intending to achieve “one-touch”
accelerator operation by the multi-purpose client
application near future.

SUMMARY
We constructed a multi-purpose client program and

interfaces between the accelerator and radiation interlock
system. In the multi-purpose client program, many tasks
for injection are sequentially processed step by step. By
developing this multi-purpose client application, the
complexity of daily operation has been significantly
reduced. In addition, adopting a touch panel display with
MS-Windows 7 allows intuitive accelerator operation.

REFERE CES
[1] T. Tomimasu, et al., “The SAGA Synchrotron Light

Source in 2003”, PAC’03, Portland, May 2003, p.
902 (2003).

[2] Y. Iwasaki, et al., “Lattice Design of SAGA
Synchrotron Light Source”, PAC’03, Portland, May
2003, p. 3270 (2003).

[3] H. Ohgaki, et al., “Design of Control System for
SAGA Synchrotron Light Source”, PAC’03,
Portland, May 2003, p. 2387 (2003).

[4] H. Ohgaki, et al., “PC-LabView Based Control
System in SAGA-LS”, PAC’05, Knoxville, May
2005, p. 3976 (2005).

[5] K.-U. Kasemir, (2003);
 http://icsweb.sns.ornl.gov/kasemir/axca/index.html.
[6] T. Kaneyasu, et al., “Present Status of the SAGA-LS

Control System”, ICALEPCS’09, Kobe, October
2009, p. 307 (2009).

WEPL023 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

78

Operator interface software and human factors

CONTROL AND TIMING SYSTEM DESIGN OF CPHS *
Qiang Du#, Hui Gong, Xialing Guan, Jie Wei, Jianmin Li, Beibei Shao

Department of engineering physics, Tsinghua University, Beijing 100084, China

Abstract
The Compact Pulsed Hadron Source (CPHS) in

Tsinghua University is designed as a university based
comprehensive hadron research and application platform.
This paper describes the control and timing system of
CPHS.

INTRODUCTION
The project of CPHS in Tsinghua University consists of

an accelerator front-end—a high-intensity ion source, a 3
MeV radiofrequency quadrupole linac (RFQ), and a 13
MeV drift-tube linac (DTL), a neutron target station—a
beryllium target with solid methane and room-
temperature water moderators/reflector, and experimental
stations for neutron imaging/radiography, small-angle
scattering, and proton irradiation. [1,2]

The control system of CPHS consists of an EPICS
(Experimental Physics and Industrial Control System)
based distributed run-time database and control system, a
timing and event distribution system, and a digital low
level RF control system.

The timing and event distribution system defines the
global system time frame as well as specific events that
trigger local devices by an event generator and receiver
framework, so that the time delay of each event could be
controlled in 10ns resolution, and the timing jitter of
trigger signal is below 0.1ns. The hard-real-time machine
protection system is also integrated in the event system so
that a fault event could be responded within 50 micro-
seconds. Field control signals such as water temperature,
vacuum level, magnetic current, beam diagnostics, and
low level RF (LLRF) phase and amplitude are monitored
and controlled via the EPICS database through Ethernet.

EPICS BASED CONTROL SYSTEM
Control System General Layout

As shown in Fig 1, the EPICS control system uses
several input/output controllers (IOC) to manage local
process variables and establish a distributed database. The
IOCs are running Linux/RTEMS kernels with device
support of different local bus interfaces (serial, GPIB,
stepper motor, DAQ modules, etc), communicating with
local instruments monitoring and controlling water
temperature, power supply, vacuum status, and LLRF
status. All EPICS records are accessible from control
room via Ethernet by Channel Access protocol, and are
managed through Operator Interfaces (OPI) for

monitoring, data logging, alarm handling, and some
interlocking control. The application server and
development server are responsible of providing
dhcpd/bootp/nfs services for net-booting IOCs and
maintaining IOC kernels, IOC applications, bootup scripts
and EPICS records.

Figure 1: EPICS control system for CPHS

TIMING AND EVENT DISTRIBUTION
SYSTEM

Timing System General Layout
CPHS timing events are generated, encoded and

distributed through optic fiber at 108.3MHz rate
(325MHz divided by 3), and then decoded by different
local receivers. (Fig 3.)

Figure 2: Event frame [3]

The event generator (EVG) is responsible of creating
and sending out timing events to an array of event
receivers through a fanout module. The event transfer rate
is derived from the linac RF master frequency at 325MHz.
The EVG is also capable of synchronizing to the AC line
at 50Hz and phase delay to adjust the triggering position
relative to the main voltage phase.

 __

*Work supported by “985 Project” of the Ministry of Education of
China, CAS Sciences Hundred People Initiative (KJCX2-YW-N22)
#duqiang@tsinghua.edu.cn

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL025

Accelerator Controls Development and application frameworks

79

EVG accepts input from external RF clock (325MHz)
with no PLL, while each EVR has a PLL tuned with
±20ppm precision to the master clock.

The event receiver (EVR) is responsible of receiving
and decoding event frames. A global time stamp is also
distributed as 32-bit unsigned integer to EVRs. The EVR
includes a prescaler and delay counter to adjust local
trigger pulse delay. The controller of EVR is integrated
with an EPICS real-time IOC so that event encoder,
sequence, local delay, local trigger frequency are able to
be managed through any EPICS OPI.

Events are encoded and queued by EVG, and then
distributed by a fanout module to local EVRs through
fibre link as event frames which consists of a 16-bit frame:
eight bit event code and eight bits of distributed bus bits
as shown in Fig 2. The event bit rate is 20 times event
code rate, which is 2.16GHz in our case.

Figure 4: Downstream/Upstream event link

Besides the downstream event link, there is also an
upstream from EVR to EVG with the same frame bit.
This mechanism could be used as the interlock scheme for
machine protection systems. (Fig 4.)

Hardware

The EVG and EVR are selected using commercial
products from Microresearch Finland, which was
conceptually based on event systems of ANL APS and
Swiss Light Source. The hardware module is PXI
compatible, and the firmware is configured with modular
register mapping.

EVG and EVR are installed in separate PXI chassis
with embedded controllers from National Instruments.
The controllers are connected to the EPICS control
network for remote access. A 12 way fanout module is
used to distribute fibre signals from EVG to multiple
EVRs.

The picture of EVG and EVR module is shown as Fig 5.

Software and EPICS support
There already are EPICS support for MRF hardware in

use at SLS, SLAC, Diamond, etc, but the support of
modular regster mapping cPCI hardware is just under
development by the project mrfioc2[5,6], which also
follows the regime of devLib-pci, the operating system
independent device support of EPICS.[7]

Every EVG and EVR module has a separate controller
running Linux or RTEMS 4.9.4 with an EPICS
application. The controller is configured to be net-booted
from the application server with gPXE[4] boot-loader.

Figure 3: Framework of CPHS event distribution system

WEPL025 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

80

Development and application frameworks

The EPICS application is built on EPICS base 3.4.11 with
mrfioc2 support, which containing the common devPCI
driver module, MRF common PCI API, EVG/EVR device
support module, and a set of EPICS records with interface
of Channel Access protocol.

Figure 5: Picture of PXI event generator/receiver.

CONCLUSION

The prototype of CPHS control and timing system is
developed with EPICS support. The timing system is built

based on MRF event distribution devices, and the OS-
independent EPICS device support module for EVG and
EVR are tested on Linux 2.6 and RTEMS 4.9.4.

REFERENCES
[1] Jie Wei, et al, “The Compact Pulsed Hadron Source:

A Design Perspective”, Journal of the Korean
Physical Society, 2010, vol. 56 (1), no6, pp. 1928-
1935

[2] Jie Wei, et al, “The Compact Pulsed Hadron Sourse
Construction Status”, Proceedings of IPAC’10,
Kyoto, Japan, 2010, 633

[3] cPCI-EVG-230 manual, Micro-Research Finland Oy,
http://www.mrf.fi

[4] The Etherboot project, http://etherboot.org
[5] IOC for MRF event timing hardware, http://

epics.hg.sourceforge.net/hgweb/epics/mrfioc2
[6] M Davidsaver, J Shah, E Bjorklund, “MRF Timing

System IOC status”, EPICS collaboration Meeting,
Aix-en-Provence, France, 2-4 June 2010

[7] MR Kraimer et al, “EPICS: Operating-System-
Independent Device/Driver Support”, Proc. of
ICALEPCS, 2003, 205

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL025

Accelerator Controls Development and application frameworks

81

TINE/ACOP STATE-OF-THE-ART VIDEO CONTROLS AT PETRA III

J. Bobnar, I. Križnar, T. Kusterle, Cosylab, Ljubljana, Slovenia
D. Melkumyan, S. Weisse, DESY Zeuthen, Zeuthen, Germany

P. Duval, G. Kube, J. Wilgen, DESY, Hamburg, Germany

Abstract
The TINE/ACOP video system is a complete state-of-

the-art solution for streaming beam video, featuring live
analysis and live beam image display inside ACOP video
component, which can be placed in any Java Swing panel.
After a number of iterative improvements and
embellishments, the system has matured to stable
production quality in the beginning of year 2010. The
system consists of the following components: a TINE
device server captures a video image [1] and encodes it to
the standard TINE IMAGE format. The TINE transport
layer streams the IMAGE objects to clients as it would
any other data chunk [2]. The Java TINE client passes the
IMAGE object through the analysis Java bean, which then
performs fast statistical analysis of beam position and
size. The streamed image plus analysis data are displayed
in the Java video component, which is part of the ACOP
components. Additional capabilities are background
subtraction, automatic or manual threshold subtraction,
enhanced coloring and saving snapshot as PNG file.
Optionally, the analysis bean can be used standalone as a
common service and results are further distributed via an
intermediate TINE server written in Java.

INTRODUCTION
The origin of the TINE Video System goes back to the

design of the Photo Injector Test Facility Zeuthen (PITZ),
which is a test facility for research and development on
laser driven electron sources for Free Electron Lasers and
linear colliders [1]. The optimization of an electron gun is
only possible with the help of an extensive diagnostic
system, including the video system.

The whole video system includes a rich set of
components, covering the low level hardware integration
and image grabbing, to the transport protocol and data
visualization tools.

In this article we will focus on the upper level of
components, which have recently been upgraded and put
to use also at DESY Hamburg.

DATA ACQUISITION AND TRANSPORT
The image acquisition is implemented in a grabber

server written in C++. The main purpose of this server is
to acquire grayscale images from the image source and
pre-process the data (e.g. compression).

The transfer of the high resolution image (up to 2
megapixels) is done using the TINE transport protocol.
TINE allows various choices of data transport including
multicasting, unicast UDP and TCP. Combining this with
compression algorithms the TINE video system easily
achieves updates at 10 frames per second.

The image transported by TINE is packed into a
dedicated IMAGE data type, which is composed of an
image header providing meta information about the image
(frame size, bit depth etc.) and the actual image data of
variable size – TINE is not limited to the transport of a
fixed size image, but can be used to transfer any size one
desires (within the limits of the network traffic). The
IMAGE data type can also be embedded within TINE
structures and is used as a standard method of exchanging
image data between video system components.

IMAGE VISUALIZATION AND ANALYSIS
Java has been selected as the target

platform/technology for the video system clients. The
client side is responsible for visualization of the image as
well as performing the data analysis and processing of the
image data. In some respects we might expect Java to
reduce the execution speed of the software, which would
be a trade off for platform independence. This does in
fact play a role regarding for instance graphics or low-
level networking functionality. However, due to the high
processing power of today’s desktop computers, this is no
longer a serious drawback and Java has proven to be very
powerful and easy to use for writing the video clients.

A dedicated AcopVideo bean has been implemented,
following the conventions and standards of the ACOP
framework [3]. This automagically provides some
common functions and tools (e.g. connection selection,
drag and drop), as well as makes it easy for other
developers to provide rich-clients that deal with the video.

The AcopVideo bean was implemented in pure Java,
which means that it doesn’t use any native resources
(besides the standard ones provided by JVM) and is
completely platform independent. The AcopVideo bean
was designed with performance in mind, which drove the
architecture and implementation of the drawing
algorithm. The performance of the video bean today
easily satisfies the requirements of the operation control.

In addition to high performance, the video bean
provides much functionality, which is not available in the
older native or commercial video clients. The AcopVideo
can display any TINE video channel or still image, which
can be either loaded from several standard image files
(JPEG, PNG, etc.) and quality (8 to 24 bits per pixel), or
provided through the TINE channel (using the event
notification system in order to minimize the necessary
network traffic). The AcopVideo also offers several other
options for image visualization and enhancements, such
as different color modes for luminosity data, histogram
equalization, aspect ratio changes and zooming, display of
meta information etc.

WEPL028 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

82

Diagnostics

IMAGE PROCESSING AND ANALYSIS
For better understanding and easier interpretation of the

image additional analysis is required. From the image of
the beam one can extract the emittance as well as other
properties, which the control operators are interested in.
However, the extraction of such data requires a deep
analysis and statistics calculation on the image data on the
fly while the image is streamed from the server. Such
analysis can by itself be extremely time consuming, and it
can be also very difficult to perform if the beam does not
have ‘regular’ shape (round or at least elliptical).
Consequently much effort has been put into finding the
most reliable and fastest analysis solution.

Statistical Analysis
The basic analysis of the image is done by calculating

the statistical parameters of the beam. Using simple
statistical algorithms (assuming that the beam has a non-
sparse approximately elliptical shape) the mean value and
standard deviation of the beam profile are calculated. The
2-dimensional analysis of the image also provides the
rotational parameter of the beam ellipse.

In addition to this analysis, a side-view projection of
the image is also analyzed. The pixels in a single row (and
column) are summed together, what leads to two 1-
dimensional profiles – one for horizontal axis and one for
vertical. Similar as for the 2-dimensional analysis, the
statistical parameters are also calculated for the side
projections.

The calculated parameters can be used for the first
approximation of the image interpretation. They provide
reliable information when the image has low noise and no
additional artifacts such as side light or camera pixel gain
defects, split beam etc. AcopVideo bean provides
functions for easy display of these parameters together
with the live image; crosshair marker is used for display
of the mean and standard deviation, while the side
projections are plotted at the bottom and side of the image
(see Figure 1). The calculated parameters can also be
extracted separately and displayed for example in a
dedicated table or used in further analysis.

Analysis Improvements
When the image is noisy (or generally not regular),

additional algorithms have to be used to obtain better
results. Thus, a Region of Interest (ROI) was introduced.
When the beam is localized to a small part of the total
image one can select a narrow area around the beam peak
to reduce the size of the image that needs to be analyzed.
Usage of the ROI significantly improves the statistical
parameters, since it eliminates the contribution of the
noise or other artifacts in the distant regions from the
beam peak (see Figure 1).

Another improvement is the usage of a threshold value,
which defines the minimum values that a pixel has to
have in order to be included in the calculation. This
eliminates low amplitude noise in the dark areas and puts
more weight on the bright area, where the beam is

located. The threshold value can be either explicitly
specified by the user or calculated automatically. In the
former case the threshold value is a constant in time; in
the latter case the user specifies a region within the image
(usually the dark region) and that region is used to
calculate the mean pixel value. The mean value is then
used as the threshold value during the analysis. In this
case the value changes at each image update.

Next round of improvement introduced the use of the
background image subtraction. A still image representing
the background (the image area the beam turned off) is
subtracted from each frame in order to eliminate
permanent artifacts of image background. User can
choose between a pre-stored image from the file system
or grab a live image from the TINE channel (in the latter
case the beam has to be turned off during that time in
order to obtain the only background). The selected image
is then subtracted from the original live image, which
produces an artifact-free image used for further
processing.

Further improvement of analysis was achieved by
introducing a smoothing algorithm. When the image is
extremely noisy, smoothing can be used to average out the
noise. For each pixel the new value is calculated as the
average value of a few points around the particular pixel.
This can lead to more stable and reliable statistical
analysis results.

Best Fit Analysis
In certain cases it turned out that even with all the

aforementioned improvements, the statistical analysis still
does not provide good enough results. While the mean
value is approximately correct, the standard deviation
might overshoot. To overcome this problem an additional
algorithm has been implemented, which calculates the
beam properties more precisely.

Least square curve fitting algorithm was implemented
to find the best fit for the beam image side projections.
We decided to use a Gauss function with linear
background:

n, k x
2

)x-(x
expA y

2

2

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

σ

where
n k, , ,x A, σ

 are the fitted parameters. To find the numerical solution
to these parameters we have implemented the Levenberg-
Marquardt algorithm [4]. In most cases the algorithm
converges to the proper solution, but to guarantee better
stability good starting values should be provided. For the
first guess the statistical analysis results posed as a good
guess and after the curve is fitted for the first time all
consequent fits can be obtained starting with the previous
results, since the beam changes are usually very slow
(two consequent frames do not differ much).

This algorithm has proven to be much more reliable
and trustworthy than the statistical analysis already
without the use of improvements discussed in the

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL028

Accelerator Controls Diagnostics

83

previous sections. If combined with the background
image and threshold calculation, the algorithm produces
very stable and accurate results (see Figure 1).

The drawback of the least-square fitting algorithm is
that it consumes significantly more time than the
statistical analysis. On a desktop PC it is still possible to
observe the live image up to about 2 fps, which is in most
cases enough for normal operations, but at higher rates
frame drop might occur. Therefore, the user has the option
to turn on or off each individual feature in order to display
only the values he is interested in.

Figure 1: AcopVideo bean displaying a live beam and its
profile. A region of interest is chosen around the peak of
the beam (blue rectangle). Red curve is the result of
statistical analysis; green curve is fitted gauss function.
The table is used to show the numerical values of the
analysis results.

Modularity and Analysis Server
The image analysis has been implemented

independently of the video bean. This allows its usage at
any level on which someone is interested into the beam
analysis. The analysis bean can simply be used as an extra
layer between the source of the image and the destination.

The modularity of the analysis has been used by the
general analysis server, which can be used to perform the
analysis instead of a desktop computer. The analysis

server is written as a regular TINE server, which is
registered in the TINE Equipment Naming Service and
can be used as a source for the AcopVideo. All that the
server requires is the TINE channel which supplies the
live image and the output of the server is a dedicated data
object, holding the original image and all the calculated
parameters. The use of the analysis server lowers the CPU
usage on the client PC, which is particularly useful when
one wants to observe the analysis by several different
clients (on the same or on multiple computers). However,
the downside of the server is that it generates a bit more
network traffic since it has to send more data (including
the side view profiles etc.).

AcopVideo bean is designed in a way that it can use
both the local analysis (on the client computer, where the
AcopVideo is running) and the remote analysis
(connected to a remote server). User is able to switch
between the two options in run-time and use the one that
is more appropriate at any given time.

CONCLUSION
Much progress has been done on the video system since

the beginnings. A lot of effort has been put into
development of high performance tools, which can be
used in day-to-day operations in the control room. The
recent image analysis implementation made the video
applications much more than just a simple visualization
tools – it became a powerful diagnostic tool for online
emittance diagnostics at PETRA which tremendously
helps the operators in the control room to achieve full
accelerator performance.

Nevertheless, there is still a lot of room for
improvements. The next step is the optimization of the
transport and compression of the image, which might
consequently require the optimization of the analysis
algorithms. The analysis itself also leaves options for
further development, such as for example 2-dimensional
Gaussian fit.

REFERENCES
[1] S. Weisse et al., "Status of a versatile Video System

at PITZ, DESY-2 and EMBL Hamburg", ICALEPCS
2007 Proceedings, Knoxville, TN, USA

 [2] S. Weisse et al., “TINE Video System: proceedings
on redesign”, ICALEPCS 2009 Proceedings, Kobe,
Japan

[3] J. Bobnar et al., “The ACOP Family of Beans: A
Framework Independent Approach”, ICALEPCS
2007 Proceedings, Knoxville, TN, USA

[4] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery, “Numerical Recipes in C, The art of
Scientific Computing, 2nd Edition”, Cambridge
University 1992

WEPL028 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

84

Diagnostics

APPLICABILITY OF XAL FOR ESS

Jaka Bobnar, Cosylab, Ljubljana, Slovenia
Steve Peggs and Charles Garrett Trahern, ESS, Lund, Sweden
Todd Satogata, Jefferson Lab, Newport News, Virginia, U.S.A.

Thomas Pelaia II and Christopher K. Allen, ORNL, Oak Ridge, Tennessee, U.S.A.

Abstract
XAL is a Java-based application framework, developed

at the Spallation Neutron Source (SNS). The framework
is designed to provide an accelerator physics
programming interface to the accelerator, and it allows
creation of general-purpose applications dedicated to
various parts of the accelerator.

The backbone of the XAL framework is an XML-based
description of the accelerator. The XML file provides the
list of all devices, their properties, and relationships
between devices within the system. Since the accelerator
structure is defined in the relational database, XML can
be generated directly from the database using appropriate
adapters. This allows the framework to be more generic
and enables it to run on different sites using various
configurations.

The generality of XAL and the rich set of applications
and tools provided by SNS make the framework very
appealing for use at other accelerator sites. The European
Spallation Source (ESS) is being built in Sweden, and is
similar in complexity to the SNS. XAL has therefore been
considered for use at ESS for high-level applications. The
applicability of XAL and prototyping for ESS are
discussed in this article.

INTRODUCTION
The XAL framework was developed by SNS as a part

of their accelerator physics activities. It was designed to
provide a common set of tools and applications used in
machine physics and accelerator control. Today the
framework includes a vast set of applications such as
Orbit Correction, Wire Scanner Analysis, Scanning
Application etc. These applications are all used in day-to-
day activities in the SNS control room.

XAL was designed from the start to be as independent
from machine details as possible. Therefore a specific
model was defined which provides a detailed description
of the accelerator. At start-up the model is parsed and
used by the framework to gain access to various parts of
the accelerator. The model allows XAL use at different
accelerator sites without changing the code, since the
model is supplied as a set of configuration files and is the
only part of the framework that needs to be adapted.

Recently XAL went under major restructuring in order
to make the code even more transparent and to allow
easier development of site specific applications and
components. ESS, being a similar machine to SNS,
appeared as a potential heavy user of this framework
(now named Open XAL).

ACCELERATOR MODEL
The backbone of the XAL framework is the accelerator

model. The model describes the layout of the accelerator
and its parameters as they are used by the applications.

The XAL model is defined in a hierarchical structure
within an XML file. This XML file is composed of
several different accelerator sequences, which consist of
other sequences or components each describing a
particular segment of the accelerator. Combined together,
they form a hierarchy of the complete accelerator down to
every particular device that can affect the beam path. In
addition, the XML file also provides all the necessary
pieces of information required for the control of a
particular physical device. For example, the magnet
description includes the strength of the magnetic field, its
position within the accelerator, the power supply
associated with it etc. [1].

XAL uses EPICS as the underlying control system to
communicate with the accelerator hardware. EPICS
communication uses a single “Process Variable” (PV) as
the fundamental unit for communication with high-level
software via a protocol called Channel Access. Therefore,
in addition to the physical description of the devices, the
XML model also carries information about associations
between EPICS PVs and accelerator devices. A single
device can have several different PVs, each assigned to
one particular device attribute.

Based on the information in the XML file, a Java model
is constructed by the XAL upon start-up of an application.
Each component within the XML structure is mapped to a
Java device object and can be treated as such in XAL
applications. Users can set or read the attributes
associated with any of those devices simply by changing
the value of a particular field in that object, and changes
are immediately reflected in the real system through the
PV registered for that particular attribute.

Though XAL currently supports only EPICS control
system, the underlying mechanism is abstracted so
Channel Access can be replaced by other communication
protocols. This permits some aspects of XAL to be truly
portable between accelerator sites.

Taking into account all the aforementioned pieces of
information, one can end up with an enormous XML
model, which might be very difficult to maintain.
Therefore, XAL works together with the central database,
which stores all the required information. A dedicated
XAL application gathers the information from the
database and generates the XML file. This ensures that
the model is always consistent with the accelerator and

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL029

Accelerator Controls Development and application frameworks

85

makes it very easy to implement the changes that were
introduced to the physical machine, if those are registered
in the database. The structure and type of the database are
not prescribed, since an XML generator can be written
specifically for each system. This increases portability by
only requiring site-specific adaptors to extract database
contents to XML. In addition, the same database can also
be configured to be used as a save/restore point for
control system variables allowing users to save current
state of the machine and restore it at any time later or any
other feature, which might need to store or load
information.

ONLINE MODEL
A critical component of many beam commissioning

activities involves comparison of measured quantities
with model predicted values. To facilitate this, XAL
includes an “online” model, which is a simple envelope
tracker designed for use in applications. This model
implements on-the-fly calculation of beam parameters
based on the machine settings [2-4].

The online model is loosely coupled with other parts of
the XAL framework. The main components are the lattice
(constructed from the aforementioned accelerator model)
and a probe (describing the beam and how it is to be
modeled). The lattice is generated via a set of rules from
the accelerator node device information (generated from
the XML model) and probe information is supplied via
another configuration file.

Based on this information one can use XAL to perform
simple simulations of the beam behavior inside the
accelerator and tweak simulated machine parameters to
achieve a desired response, then use the same framework
to send the desired settings to the accelerator. The online
model can also be used outside of XAL, as long as the
lattice and probe information are provided.

APPLICATION FRAMEWORK
The XAL Application framework is a framework for

rapid development of applications with a common look
and feel, which provides many features that users expect
from modern applications [5].

The application framework provides a set of classes
that the applications extend to use common XAL features.
The framework is based on Java Swing GUI components,
and provides a simple GUI builder called Bricks, which
can be used to build XAL applications even by developers
who are not experienced Java programmers.

Through the framework, developers can access various
common parts such as the accelerator model, the online
model etc. Putting it simply, the framework provides a
complete user interface to the accelerator.

Using the XAL framework has several advantages. The
most important is a consistent look and feel of all
applications used by the operators and therefore,
minimization of the troubles that could appear if each
application had slightly different layout, menu orders,
toolbars etc. Furthermore, many features (such as copy,

cut & paste, printing etc.) are automatically provided,
easing the load on the developer. Those features can
simply be turned on or off and the developer can focus
more on the application content and less on
implementation details.

In addition, the Open XAL project will support
localization. Each application will provide an externalized
text file where all the text (menus, buttons, labels etc.)
will be located. By replacing the file with a translated
one, users will be able to tailor the applications to their
needs. This will contribute to easier use of XAL at sites
where English is not the primary language.

EUROPEAN SPALLATION SOURCE
The European Spallation Neutron Source (ESS) is a

project to design and construct a next-generation facility
for research with beams of neutrons. At 5 MW beam
power, The ESS will be the brightest source of neutrons
in the world, enable scientists across many disciplines to
perform experiments and investigate materials. The ESS
will also retain and strengthen the current European
position in the neutron science [6].

The ESS will be composed of a high-current proton
linac, which will deliver 5 MW of power to the target at
2.5 GeV, with a nominal current of 50 mA [7]. With
respect to the controls conceptual design, the machine
will be similar to SNS. ESS has therefore planned to take
advantage of experience and expertise developed at SNS,
including standardization of a Controls Box environment
for distributed R&D and development among partner
laboratories [8], and use of the XAL framework as a
solution for high-level applications and accelerator
physics tool development.

XAL AT ESS
An XAL Workshop was held at SNS in May 2010,

where current and potential future users of XAL
discussed future goals and framework development.
Attendees represented 11 organizations, including ESS,
SNS, FRIB, BNL, TRIUMF, and CSNS [9]. Part of the
outcome of the workshop was the previously mentioned
plan for refactorization of the XAL libraries and
structures. This refactorization should encourage
development by users other than SNS. It will introduce
much more modularity and easier maintenance;
cooperation and sharing among users will also be easier.

Open XAL will be split into several different parts,
each responsible for a particular group of functionalities
(e.g. separating the core from the devices model, fully
detaching the database access layer, etc.). Each user of
XAL could then decide what modules to include in their
distribution, which devices implementations are required
by the machine, and so on.

At present, ESS has a partially constructed lattice
database. Multi-particle beam dynamics for the linac has
been studied using the TraceWin code [10]. The results of
these studies and simulations have been entered into the
MySQL database. A dedicated Java application has been

WEPL029 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

86

Development and application frameworks

written to gather the data from the lattice database and
constructs the accelerator model from the Java objects.
This model can be serialized to an XML file, using the
document definition specified by XAL. All the devices
and other data that are required by XAL (e.g.. power
supplies for magnets, epics channel names), but are yet
missing in the lattice database are filled with dummy data
to enable XAL model use at the earliest development
stages.

Because there is no available ESS EPICS database yet,
the model can only be used in simulation mode. A
dedicated application called Virtual Accelerator is
provided by XAL, which loads a specific accelerator
sequence and simulates EPICS channels using the
Channel Access Server (CAS) [11]. The values simulated
by the CAS are calculated by the online model. Due to the
nature of the CAS, the simulated channels can be used as
any other EPICS PV and therefore, XAL can also connect
and use those channels directly without the need to
modify any part of the code.

The virtual accelerator feature will play an important
role during the development and commissioning period of
the ESS accelerator. It permits tests of features and the
design of the accelerator without the need to connect to a
fully implemented control real system. Users will be able
to develop software without concerns about early
integration problems.

The next step in adaptation of XAL for ESS is the
addition of new devices and potential adaptation of the
existing devices. ESS will use certain types of physical
devices that are not used at SNS and are therefore non-
existent in XAL. These new devices will have to be
implemented and added to the XAL model. The optical
properties of the new devices will also have to be
implemented to allow use of the devices in the online
model to perform beam dynamics simulations.

CONCLUSIONS
XAL has been a collaborative project from the

beginning with roots in Brookhaven’s Unified

Accelerator Libraries, with contributions and interest
from other labs around the world [12], though the main
effort of the project has been to deliver applications for
SNS. This has resulted in fragmentation of the code
among various contributors. There has been a recent
effort to organize and coordinate the project. XAL’s
position as a useful accelerator application framework
will be strengthened by new laboratories joining the
collaboration. The use of a well-developed framework
and tested applications will improve early adoption of
control application standards, and should ease the
commissioning period of the ESS.

REFERENCES
[1] J. Galambos et al, “XAL Application Programming

Framework”, ICALEPCS 2003 Proceedings
[2] J. Galambos et al, “XAL Application Programming

Structure”, PAC 2005 Proceedings
[3] J. Galambos et al, “XAL – The SNS Application

Programming Infrastructure”, EPAC 2004
Proceedings

[4] C. M. Chu et al, “SNS Application Programming
Infrastructure and Physics Applications”, APAC
2004 Proceedings

[5] T. Pelaia II, “XAL Application Framework and Brick
GUI Builder”, ICALEPCS 2007 Proceedings

[6] http://www.ess-scandinavia.eu/
[7] M. Eshraqi et al, “Conceptual Design of the ESS

LINAC”, IPAC 2001 Proceedings
[8] T. Satogata et al, “ESS Controls Strategy and the

Control Box Concept”, these proceedings.
[9] http://neutrons.ornl.gov/conf/XAL2010
[10] http://irfu.cea.fr/Sacm/en/logiciels/index3.php
[11] http://caj.cosylab.com
[12] T. Pelaia II et al, “XAL Status”, ICALEPCS 2007

Proceedings

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL029

Accelerator Controls Development and application frameworks

87

CCCP - COSYLAB COMMON CONTROL PLATFORM

Miha Rescic, Cosylab, Ljubljana, Slovenia
Ziga Kroflic, University of Ljubljana, Ljubljana, Slovenia

Abstract
Cosylab common control platform (CCCP) is a

lightweight hardware control platform designed to
provide a simple interface to various types of hardware
components and fast and simple integration of such
hardware into control systems. The core of the platform is
the scripting language lua. This lightweight and flexible
scripting language provides software real-time control of
hardware modules over all provided connections (RS232,
Ethernet, USB, SPI, CAN, I2C, GPIO) as well as fast and
simple ways of implementing modules for more complex
structures (FPGA). The platform provides various levels
of control with an embedded GUI or full remote control
over an embedded web server, archiving capabilities with
a database back-end and different device simulator
modes. The platform's small footprint, high degree of
flexibility and high level of hardware abstraction make
the CCCP an ideal control platform for more complicated
hardware instruments and at the same time a perfect main
control board for devices that incorporate various
complex hardware elements. The design and possible
implementations of this platform will be discussed in this
article.

INTRODUCTION
Development of a control system is never an easy nor a

straightforward task. With the complexity of today’s
technologies, if we’re speaking of technologies in general
or of technologies applied in specific fields, the number
of different components or building blocks of the control
systems and the complexity overall grow rapidly.

Within this rapidly expanding field it is very difficult to
find a common ground and usually much effort is spent
on developing highly specific solutions capable of
tackling only a limited array of problems. Thinking of
common grounds in control systems field brings to mind a
reusable, as generic as possible platform that would
represent the base of the control system. This was the
motivation behind CCCP: minimize the efforts needed for
base platform development and allow emphasis on more
specific and complex components development,
integration, testing and QA.

ARCHITECTURE
The crucial element of the platform is the architecture.

CCCP tries to keep logical entities separated from each
other as much as possible. This way, reusability and
efficient design are possible.

Custom Input / Output board

Cosylab Common Control Platform

Device Drivers, HW Support

High Level Device Logic

Low Level Device Logic

Specific Hardware Components

Figure 1: CCCP Architecture

Custom input / output board
On the lowest level of the CCCP architecture is the

customized input / output board. Although the board itself
is not a part of the CCCP platform it provides problem or
component specific solutions regarding hardware
connections, specific protocol implementations or more
advanced logic (see Fig. 2). The custom board
development is bundled together with the CCCP platform
development in order to provide the optimum solution for
the specific problem.

Some of the IO board’s main purposes are described
below.
• Target hardware development away from the

platform core and towards specific implementation
needs.

• Provide advanced logic and (hard) real-time support
with FPGA.

• Allow connectivity with existing CCCP IOs or
implementation of any custom IO required.

• Minimize the complexity of custom HW
development.

• Minimize the amount of redundant development
efforts regarding non-reusable hardware.

IO 1
IO 2 IO

 4

IO
 5

IO 3

pr
oc

es
s o

r b
oa

rd
 I F

p r
oc

e
s s

o r
 b

o
a r

d
IF

FPGA

processorFLASH

RAM
Eth.

on-board IFs(serials, sound…)

OSdrivers

API

LUA

Figure 2: Custom IO board

Device drivers and hardware support
The layer residing directly over the custom IO board,

the lowest layer of the CCCP core architecture, provides

WEPL031 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Control hardware and low-level software

88

Embedded device control

all the needed logic to communicate with hardware. It
contains two crucial elements:
• OS specific drivers providing basic system input /

output functionality.
• HW modules providing an interface layer between

the underlying hardware components and higher-
level device logic.

The HW modules not only allow high level logic to
easily interact with the underlying hardware but create an
abstraction layer between the two that can be replaced by
a mock layer in absence of actual hardware. A mock
layer or a simulated layer makes development possible
without actual hardware and allows more flexible testing
(without hardware limitations) and much faster
integration.

Low level device logic
The low level device logic incorporates all the services

and layer logic needed for the CCCP platform to function
properly. They lay the foundation for the higher layer
logic and provide the tools that allow developers and
engineers faster development.

Some of the main components residing in the low level
device logic:
• HTTP server for northbound communication and

control.
• Priority task scheduler with support for interrupts

from HW modules.
• Lightweight database for storing data, events and all-

purpose logging.
• Generic FIFO queues for inter-process data

exchange.
Most of the low level logic is written in C

programming language but some segments also use
components written in the scripting language lua.

High level device logic
The highest CCCP architectural layer is where the

magic happens. This layer, also called the “instrument”
logic layer, is developed entirely with the scripting
language lua.

The choice of scripting language over a programming
language has at least these advantages:
• All the complex implementations are done in lower

layers thus abstracted away from the developer.
• Because of simpler syntax, robustness and user

friendliness scripting languages make development
available to other team members as well, e.g.
engineers.

The use of a higher level of logic together with an
application and UI framework (e.g. Nokia’s Qt) makes it
possible to further upgrade the device with GUIs and
other device interfaces (touch screens, ...).

COMMON CONTROL PLATFORM
In order to provide a truly common platform there are

some aspects of the platform that need to taken into
consideration.

Customizability
Common platform must provide enough flexibility to

allow easy customisation for various implementations.
Therefore, the core CCCP has no direct IO connectors or
switches. It only provides a standard TX-DIMM
connector with standard pinout. In order to connect the
common control platform to corresponding control
system components a separate IO board must be
developed.

By mechanically separating the logical parts into two
components (CCCP and the IO board) we achieve a high
degree of flexibility and customizability. With the custom
IO board approach the solution can be very problem
specific but still at the same time very generic since all of
the core logic is kept on the CCCP platform. The IO
board merely serves as an interface to hardware
components whereas the implementation of the logic
resides on the generic CCCP board and can be further
reused in other various control systems or subsystems.

Size and form factor
One of the first limitations a standard common platform

encounters is its size and form factor (see Fig .3) but the
size of CCCP (DIMM200-module standard size: 67.6 mm
x 26 mm x 3.6 mm) makes is suitable for almost any
application.

Figure 3: CCCP size

Processor and operating system
The other important aspect of the common platform is

the choice of the processor and the operating system. This
is why CCCP is powered by an ARM9 400 MHz
processor with the operating system of choice being
Linux running the 2.6 kernel.

The combination of ARM processor and Linux OS
allow users and developers to use a wide range of existing
tools, from cross-compilers to integrated development
environments.

Connectivity
In order to connect various components to the common

platform a number of standard IOs must be supported.
CCCP provides the following possibilities (only the most
common options are mentioned):

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL031

Control hardware and low-level software Embedded device control

89

• 10 / 100 Ethernet
• 5 x UART
• 3 x SPI
• 3 x I2C
• 4 x GPIO
• 3 x 12 bit ADC
• 2 x CAN

PRODUCT COMPONENT SIMULATION
The most important aspect of CCCP is the possibility to

substitute real hardware components with mock or
simulated components (see Fig. 4).

The architectural layering described above, especially
its Device driver and HW support layer allows a smooth
interchangeability between real hardware components and
software-simulated components. Because the hardware
modules are essentially exposed to higher level device
logic it is, after all the interfaces have been defined and
with the use of lua flexibility, quite straightforward to
make the switch. The simulated device components are
implemented at a higher level of logic (in the high-level,
lua logic layer) therefore they are overriding any actual
hardware components.

Agile development
The process of mocking or simulating absent hardware

components makes it possible to introduce new
approaches to otherwise rigid hardware development
field. One of these approaches is agile development.
Some of the benefits:
• Difficult and complex tasks can be dealt with earlier.
• Problems and complications are discovered earlier

and therefore resolved earlier.
• Development process can be split into multiple tasks

from the beginning and therefore modified based on
completion of and feedback from such tasks.

Test driven development
Testing in hardware development is usually the last

stage of development process. With the introduction of
simulated components the testing can take place from a
very early stage onwards.
• Every step of development can be backed up and

controlled by matching tests.
• Tests provide feedback and allow the agile process

mentioned above to function properly.

REAL-WORLD IMPLEMENTATIONS
Some of the possible use cases of CCCP control

platform are described below.

Remote hardware control
One of the basic examples of CCCP usage would be

remote monitoring and control of hardware devices, e.g.
household appliances.

Figure 4: Household control and monitoring

Specific instrument interface
CCCP could also provide an interface to various

complex instruments and simplify the integration of these
components into the control system.

Figure 5: Specific instrument interface

CONCLUSION
 Cosylab Common Control Platform presents a
different approach to a somehow rigid field of hardware
development. With the modular approach regarding
hardware and software architecture, simple input and
output interfaces, flexible scripting language core logic
and device component simulation capabilities it gives our
customers a number of benefits.
• Faster time to market with lower development costs.
• Better developer utilization and efficiency. Faster

hardware integration, validation and verification.
• Minimized overdevelopment and complexity with

maximized flexibility.
• Optimized development process by test driven

development and task segmentation.

Small footprint, high degree of flexibility and high

level of hardware abstraction make the CCCP an ideal
control platform for complicated hardware instruments.

WEPL031 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Control hardware and low-level software

90

Embedded device control

PROGRAMMING INTERFACES FOR RECONFIGURABLE
INSTRUMENTS

Matej Kenda, Hinko Kočevar, Tomaž Beltram, Aleš Bardorfer, Instrumentation Technologies d.d,
Solkan, Slovenia

Abstract
Application Programming Interfaces (APIs) provided

by the manufacturers of the instruments for the
accelerators are a very important part of the functionality.
There are many interface standards (EPICS, TINE,
Tango,...) and even same standard can be used in various
ways.

Important features of modern instruments are
reconfigurability and embedded computing.

The developers of instruments that need to be
connected to a control system are facing different
requirements: adherence to standard protocols and
support of reconfigurable instruments with diverse
capabilities with a consistent interface.

Instrumentation Technologies has implemented a well
accepted solution with its proprietary Control System
Programming Interface (CSPI) layer and adapters for each
standard protocol.

There are new challenges like reconfigurability, quality
of service, discovery and maintainability that are being
addressed with improved Measurement and Control
Interface (MCI).

CONTROL SYSTEM AND SOFTWARE
INTERFACES

There are quite some
parameters that define
environment in which the
Control System operates. We
can find heterogeneous
instruments with different
levels of complexity. Beside
that the equipment is distributed
over large remote regions and
needs to provide reliable access
regardless of the distance from
the control room (see Fig. 1).
Another characteristic of such
operating environment is that
the control is centralized, but

the data acquisitions is distributed and to some extent also
the data processing.

Based on that we can define interface requirements
from the Control System's point that must cover following
areas:

• device discovery, identification and capabilities
• operation mode control and configuration

parameters
• events, alarms and health state monitoring
• data acquisition and attributes (data type, size,

offset, time-stamp)

• error handling

INSTRUMENT MANUFACTURER'S VIEW
From the reverse

point of view, an
instrument can be
used in different
environments (see
Fig. 2). Requests for
data can come from
different sources for
different purposes.

• Control System: Different types of control
system protocols

• Other instruments: Instrument interoperability,
multiple instruments working together,
clustering, shared processing,

• Development Lab: Development, testing of
new, updated instruments

• Maintenance: Diagnostics, repair
Not all of the access paths are active concurrently.
A great deal of the information access has a common

denominator, defined by the type of the information
requested.

EMBEDDED COMPUTING
Using embedded computers in the instruments enables

instruments to behave as network attached devices with
built-in control system interfaces.

Embedded computer can be used to
• control the instrument's operation
• perform a part of digital signal processing
• provide remote access to the instrument

The embedded computer is one of the important
components of an instrument, because it provides
convenient way to bring all of the parts (hardware
modules, FPGA, software) of an instrument together into
a working application and perform certain digital signal
processing.

Software running on the embedded computer can seen
as one of the variable parts of a reconfigurable
instrument.

RECONFIGURABLE INSTRUMENTS

Physical setup and behaviour of the instrument is not

completely defined during manufacturing.

Figure: 1

Figure: 2

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL032

Accelerator Controls Development and application frameworks

91

Modern trends in development of instrumentation
encourage modularity with many standards for physical
dimensions, electrical interconnectivity and data
exchange protocols (see Fig. 3).

This leads to the following combinations:
• Reuse of modules: Hardware module MOD_A

can be used in instrument INS_A, INS_B, …
• Behaviour of the hardware module MOD_A can

be altered by loading different FPGA designs
• Instrument INS_A can comprise variable

number of modules MOD_A, MOD_B,
MOD_C, thus defining different variations of
the instrument.

Design of the software, running on such an instrument,
must be done in a way to recognise and make use of these
combinations.

In general, the responsibilities of the instrument
software can be split in several semi-independent layers:
managing hardware platform, instrument application
logic, external interfaces.

Hardware flexibility influences all of the software
layers, including external interfaces.

Semantic Types of Information
The information

transferred between the CS
and the instrument can be
divided into: digital signal
acquisition, alarms
(notifications), monitoring
and control of the instrument
state and behaviour (see Fig.
4).

Time considerations in the
data transfers involves data
rate and frequency. That is
the time that is needed to
transfer certain amount of
data and the repetition speed
how often that transfer
happens.

Every data has its origin
(data provider, source) and its destination (data consumer,
sink). Depending on the active or passive involvement of
either side in the data flow we can distinguish between
data stream (data provider push) or data on demand (data
consumer pull) as depicted in Table 1.

 PROGRAMMING INTERFACES OF
LIBERA INSTRUMENTS

Instrumentation Technologies develops families of
specialised instruments for use in the accelerators. They
are all equipped with embedded computers and have
network connectivity.

Instruments can be divided in two classes: Platform A,
Platform B. Main difference in hardware is the level of
modularity, reconfigurability and computing power.

Modern trends in instrumentation required Libera
instruments to evolve and become more modular and
reconfigurable. Platform B instruments comply to
μTCA, IPMI and other standards and comprise powerful
embedded computer. Software, developed for these
instruments had to be modified as well to support and
utilise new hardware platform.

The goal of programming interfaces on both platforms
is similar: implementation of as much functionality as
possible in a common fashion and converting that
information to a specific control system protocol as late as
possible.

Both types of interfaces provide access to the semantic
types of information described above (see Table 2).

Control System Programming Interface (CSPI)
CSPI is available on Platform A type of instruments

(Libera Briliance, Libera Brilliance Single Pass, Libera
Photon, Libera BunchByBunch). These instruments
contain energy efficient ARM based embedded computer
with limited computing power.

The operating system, used on the computer, is
stripped-down distribution of Debian Linux, running on
Linux kernel 2.6.20.

The computer is designated for proper operation of the
hardware and FPGA from powering the box on to
shutting it down and to provide network connectivity.

Hardware configuration of Platform A instruments is
defined at manufacturing. Available data and the API
are coupled together.

CSPI provides interfaces for:
• Monitoring, controlling the instrument

through a number of parameters. They are all
integer numbers and identified by numeric Ids.
The set of parameters is fixed for a certain
instrument.

• Acquisition of the signals. Functions to easily
access pre-defined number of signals are
available.

Figure 3

Figure: 4

Table:1

Table: 2

WEPL032 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

92

Development and application frameworks

• Change notifications. A callback function can
be registered, which is called with the ID of the
parameter that was modified.

Remote access is provided by:
• Generic server: transparent CSPI API access

over the TCP/IP.
• Embedded EPICS driver: EPICS IOC driver

that utilizes CSPI API. Alternative
implementation was developed at Diamond
Light Source that by-passes CSPI and
communicates with the hardware in more direct
fashion.

• Embedded Tango Server, developed by Elettra
institute.

• External Tango Server, developed as a
collaborative effort between Alba, Desy, Elettra,
ESRF and Soleil institutes.

• External TINE Server, developed by Desy
institute.

Measurement and Control Interface (MCI)
MCI is the interface of the Platform B instruments

(Libera LLRF, Libera Brilliance+, Libera Single Pass H).
Platform B instruments contain various types of i386-

based embedded computers. These computers run
standard Ubuntu Server edition (Linux kernel 2.6.26 or
2.6.32).

Dynamic nature of Platform B instrument required
different design approach of the software and its API.

MCI has separated classes and functions of the API
from the information that they are used to access. MCI is
networked by design.

The following concepts have been introduced in the
API:

• Registry: tree-structured representation of
information, used to monitor and control
parameters of an instrument.

• The tree nodes are populated by the
instrument software dynamically,
depending on the hardware setup and
type of the instrument

• Nodes can emit notifications (for
example: value change). Callbacks
functions can be registered to nodes to
receive those notifications

• Data Streams
Remote access is provided by
• Directly by MCI
• EPICS adapter: lightweight server without a

database maps MCI registry and signals to
EPICS PVs

• Tango, Tine adapter: will be developed when
needed

Examples
Sample command line tool for reading the Libera unit

environment parameters with CSPI
$ net-libera -i 10.0.0.100 -l
 Temp [C]: 45
 Fans [rpm]: 4590 4560
 Voltages [mV]: 1489 1782 2439 3233 4892 11865 -12020 -5089

Example of source code:
// Connect to the Libera unit at IP address 10.0.0.100
server_connect (“10.0.0.100”, 23271, “224.0.1.240”, 0);
// Allocate the environment handle
cspi_allochandle (CSPI_HANDLE_ENV, 0, henv);
// Prepare variables for environment parameter readout
CSPI_ENVPARAMS params;
CSPI_BITMASK mask = ~(0LL);
// Acquire the parameter
cspi_getenvparam (henv, ¶ms, mask);
// Release the envirnment handle
cspi_freehandle (CSPI_HANDLE_ENV, henv);
// Disconnect from the Libera unit
server_disconnect ();
Structure of MCI registry as presented by a sample

command line tool.
$./libera-ireg dump -h 10.0.3.40 -l 3
IP_10-0-3-40
 boards
 raf5
 chassis:0
 chassis:1
 chassis:2
 chassis:5
 os
$./libera-ireg dump -h 10.0.3.40 -l 3
boards.chassis:1.board_info
board_info
 type = VM
 status = Running
 power_status = Mng + Main
 fpga_revision = 7103
 ipmi_version = 81
Example of source code:

Using namespace mci;
// Connect to instrument 1
RemoteNode h1 = CreateRemoteRootNode("10.0.33.1", 5678,
"libera-platformd");
Node r1(h1);
// Connect to instrument 2
RemoteNode h2 = CreateRemoteRootNode("10.0.33.2", 5678,
"libera-platformd");
Node r2(h2);
// Query specific temperature from ins 1
Node tempNode = r1.GetNode({"boards", "chassis:0", "sensors",
"ID_2" });
float temp = tempNode.GetValue();

REFERENCES
[1] CSPI Reference Guide; Instrumentation Technologies

d.d.; http://www.i-tech.si
[2] MCI Reference Guide; Instrumentation Technologies

d.d.; http://www.i-tech.si
[3] Experimental Physics and Industrial Control System

(EPICS); http://www.aps.anl.gov/epics/
[4] TAco Next Generation Objects (TANGO);

http://www.tango-controls.org/
[5] Intelligent Platform Management Interface;

http://en.wikipedia.org/wiki/Intelligent_Platform_Ma
nagement_Interface

[6] MicroTCA;
http://www.picmg.org/v2internal/resourcepage2.cfm?
id=5

[7] Gstreamer; http://www.gstreamer.net/

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL032

Accelerator Controls Development and application frameworks

93

EPICS IOCCORE REAL TIME PERFORMANCE MEASUREMENTS ON
COLDFIRE MODULE*

Shifu Xu#, Hairong Shang, Robert Laird, and Frank Lenkszus
Argonne National Laboratory, Argonne, IL 60439, U.S.A.

Abstract
Since Experimental Physics and Industrial Control

System (EPICS) is becoming more widely used in
accelerator control systems and the EPICS Input/Output
Controller (IOC) has ported to different operating
systems, the performance of EPICS IOCcore on different
hardware and software platforms is crucial. This paper
will provide real-time performance measurements of
EPICS IOCcore on a Coldfire module uC5282 and on two
different OS platforms: RTEMS 4.9.2 and uClinux 2.6.21.
The most recent EPICS base and extensions are used to
build the test application.

INTRODUCTION
As more and more Coldfire uC5282 modules are being

used at the Advanced Photon Source (APS) and other
sites, it is of interest to know the EPICS IOCcore real-
time performance on this platform. Similar performance
measurements were done on the MVME2100 [1]. Based
on the measurement software [2], a few changes have
been made to measure on the Coldfire uC5282 module.
These real-time parameters are measured on both RTEMS
4.9.2 and uClinux 2.6.21 platforms: interrupt latency,
context switch latency, and total response latency. Two
more parameters are measured on the uClinux 2.6.21:
interrupt top half to bottom half, and interrupt bottom half
to user space interrupt service routine (ISR).

MEASUREMENT PLATFORM
All measurements were performed on a Coldfire

uC5282 module from Arcturus Networks [3]. The module
has a MCF5282 Freescale Coldfire microprocessor with a
64-MHz Coldfire RISC core. It has a 16-Megabyte
SDRAM, 4-Megabyte flash memory, and 512-k byte on-
chip flash. In order to generate an external interrupt for
the module to measure the latency, an APS custom-made
Coldfire bridge board and Altera Stratix II development
board were used. Figure 1 shows the hardware platform.

The development host machine is an x86-based Linux
PC running Fedora Core 10, with a tftp client and an NFS
server running on it. The target module’s bootloader has a
tftp server to receive the OS image.

Two OSs are evaluated on the Coldfire module target:
RTEMS 4.9.2 and uClinux 2.6.21. uClinux 2.6.21was
downloaded from Arcturus Networks with the non-
preemptive kernel. This version includes built-in board
support packages (BSPs) for the Coldfire modules. The
cross-compiler tools for the uClinux 2.6.21 and

applications were also provided by Arcturus Networks.
Because of the resource limitations of the Coldfire
uC5282 module, efforts were made to optimize the
uClinux kernel in order to get better performance.

Figure 1: The hardware platform.

The most recent EPICS base 3.14.11 was used for the
test. A few new EPICS base configuration files were
created for the Coldfire uC5282 module on the uClinux
platform.

MEASUREMENT SOFTWARE
The software from [2] is generic EPICS IOCcore

performance measurement software for target OSs such as
vxWorks, Linux, and RTEMS. Figure 2 shows the
software structure.

Figure 2: The measurement software structure.

* Work supported by U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences, under Contract No. DE-AC02-
06CH11357.
#xusf@aps.anl.gov

WEPL033 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

94

Development and application frameworks

For each target platform, a specific interrupt generation
method is needed for the interrupt latency measurement.
An external interrupter, which includes an APS custom-
made Coldfire bridge board and Altera Stratix II
development board, was used for the latency
measurement on the Coldfire uC5282 module. A parallel
I/O (PIO) component was used as an Avalon slave in the
Altera FPGA design to generate interrupts to the Coldfire
module. The interrupt generation code resides in the
RTEMS-dependent driver rtemsSampler.c. For uClinux, a
kernel module was created, which has an interface
function to generate this interrupt. A Linux-dependent
driver, linuxSampler.c, in the user-space is used to call
this interface function.

Due to the limited memory resource on the Coldfire
uC5282 module, only 1000 EPICS records were loaded.
There are two Channel Access clients that put a load on
the IOC: performCaget and performCaput. The
performCaput puts values to the records on the IOC. The
performCaget monitors the value changes.

USER INTERFACE
A MEDM display was created for operation and

showing measurement results. It can configure the
number of samples to take with each scan. It can display
the minimum, median, maximum, and percentage of
samples over some value for each latency parameters.
Figure 3 shows the user interface.

Figure 3: The user interface.

MEASUREMENT RESULTS
The IOC is heavily loaded in all the tests. Four different

values of each parameter are collected: minimum,
median, maximum, and percentage of samples over some
value. Tests on the private network were conducted for
one hour. To look for network interference, some tests
were run for two hours on a public network. Another test
was run to measure user-level interrupt latency. Tables 1–
5 show the results. All the units are in units of μs.

Table 1: Interrupt Latency

OS Minimum Median Maximum >100 μs(%)

Private
Network

uClinux non-preemptive 12 14 1822 0.05

uClinux non-preemptive with user level ISR 14 16 852 0.083

RTEMS net task has higher priority 18 19 142 0.006

RTEMS net task has lower priority 18 19 131 0.008

Public
Network

uClinux non-preemptive 14 14 1926 0.056

uClinux non-preemptive with user level ISR 14 16 1604 0.101

RTEMS net task has higher priority 18 19 165 0.006

RTEMS net task has lower priority 18 19 132 0.006

Table 2: Interrupt Top Half to Bottom Half Latency

OS Minimum Median Maximum >100 μs(%)

Private
Network

uClinux non-preemptive 20 22 1934 0.144

uClinux non-preemptive with user level ISR 20 22 1656 0.615

Public
Network

uClinux non-preemptive 20 22 1932 0.125

uClinux non-preemptive with user level ISR 20 22 1828 0.605

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL033

Accelerator Controls Development and application frameworks

95

Table 3: Interrupt Bottom Half to User Level Interrupt Latency

OS Minimum Median Maximum >500 μs(%)

Private Network uClinux non-preemptive with user level ISR 338 342 1499818 2.543

Public Network uClinux non-preemptive with user level ISR 338 342 1264560 2.703

Table 4: Context Switch Latency

 OS Minimum Median Maximum >100 μs(%)

Private
Network

uClinux non-preemptive 28 30 121464 0.482

uClinux non-preemptive with user level ISR 30 638 1389820 0.932*

RTEMS net task has higher priority 44 46 1934 0.077

RTEMS net task has lower priority 44 46 158 0.032

Public
Network

uClinux non-preemptive 28 30 113374 0.481

uClinux non-preemptive with user level ISR 30 638 1440814 0.914*

RTEMS net task has higher priority 44 46 2013 0.152

RTEMS net task has lower priority 44 46 161 0.056
* over 1000 μs(%)

Table 5: Total Response Latency
OS Minimum Median Maximum >100 μs(%)

Private
Network

uClinux non-preemptive 80 84 121518 0.81

uClinux non-preemptive with user level ISR 378 380 1499856 36.001**

RTEMS net task has higher priority 63 65 1954 0.19

RTEMS net task has lower priority 63 65 177 0.229

Public
Network

uClinux non-preemptive 80 84 113580 0.799

uClinux non-preemptive with user level ISR 378 380 1264638 37.531**

RTEMS net task has higher priority 63 65 2033 0.264

RTEMS net task has lower priority 63 65 181 0.171

** over 500 μs(%)

MEASUREMENT RESULTS ANALYSIS
The results show that RTEMS has better real-time

performance than uClinux. Compared with the real-time
performance results on MVME2100 [2], it seems that the
MVME2100 has better performance than the Coldfire
uC5282 module, though the RTEMS and Linux versions
are different. Measurement on the uClinux with a
preemptive kernel should be conducted in the future for
further comparison.

REFERENCES
[1] S. Xu and M. Kraimer, “Real-Time Performance

Measurements of EPICS iocCore,” ICALEPCS’2005,
Geneva, Switzerland, October 2005, PO2.075-5
(2005); http://www.JACoW.org.

[2] http://www.aps.anl.gov/epics/modules/soft/realTime
 Perform/index.html.
[3] http://www.arcturusnetworks.com/products/uc5282.

WEPL033 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

96

Development and application frameworks

§
Work supported by US DOE Contract DE-AC03-76SF00515 and Office of Basic Energy Sciences, Division of Chemical Sciences.

HIGH LEVEL MATLAB APPLICATION PROGRAMS FOR SPEAR3§
J. Corbett et al, SLAC, Stanford, CA 94309

Abstract

The SPEAR3 control system nominally operates with
the EPICS toolbox on top of VMS hardware. The
simultaneous use of Matlab Middlelayer (MML) and
Accelerator Toolbox (AT) allow for parallel, high-level
machine control and accelerator physics applications that
communicate with the control system via EPICS Channel
Access (LabCA). While the majority of the MML and AT
software is machine independent, site-specific high-level
applications are also required to control the accelerator.
This paper describes several such high-level application
programs that have been developed for control and
diagnostics at SPEAR3. Examples include a time-
dependent waveform display gui, beam steering
applications, transport line optics correction, SR beam
diagnostics and add-ons to the main MML routines.

INTRODUCTION
The SPEAR3 light source came as the result of a Basic

Energy Sciences committee recommendation following a
review of U.S. synchrotron radiation facilities in 1997 [1].
Before formal DOE/NIH funding arrived in 1999,
preliminary lattice design and system engineering
specifications were developed on project seed money.
During this time, it became clear that the historical, yet
dated, SPEAR control system would need to be largely
replaced [2], in particular the high-level application
programs. The new system would utilize EPICS operating
on a VMS platform which opened up the possibility for
Channel Access communication with external programs.
In order to consider options for modern application
development platforms, a satellite meeting was arranged
at the 1998 International Computational Accelerator
Physics Conference in Monterey, CA. Presentations
included options for SDDS, TCL/TK and X-Windows
software.

At the time of the Monterey conference, Matlab was
already in use at SSRL for data processing and off-line
accelerator physics calculations. Matlab had also been
used extensively at the SLC for data acquisition, data
reduction and to some degree machine control. At the
ALS in Berkeley, Matlab was in use for command-line
driven machine control and data processing [3], and had
the interesting feature that the top-level language closely
mimicked accelerator simulation programs such as
TRACY [4]. At the same time the first versions of the
Matlab Accelerator Toolbox [5] utilizing TRACY
transport physics were available for simulation studies at
SSRL.

During the Monterey meeting, a proponent of IDL
made an interesting observation – since recent versions of
Matlab contained graphical interface commands why not
use it to develop high-level application programs [6]?

With Channel Access connectivity embedded in Matlab
(LabCA) [7], a complete solution was available with
control system communication, gui capability, user-
friendly data reduction software and accelerator
simulation tools that could be integrated into a single, all-
in-one software package. The gavel fell and a new project
was born – high level application programs at SPEAR3
would be developed and written in Matlab†.

In a stroke of luck, the main author of Matlab Middle
Layer (MML) [8] was finishing work on an SBIR grant at
SLAC and was available to consult with SSRL on
application development for SPEAR3. The first project
was to convert the FORTRAN version of the Linear-
Optics-Closed-Orbit (LOCO) program to Matlab [9]. It
was then recognized that SPEAR3 needed a ‘middle
layer’ to provide easy connectivity between the
accelerator physicist and storage ring. By introducing
Matlab code utilizing accelerator modeling syntax
developed at the ALS, a straight-forward database-drive
system was devised for simulation and control.

As more of the ALS software was integrated into the
system, the functionality of higher-level programs such
as, orbit, tune, dispersion and chromaticity measurement
expanded. In order to retain the ability to pass the new
software back to the ALS, programs were written in a
‘machine independent’ format driven by simple MML
initialization files to associate accelerator elements and
their indices with girder locations, database channel
names, hardware limits, conversion factors and specific
locations within the AT lattice file.

First tests of machine independence were made in trials
at the Canadian Light Source and then again at the ALS.
Interestingly, machine-independence also created a
structural rigor within the software that ultimately
simplified high-level program development and
streamlined switching between on-line and simulation
control modes. Hardware-to-physics conversion factors
also enabled the user to ‘switch’ between hardware (e.g.
amps) and physics (e.g. m-2) units with a single command.
Similarly, the AT lattice pointers automate switching
between on-line and simulation modes with a single
command. File directory specifications were then
incorporated to automate data file look-up and data
storage needs for machine control and simulation.

In the sections to follow we describe high-level
application program developments at SPEAR3 in the
areas of waveform variable display, main ring and
transport line machine tuning and optical diagnostics.

†the philosophy was, and still is, ‘anything that can be

written in EPICS will be written in EPICS’.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL035

Accelerator Controls Operator interface software and human factors

97

 CONTROL/DISPLAY APPLICATIONS
One of the first high-level MML application programs

was a real-time orbit monitor program intended to
compliment a manual orbit control program. It was soon
recognized that the x- and y ‘orbit’ families were only two
instances of a larger class of ‘families’ defined in the
MML initialization files. By simply redefining the
‘family’ and the associated axis coordinates within the
display, a broad selection of accelerator hardware
families could be displayed in the same graphical
interface. ‘PlotOrbit’ was converted into ‘PlotFamily’
including a complete set of options to display data in
terms of absolute or relative values, and with interactive
axis scaling features. By utilizing the built-in functionality
available in the MML, ‘saved’ and ‘golden’ family data
could be easily recalled into the graphical display.

 Figure 1: PlotWaveform graphical interface.

To further expand the PlotFamily interface, callbacks

from main pull-down menus at the top of the display were
programmed to execute other high-level MML code. This
feature gave machine operators the capability to load and
save entire machine configurations, measure and save
machine parameters (dispersion, tune, chromaticity,
LOCO data), and a means to control global accelerator
properties (orbit, tune, etc). Graphical data could also be
exported to the main Matlab workspace for further
processing. The resulting PlotFamily application was
machine-independent and could operate at any accelerator
configured to run MML.

As an extension of the built-in functionality, PlotFamily
has an added file execution option that executes at run
time. This feature is used at SSRL to generate SPEAR3-
specific menu options for transport line control, orbit-
interlock checks, machine-specific diagnostic controls and
links to hardware documentation.

A further development undertaken at SSRL was to
incorporate the PlotFamily display features into a new,
high-level ‘PlotWaveform’ graphical interface. As shown
in Fig. 1, PlotWaveform provides a means to display real-
time EPICS ‘waveform’ variables. Most of the ~50
EPICS waveform variables at SPEAR3 are supplied by
the Pulse Signal Monitor (PSM) system which consists of
a distributed set of analog signal amplifiers and digitizer
boards to monitor pulsed RF data (few μs), fast-kicker
data (few μs) and booster ramp signals (few ms). Similar
to the MML initialization concept, PlotWaveform is based
on a machine-specific initialization file that identifies
common waveform names with Channel Access names,
physical units and time base parameters.

MACHINE CONTROL APPLICATIONS
 An early Matlab application program developed for
SPEAR3 was the SVD-based orbit control interface
‘OrbitGUI’ [10]. The control interface utilized Matlab
graphic features such as select-and-drag for beam position
monitor icons while the underlying software utilized the
MML library to open the corrector-to-bpm response
matrix file, measure the beam orbit and load both RF
frequency and corrector setpoints. The OrbitGUI program
was nearly machine-independent with local specifics
related to the fact that the code pre-dates MML.

 Figure 2. OrbitGUI graphical interface.

The main processing algorithm within OrbitGUI was
then transferred to a slow orbit-correction feedback
application (SOFB), which uses a Matlab timer object as
the internal clock. The SOFB interface is more compact
than the OrbitGUI interface allowing only timer on/off
and RF correction on/off control. The internal SOFB orbit
correction algorithm was updated to allow eigenvector-
by-eigenvector mode discrimination. In this case, at each
correction cycle SOFB calculates the inner product
between the orbit vector and each orbit basis vector in the
linear algebra sense. The correction is only applied if the
inner product exceeds a pre-specified threshold for each
mode. Operationally the discrimination algorithm better
rejects BPM noise and results in a quieter beam orbit at
the user beam lines.

A similar interactive orbit control program was
developed for the linac-to-booster transfer line (LTB). In
this case the response matrix is for ‘open’ as opposed to
‘closed’ beam orbits and the BPM data requires averaging
for accurate results. In order to reliably steer the beam
through the LTB, the initial launch conditions
(x,x’,y,y’,dp) must be measured and held constant to
minimize mis-steering and dispersion generated upstream.
LTBOrbitGUI and the associated response matrix
measurement software utilize MML commands are fully
integrated into the MML file directory system.

For the booster-to-storage ring (BTS) transfer line, a
more complex software system was developed to calibrate
the beam line quadrupole optics using LOCO-style
response matrix calculations [11]. The BTS software also
contains a steering package designed to optimize beam
injection efficiency into SPEAR3 .

The RF bucket select software was originally
implemented in Matlab but then converted into an EPICS
control panel. The conversion was consistent with the
philosophy that straight-forward machine-critical software
should be written in EPICS where possible.

WEPL035 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

98

Operator interface software and human factors

DIAGNOSTIC APPLICATIONS
The Matlab middle layer and Channel Access

connectivity are also utilized for SPEAR3 optical
diagnostics. The x-ray pinhole camera, for instance,
acquires the beam image with a PointGrey CCD Flea
camera [12] routed through IEEE-1394b Firewire to a
standard PC. A software link to the PointGrey camera
control library maps the image into Matlab memory for
processing and display [13]. The Accelerator Toolbox is
used to compute relevant betafunctions at the x-ray beam
source point. In the nominal beam monitoring mode the
measured beam parameters are written to EPICS using
LabCA. During periods of machine development, MML
scripts are used to manipulate electron beam position,
coupling and emittance as measured by the pinhole
camera. A Matlab script developed at the CLS calculates
spectrally-integrated Fresnel diffraction integrals to
characterize beam propagation from source to screen [14].

 Figure 3: PlotWaveform graphical interface.

A similar, more sophisticated application program was

developed for the visible-light interferometer [15]. As
shown in Figure 3, a second Matlab-linked Flea camera
acquires the raw, 2-slit interference pattern and a
graphical interface is used to establish user-defined
boundaries for the line-out. A Levenberg–Marquardt
numerical fitting algorithm written in Matlab [16] applies
a least-squares fit of a sinc/sine function to the
interference data to extract the incoherent beam visibility.
MML is again used to control insertion device parameters,
x-y coupling and emittance for machine characterization.

For the fast-gated and streak cameras, direct links are
not available to the internal camera software so raw
camera images are saved to disk and re-opened in Matlab
for processing. Moments of the transverse and
longitudinal beam distribution are fitted to extract data
relevant to emittance, machine impedance and instability
thresholds. In cases where time-dependent phenomena are
recorded, images are pre-processed and then sequenced
together in Matlab to generate ‘movies’ that display non-
linear features of the beam distribution that are otherwise
difficult to characterize with scalar quantities.

SUMMARY
The Matlab middle layer has provided a relatively user-

friendly software package for machine commissioning,
operation and accelerator development. Key components
include the Accelerator Toolbox, Channel Access
Toolbox and a wide range of accessory tools. High-level
application programs built largely on the MML allow for
scripted data acquisition, data processing and graphical
display that are difficult to implement using standard
accelerator control system software. To date, over a dozen
synchrotron light sources have adopted MML and many
have gone on to develop high-level application programs.
High-level application programs at SPEAR3 include
waveform analysis, beam tuning and orbit control and
optical diagnostics. Another important feature of MML
and high-level application programs is the ability to
provide teaching tools for students and interns.

REFERENCES
[1] R. Birgeneau, et al, ‘BESAC Advisory Committee
Panel on D.O.E. Synchrotron Radiation Sources and
Science’, November 1997.
[2] H. Rarback. et al, ‘Old Wine in New Bottles-The
SPEAR Control System Upgrade’, ICALEPCS’99,
October 4-8, Trieste, Italy, 1999.
[3] G. Portmann, ‘ALS Storage Ring Setup and Control
Using MATLAB’, LBL LSAP Note #248, June 1998.
[4] H. Nishimura, ‘TRACY, A Tool for Accelerator
Design and Analysis’, EPAC’88, Rome, Italy, 1988.
[5] A. Terebilo, ‘Accelerator Modeling with MATLAB
Accelerator Toolbox’, PAC’01, May 2002.
[6] Harvey Rarback, private communication.
[7] A. Terebilo, ‘Channel Access Toolbox for MATLAB’,
ICALEPCS’01, San Jose, CA, 2001.
[8] G. Portmann and J. Corbett, ‘An Accelerator Control
MiddleLayer Using Matlab, PCaPAC’05, Hayama, Japan.
[9] J. Safranek, et al, ‘Linear Optic Correction Algorithm
in MATLAB’, PAC’03, Portland, Oregon, 2003.
[10] J. Corbett, ‘Orbit Control Using MATLAB’,
PAC’01, Chicago, Illinois, 2002,
[11] J. Safranek, et al, ‘Optimization of the Booster to
SPEAR Transport Line for Top-Off Injection’, PAC’09,
Vancouver, Canada, 2009.
[12] http://www.ptgrey.com/products/flea2/index.asp
[13] Henrik Loos, LCLS, private communication.
[14] Jack Bergstrom, CLS, private communication.
[15] J. Corbett, et al, ‘Interferometer Beam Size
Measurements in SPEAR3’, PAC’09, Vancouver,
Canada, 2009.
[16] Xiaobiao Huang, SSRL, private communication.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL035

Accelerator Controls Operator interface software and human factors

99

A NOVEL APPROACH FOR BEAM COMMISSIONING SOFTWARE USING
SERVICE ORIENTED ARCHITECTURE*

G. Shen, BNL, Upton, NY 11973, U.S.A.
P. Chu, J. Wu, SLAC, Menlo Park, CA 94025, U.S.A.

Abstract
A novel software framework is under development,

which is for accelerator beam commissioning and
operation. It adopts a client/server based architecture to
replace the more traditional monolithic high level
application approach. A minimum set of commissioning
and operational services has been defined such as
simulation server service, directory service, magnet
service, and bpm service, etc. Most of them have been
prototyped. Services can use EPICS pvData as its data
container and pvAccess as communication protocol. This
paper describes conceptual design and latest progress for
some services.

INTRODUCTION
Traditionally, an accelerator application needs to deal

with many functions such as connection to various
signals, data from physics modelling, data plotting,
complicated program flow and error handling. If all such
computation is built in a single standalone program, the
complexity level of the program may result poor
performance, unreliability and code maintenance
difficulty. Also, if any application needs a new feature
which is not provided by an easy interface, it is hard to
implement the feature without major restructure of the
existing program.

On the other hand, if heavy computation functions can
be distributed as running modules residing on various
servers and serving up data via proper service protocol,
the Graphical User Interface (GUI) application itself can
be a simple thin client receiving the data from the servers.
This service oriented architecture (SOA) approach can in
general improve both performance and reliability of
applications.

In this paper, some preliminary result for simulation or
model service, Linac energy management (LEM) service
and possible communication protocols such as EPICS
pvAccess are reported. Work plan for the SOA is also
described.

SERVICE ORIENTED ARCHITECTURE
One can identify some essential services for accelerator

operation by surveying the functionalities of existing
applications. The granularity of services depends on
functionality shared by clients, performance, robustness
coding complexity, and maintenance. On one hand, too
narrow of a service means many more services in total
and could cause maintenance trouble. On the other hand,
a single service providing too many functions could

reduce its performance and reliability. Figure 1 shows a
typical top level SOA diagram with a few services.

Furthermore, services can be distributed to multiple
servers with virtual machines technology. A distributed
system can avoid one service bringing down others. One
can also add a redundant server for any critical services.

Advantages for SOA approach are described in detail
below.

Easy Application Development
Coding an application with many functions can be

tedious. On the other hand, some functions can be shared
by several applications. A well-designed SOA approach
can greatly reduce the burden on end developers.
Applications can then become “thin” clients without
much inline computation. Only simple “get/set” data
communication with the service providers will be needed.
Coding up a complicated application such as controlling
an experiment will require much less time and effort.
Yet, all the high quality of supporting functionality is
fulfilled because the complication is maintained on the
server side. This means that even a program written in
scripting language such as Matlab script can still have the
same high quality of error handling and message logging
without additional coding efforts.

Data Control
Because the services are centralized control, i.e.

typically only one particular service instance running at a
time. This approach can avoid conflict among multiple
clients accessing the same device; for instance, feedback
and Linac Energy Management (LEM) program might
change the same corrector at the same time but magnet
server can shedule the two requests properly.

Better Application Memory Management
For individual applications, SOA can avoid large

memory and CPU consumption due to heavy computation
and data process. Therefore, it can also reduce the chance
of client application program crashing.

Service Swappable
It is not necessary to replace all traditional functions

with services overnight. One can implement a service at a
time. If an old service is replaced by a new one, the
application programming interface (API) should remain
the same so the client application can pick up the service
seeminglessly. This also means the SOA work is highly
scalable depending on the available resources.
Furthermore, a new service should go through rigorus test
before any client application in production can actually
use it.

*Work supported under auspices of the U.S. Department of Energy
under Contract No. DE-AC02-98CH10886 with Brookhaven Science
Associates, LLC, and in part by the DOE Contract DE-AC02-
76SF00515

WEPL037 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

100

Development and application frameworks

SERVICE EXAMPLES

Simulation (Model) Service
Running model within an application is one of the most

expensive operations in terms of CPU and memory use.
Simulation or model service runs physics model
periodically and makes up-to-date model data available
for any subscribed clients.

The model server can be expended to cover not only
online modelling but also other beam dynamics modelling
such as start-to-end simulation, which can provide more
detailed beam dynamics simulation information, with a
set of uniform APIs. Various simulation codes can be run
continuously to supply data to the model server with
extant hardware set values.

Figure 2 shows a schematic diagram for the Simulation
Service. The core part of the service is a model run
control program which manages input data and file
preparation, job submission, run status monitoring, run
forced quit and output data management.

A prototyped run control program with Fortran based
IMPACT-T [1] modelling code using Java and Python
has been written and under test. Java part of the program
is mainly for data display such as tables and plots while
Python is excellent for file I/O and communication with
the modelling code and the underneath operating system.
The run control program dynamically generates a set of
IMPACT-T input files based on user’s input via GUI. For
each run, a new directory named with the run start time is
created and all files are saved under the directory.

Figure 2: Data flow for model engine and service.

Linac Energy Management (LEM) Service
Any linear accelerator can change its energy from time

to time. In order to maintain the same lattice all the time,
a program so called LEM which continuously updates the
energy information has to run regularly. LEM requires
RF data and model tracking; therefore, it is most efficient
that it is running periodically on a server and updating all
data for clients such as LEM application and control room
continuous update display (CUD).

Figure 1: Top level SOA functional diagram. The arrow direction shown in the figure indicates the data flow direction.
For instance, Model Service can provide model data to Linac Energy Management (LEM) Service.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL037

Accelerator Controls Development and application frameworks

101

A prototype LEM Service posting calculation result on
EPICS Process Variables (PV) has been implemented.
Preliminary result shows that the service has been running
for over a month even with the accelerator itself being up
and down. In contrast, the standalone version of the LEM
program crashes easily due to various causes such as data
acquisition failure, memory management issue and so on.

Directory Service
This service is prototyped under a sourceforge project

so-called epics-pvdata [3,4]. The epics-pvdata consists of
4 modules: (1) pvData, which defines and implements an
efficient way to store, access, and transmit memory
resident structured data; (2) pvAccess, which is a new
generation of EPICS Channel Access protocol. It is used
to deliver data over the network and fully supports
pvData, and depends only on module pvData; (3)
javaIOC, which is a processing engine. All behaviours are
defined by JavaIOC engine, and user has only to develop
his own support for all desired behaviours. It depends on
the pvData and pvAccess; (4) pvService, which is a
combination of all services under this project. All generic
services or facility specified services should locate here.

The Directory Service, so-called itemFinder, is one
particular example under pvService module. It provides a
basic function to get a list of physics elements and its
associated properties such as EPICS PV names for read-
back, set-point, temperature, and so on if they apply. It is
designed and prototyped against MySQL relational
database (RDB). The RDB schema consists of two (2)
tables: (1) item table, which stores the physics names for
all elements installed in a facility; (2) property table,
which stores all properties associated with each element.

A client application gives search criteria by calling a
client API. The search command is passed to a daemon
record and the record is processed inside the JavaIOC,
and a RDB query is performed to get an item name list
with properties, which satisfied the search constrains. The
value is returned back to the client through a dynamically
created pvRecord.

One use case of this service is to get a list of EPICS
channel names. Since a channel name is an entry of
properties for an element, by getting the list back to
client, user can retrieve the element’s channel names
easily.

Gather Service
The Gather Service is another service under pvService

module. Basic idea of this service is that a client sends a
PV list with a string to this service; the service then
creates a pvRecord dynamically with the string name
given by the client.

Here we have to mention that the type of each PV in the
PV list should have same data type, and pvService does
not check it. Also the client has to make sure that name
string is unique and did not exist in the Gather Service.
Otherwise, it will use existing pvRecord instead of
creating a new one. This has to be improved later.

After a client ships a PV list to the gather service, the
gather service creates a pvRecord as mentioned above,
and connects to low level hardware IOCs for example
BPM IOCs, and update its value every time a PV in a low
level IOC changes.

Client can customize the Gather as desired service such
as a BPM orbit server, or a magnet server.

COMMUNICATION PROTOCOL
An adequate communication protocol is indispensable

for SOA architecture. There are many protocols available
such as HTTP, XML-RPC and so on. A new generation
of EPICS Channel Access protocol, pvAccess, is a better
option to deliver accelerator data over the network. The
main advantages are as below:

 It fully supports pvData, and depends only on
project pvData. We can integrate our servers
seamlessly with pvData.

 It is developed against current Channel Access,
and inherits the advantages of EPICS Channel
Access. For example, it is data stream oriented
protocol, and can be expected to have good
performance for an accelerator control system.

The performance benchmarking is undergoing, and a
preliminary result shows a good performance. For
example, on a local office network, when we feed 1000
PVs to the Gather Service, it can update the 1000 PVs’
value with a frequency large than 100Hz.

PLAN
Some service such as Simulation Service, itemFinder,

and gather service are being prototyped. They all are in
the stage of choosing a good communication protocol for
production and EPICS pvAccess shows a good
performance as communication protocol. Some more
development and benchmarking are necessary for a
production server.

ACKNOWLEDGEMENT
The authors would like to thank Matej Sekoranja at

COSYLAB and Marty Kraimer for their contributions on
epics-pvdata development. They also want express their
thanks to Ji Qiang at LBNL for providing IMPACT-T
code. They want to give their thanks to Leo Dalesio at
BNL for his continuous support and encouragement.

REFERENCES
[1] J. Qiang, S. Lidia, R. D. Ryne, and C. Limborg-

Deprey, “A Three-Dimensional Quasi-Static Model
for High Brightness Beam Dynamics simulation”,
Phys. Rev. ST Accel. Beams 9, 044204 (2006).

[2] P. Chu et al, “Generic Model Host System Design”,
Proc. of IPAC10, TUPEC071

[3] G. Shen et al, “Design of Accelerator Online
Simulator Server Using Structured Data”, Proc. of
IPAC10, WEPEB024

[4] http://sourceforge.net/projects/epics-pvdata/

WEPL037 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

102

Development and application frameworks

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THIOA01

PRESENTATION ONLY

Accelerator Controls Diagnostics

103

THRA01 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

PRESENTATION ONLY

Control hardware and low-level software

104

Front-end (Hardware Interface) Software

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THCOMA01

PRESENTATION ONLY

Facility Status Reports

105

synApps: EPICS APPLICATION SOFTWARE FOR SYNCHROTRON
BEAMLINES AND LABORATORIES*
T. M. Mooney#, ANL, Argonne, IL 60439, U.S.A.

Abstract
synApps[1] is a collection of EPICS [2] application

software originally intended to support the needs of
scientists performing experiments at synchrotron-
radiation beamlines. The collection contains general-
purpose software that extends or exploits capabilities of
EPICS base, and a large amount of instrument-specific
software that uses EPICS to control and provide a user
interface for off-the-shelf electronics.

This paper will provide an overview of synApps,
describe how the software is deployed at the Advanced
Photon Source, and highlight recent additions.

OVERVIEW
synApps is a collection of EPICS modules that

supplement the record types, device support, and other
software infrastructure included in EPICS Base. Because
it was written to support scientists conducting a wide
variety of experiments, most of the software in synApps
is general in purpose, and was engineered to serve many
needs at once, by abstracting from specific sets of
requirements general solutions for classes of problems.

But this focus on general solutions does not distinguish
synApps from other EPICS-application software. Most
EPICS software is general purpose, in part because
EPICS is a collaborative effort. synApps differs from
mainstream EPICS-application software in three ways: it
contains a small amount of synchrotron-specific software,
it provides infrastructure to support run-time
programming, and it provides infrastructure to support
data acquisition.

synApps consists of the following modules, grouped
according to the kinds of applications they support.

General-Purpose Modules
• autosave – Saves the values of EPICS process

variables, and restores them after a reboot.
• busy – Extends EPICS’ execution tracing to include

client software.
• calc – Provides variations of the EPICS calcout

record for systems of expressions (transform
record), string expressions (sCalcout record), and
arrays (aCalcout record).

• sscan – Supports scans (systematically set
conditions; acquire and store data).

• std – Supports scalers, sequences of operations, and
PID loops.

Hardware Specific Modules
• areaDetector – Supports multidimensional

detectors.
• camac – Supports CAMAC hardware.
• dac128V – Supports an IndustryPack digital-to-

analog converter.
• delayGen – Supports delay generators.
• dxp – Supports DXP digital-signal processing

spectroscopy systems.
• ebrick – Supports the EPICS Brick, a PC104-based

computer running Linux, as an EPICS IOC
(Input/Output Controller).

• ip – Supports various message-based (e.g., serial,
GPIB) devices.

• ip330 – Supports an IndustryPack analog-to-digital
converter.

• ipUnidig – Supports an IndustryPack digital I/O
module.

• love – Supports Love controllers.
• mca – Supports multichannel analyzers and

multichannel scalers.
• modbus – Supports Modbus devices.
• motor – Supports stepper and servo motors.
• quadEM – Supports a four-channel electrometer.
• softGlue – Provides user-programmed digital logic

and I/O.
• vac – Supports vacuum-related devices.
• vme – Supports VME hardware.

Synchrotron-Radiation Specific Modules
• optics – Supports X-ray monochromators, slits,

optical tables, and other synchrotron-radiation
equipment.

Other Software in synApps
• xxx – Provides a template for an EPICS IOC

directory using synApps.
• utils – Provides miscellaneous software related to

synApps, including support for migrating from one
version of synApps to another, support for a data-file
format used by synApps scan software, and support
for rapid EPICS-database programming.

Software Distributed with synApps
synApps makes use of the following EPICS modules

that are not part of synApps, but are distributed with it:
allenBradley, asyn, ipac, seq, stream, and vxStats.

 __

*The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory (“Argonne”). Argonne, a
U.S. Department of Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and
others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license
in said article to reproduce, prepare derivative works, distribute copies to the
public, and perform publicly and display publicly, by or on behalf of the
Government.
#mooney@aps.anl.gov

THCOMA02 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

106

Data acquisition

RUN-TIME PROGRAMMING
Because many synApps users are scientists conducting

experiments, and because experimental work is typically
less well understood in advance than are other activities
supported by EPICS, synApps places a much greater
emphasis on support for programming at run time than is
typical of EPICS-application software. Most synApps
IOCs load records reserved for run-time programming;
and most synApps record types are supported by displays,
online documentation, and autosave-request files for this
purpose. Also, many synApps record types check and
report to the user the states of their link fields, so that run-
time link errors can be recognized promptly.

In this context, “programming” does not mean code
development or scripting, but rather the configuration and
linking together of EPICS records. A collection of linked
EPICS records – an EPICS database – can be viewed as a
program in a very high-level language. For example, an
input record linked through a calculation record to an
output record can implement a feedback loop.

An EPICS database configured at run time is not
distinguishable in any essential way from a similar
database configured at build time: it has the same speed
and efficiency, and it can drive or be driven in the same
ways. Thus, run-time-programmed databases can be
layered, sequenced, event driven, or scanned, and the
result for end users is an extraordinarily powerful and
versatile capability to diagnose and solve problems as
they arise during an experiment, and to modify solutions
to those problems as they become better understood.

The principal means by which run-time programming is
accomplished in EPICS is the redefinition of an EPICS
link. In early versions of EPICS, links could not be
changed at run time. The first programmable links were
implemented by Marty Kraimer for use by the synApps
scan and wait records (originally developed by Ned
Arnold), and they were initially viewed as support for
scans. But the wait record quickly came to be applied
more widely for its run-time programming capability, and
the result was powerful enough to motivate the
development (by Marty Kraimer, Bob Dalesio, Jeff Hill,
and others) of support for run-time redefinition of all
EPICS links.

The impact of run-time-programmable links on
synApps’ development was profound: most synApps
record types, databases, and displays came to be
developed with run-time programming as an objective,
and the automated saving and restoring of EPICS PV
values (autosave, originally developed by Bob Dalesio)
acquired new urgency and purpose.

Recently, the notion of run-time programming was
extended to run-time development of digital hardware, in
the softGlue module.

Rapid Prototyping
Soon after support for run-time programming became

pervasive in synApps, the capability was recognized also
as a rapid-prototyping tool – a way for EPICS-database
developers to test and combine database fragments

without rebooting. The principle defect in this
development approach was the lack of a convenient way
to save run-time programming in the standard form of an
EPICS database file.

A wxPython program, snapDb, was written to address
this problem. Using snapDb, a user or developer can
produce a loadable EPICS database from run-time-
programmed fragments simply by using MEDM’s Drag-
And-Drop capability to enter a PV name from each record
into a list. snapDb then reads all fields of the listed
records, and writes an EPICS database file. snapDb can
also write an MEDM display file for the database.

DATA ACQUISITION
Synchrotron-radiation users spend a lot of time

scanning – systematically varying conditions, acquiring
data under those conditions, and storing the data for later
analysis. The sscan module is dedicated almost entirely
to this purpose, comprising the sscan record, which
performs multidimensional scans; the recDynLink library,
which manages Channel-Access connections for the sscan
record; and the saveData task, which writes scan data to
disk.

Other synApps modules involved heavily in data
acquisition are the areaDetector, mca, dxp, and std
modules. These modules support specific hardware, such
as scalers, multichannel analyzers, and two-dimensional
detectors, and do so in a way that permits EPICS clients,
including the sscan record, to trigger data acquisition,
wait for acquisition to complete, and collect the resulting
data.

Completion Reporting
EPICS Base contains support for tracing the execution

of a linked set of records (i.e., a database), and for
signaling the completion of that execution to the client
that caused it to occur. Within an IOC, tracing is
performed by the EPICS putNotify facility. Execution
spanning more than one IOC can be traced by using the
Channel Access function ca_put_callback() to make the
completion of a record in one IOC contingent on the
completion of execution in another IOC.

synApps’ data-acquisition strategy relies heavily on
putNotify execution tracing, and synApps provides several
record types engineered to extend putNotify across IOCs,
in addition to serving their primary purposes:

• sscan – This record performs a one-dimensional
scan. Several sscan records can be linked to
perform multidimensional scans.

• sseq – This record is a variant of the EPICS seq
record, which performs a programmed sequence of
operations. The sseq record differs from seq in that
it can read and write strings as well as numbers, and
it can wait for completion between operations.

• swait – This record is an early prototype of the
EPICS calcout record, and is one of the first EPICS
records whose links could be modified at run time.
It differs from calcout in that it uses the recDynLink
library, and its output link waits for completion.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THCOMA02

Experiment Data Acquisition/ Analysis Software Data acquisition

107

• aCalcout – The array calcout record is a variant of
the EPICS calcout record, and differs from it by
supporting array fields and expressions in addition
to scalar fields and expressions. The aCalcout
record also can wait for completion of execution
triggered by its output link.

• sCalcout – This record is similar to the aCalcout
record, but it supports strings, instead of arrays.

• busy – This record functions as a proxy for the
execution performed by a Channel Access client.
EPICS putNotify cannot directly trace execution by a
client, so the busy record (which can be traced)
pretends to be executing until the client tells it to
stop.

Most of the listed record types have links that can use
the Channel Access function, ca_put_callback(), to
initiate execution, and that can wait for the resulting
callback, which indicates that the execution has
completed. The busy record is an exception: its purpose
is to be driven by a ca_put_callback(), and to look busy
until a client tells it to stop, whereupon its completion
yields a callback indicating that the client is done.

Automated testing
The infrastructure with which synApps supports data

acquisition by users is also useful to developers, for
diagnostic and testing purposes. The sscan record, for
example, has been used (with other run-time configured
software) to diagnose race conditions, by systematically
varying the time between the execution of application
code, and a simulated response from driven equipment.

The combination of the sscan record and the softGlue
module extends this diagnostic and testing capability to
digital hardware.

DEPLOYMENT AT APS
The deployment of synApps at the Advanced Photon

Source has evolved in response to an increasing number
of beamlines, an increasing emphasis on computer
security, and the similarly driven evolution of the EPICS
module structure. Originally, synApps modules (called
“Apps” in those days) were deployed alongside IOC
directories on a file server to which beamlines had
read/write access; there was not a clear distinction
between support modules and application modules.

As the number of beamlines increased, and the
separation between beamline subnets became more
complete and more rigidly enforced, synApps was split
into support modules and IOC directories. Support
modules (all modules except xxx) are now hosted, along
with EPICS Base, on a central file server, and both are
distributed via rsync to read-only partitions on secondary
servers dedicated to individual beamlines. The IOC
directories are now created on read-write partitions of
those secondary servers, and begin as copies of the
synApps xxx module, which collects support from all
other synApps modules and builds loadable executables
and database-definition files for use by one or more IOCs.

One effect of this evolution has been the concentration
of display files and autosave-request files in support
modules, rather than in application directories. In turn,
this concentration led to the development of an include-
file capability in autosave, so that module developers
could define the PVs needed to restore databases
implemented in those modules, and IOC directories could
simply include the request files for the databases they
needed to maintain through IOC reboots.

Another effect has been an increasing reliance on
MEDM’s ability to build displays using Composite
Objects – display files that can be included within other
display files and customized using macro substitution.

RECENT DEVELOPMENTS
areaDetector

The areaDetector module provides a general-purpose
interface for area (2-D) detectors in EPICS. It supports a
wide variety of detectors and cameras, ranging from high-
frame-rate CCD and CMOS cameras, pixel-array
detectors such as the Pilatus, and large-format detectors
like the MAR-345 online imaging plate.

Among recent improvements in areaDetector is the
evolution of support for plug-ins, which provide a
mechanism for device-independent real-time data
analysis, such as regions-of-interest and statistics.

softGlue
The softGlue module provides EPICS users and

developers with the capability of creating and modifying
simple digital electronic circuits, connecting those circuits
to external devices, and controlling or driving the circuits
– all by writing to EPICS process variables.

ACKNOWLEDGMENTS
synApps is the product of a collaboration including

more people than can practically be named here. Most of
the EPICS developers at the Advanced Photon Source –
in particular, those in the Beamline Controls and Data
Acquisition Group – and many at other EPICS sites, have
contributed code or ideas, tested on or ported to new
architectures, improved the build software, etc. Mark
Rivers is responsible for much of the recent work in
synApps, and maintains a large fraction of synApps,
including the areaDetector, camac, dac128V, dxp,
ip330, ipUnidig, mca, modbus, and quadEM modules.

REFERENCES
[1] http://www.aps.anl.gov/bcda/synApps.
[2] http://www.aps.anl.gov/epics.

THCOMA02 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

108

Data acquisition

USING EZCAIDL TO CONNECT TO EPICS CHANNEL ACCESS FROM
SHADOWVUI FOR DYNAMIC X-RAY TRACING*

Alan Duffy#, Canadian Light Source Inc., Saskatoon, Saskatchewan, Canada

Abstract

Using the ezcaIDL library, for IDL [1], to provide an
interface to EPICS [2] Channel Access through the EZCA
[3] library, a simple XOP [4] extension was written that
initializes ezcaIDL and thus allows access to a set of
simplified IDL interface commands to connect to Channel
Access from within XOP and hence from SHADOWVUI
(an XOP extension) [5]. The XOP widget-based driver
program is a commonly used front-end interface for
computer codes of interest to the synchrotron radiation
community. It models x-ray sources and characterizes
optics. Extensions, such as SHADOWVUI, are optionally
loaded to easily expand its functionality. SHADOWVUI
is a complete Visual User Interface for SHADOW [6],
which is an essential tool for x-ray optics calculations and
ray-tracing. SHADOWVUI is an interactive tool for
designing an optical system and visualizing results as
graphs and histograms. The working scheme is to define
the source and the optical elements by entering their
parameters. The author has taken the usual
SHADOWVUI simulation of an x-ray system a step
further by using ezcaIDL to interface with the EPICS
control system to access the positions of optical
components in real life and then run a corresponding
simulation based upon these.

INTRODUCTION
In order to predict the performance of an optical system

in general and in particular a synchrotron radiation
beamline, ray tracing methods are used. An essential tool
for x-ray optics calculations is the ray-tracing program
SHADOW, developed at Nanotech Wisconsin (University
of Wisconsin), and has been used in the synchrotron
community during the last 20 years. A complete Visual
User Interface for SHADOW aptly named SHADOWVUI
may be used as a higher level interface with graphics and
menus to prepare the SHADOW inputs. It is available as
an extension to another commonly used software package
called XOP, a commonly used front-end interface for
computer codes that model x-ray sources and optics.
Essentially, the SHADOW inputs define the optical
system as a collection of optical elements (mirrors, slits,
screens, etc.) placed in sequential order. SHADOW
generates and traces a beam from the source (e.g. bending
magnet, wiggler, or indulator) sequentially through the
system. The important point is that the SHADOW inputs
define the optical system which usually serves to model a
real synchrotron beamline. However, the parameters are
static and do not change until the user enters new ones.

CONCEPT
The concept of running a dynamic x-ray tracing

simulation of a beamline is straightforward (take the live
positions and put them in the simulation engine), but
requires some preliminary work creating the model in
SHADOWVUI and determining the corresponding inputs
to use from the actual beamline. This involves defining
the source by supplying its parameters (e.g. energy, etc.)
and defining the various optical elements with their
parameters (e.g. mirror types, source plane distances,
image plane distances, etc.), and how they relate to
beamline parameters. The ezcaIDL library provides the
tool necessary to read the beamline parameters that are
maintained by the EPICS control system. The only catch
is that one must define how the variables in the model are
related to the parameters of the beamline. The newly
developed XOP extension is used in conjunction with
SHADOWVUI and requires as input a user created IDL
structure defining the relationship between beamline
parameters (i.e. process variables) and SHADOWVUI
variables to make connections between the live position
of the beamline optics and the variables in the simulation
model.

Positioning Optical Elements
The position of each optical element in SHADOW is

defined relative to the previous element (or source), not
the laboratory reference frame. The user inputs the
incidence and reflection angles of the central ray at each
optical element as well as source and image distances to
define the system. In an aligned system the central ray
coincides with the optical axis, however the user has
complete freedom of specifying incidence angles that are
zero, positive, or larger than 90 degrees, as long as the
user understands how to interpret the results. It is also not
necessary for the image and source distances to correlate
to the location of an actual image or object in the optical
sense either. The sum of the image distance (from the
previous element) and source distance simply defines the
separation between optical elements in the SHADOW
model. In fact, it is advantageous to think of these
distances not as defining the optical element positions per
se, but as defining the origins of their coordinate systems.
Then use the mirror movement option available to place
the optical components in their proper locations. Using
this option to place an optical element prevents
unnecessarily moving subsequent components with their
positions defined relative to previous components and
avoids having to recalculate distances and angles.

*Work supported by CLS
#alan.duffy@lightsource.ca

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THCOMA03

Experiment Data Acquisition/ Analysis Software Data analysis

109

Beamline Parameters and Model Variables
The relationship between beamline parameters and the

SHADOW model variables is of key importance for the
dynamic simulation. A parameter in the model may be
determined by one or more process variables, and vice
versa. The simplest situation would be a one to one
relationship between a model variable and a beamline
parameter (process variable). In fact, by creating an
appropriate EPICS record, one could have a single PV for
each model variable used in the simulation. In any case,
the user provides the relationship between the model
variables and process variables as strings defining the
equation(s) that relates them as part of a PV_INFO
structure as illustrated in Fig. 1.

Figure 1: Example PV_INFO structure.

All the information needed for the simulation is stored

in an IDL structure named beamline with a field for each
process variable containing a nested PV_INFO structure.
The fields of this nested structure are described in table 1.

Table 1: PV_INFO structure content

Field Type Description

pv string EPICS process variable string

desc string Text to describe process variable

pv_min float Lower limit

pv_max float Upper limit

oe_num int Optical element number (zero otherwise)

src_num int Screen number (zero otherwise)

pv_2vui string Equation(s) to convert value of PV(s) to
SHADOWVUI variable

vui_2pv string To convert value of SHADOWVUI
variables(s) to PV value

vui_val float Stores SHADOWVUI variable value

In the example show in Fig. 1, the beamline parameter
is the energy feedback. The process variable string
‘BL1606-B1-1:Energy:fbk,’ is stored and retrieved from
the IDL variable beamline.ENERGYFEEDBACK.pv, and
so on. A SHADOWVUI workspace stores its parameters
in a structure in a state variable that includes variables
one finds in the start.xx files. The start.00 file, for
example may have the line: PH1 = 5000.00000. The
corresponding SHADOWVUI variable is the rather
obtuse looking (*(state.ptrsrc)[state.ifc.src_sel]).PH1. In
order to simplify things, the ezcaShadowVUI extension
defines ptrSRC, ptrOE1, ptrOE2… as pointers to the
source parameters, and optical element parameters. As
these are pointers, the dereference operator ‘*’ must be
used as appropriate. For example the bend radius of
optical element 1 is (*ptrOE1).RMIRR.

The entire structure with all the information for the
process variables that are to be incorporated into the
simulation must be defined. This may be done by creating
the structure in an IDL session and then saving it to an
IDL file such as pv_defs.sav, or by creating a file with the
commands to define the structure and executing it from
SHADOWVUI using the xop_macro_compact command.
The former method requires the user to restore the .sav
file, with the command: restore, ‘pv_defs.sav’. Once the
variable is created or restored in a SHADOWVUI macro,
the user can then call: reshadowvui, beamline. This will
start up a widget similar to the one in Fig. 2.

EZCASHADOWVUI WIDGET
The ezcaShadowVUI widget has a tab for the source,

and each optical element, and sub-tabs for each screen.
The widget shows live process variable values and the
equivalent SHADOWVUI value calculated from the
vui_2pv string field.

Figure 2: ezcaShadowVUI widget interface.

The ezcaShadowVUI extension uses the ezcaIDL
channel access features to set up process variable

THCOMA03 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

110

Data analysis

monitors so that the live values update once per second.
The equivalent SHADOWVUI value is shown in an
editable box with a slider. The user can click a button to
copy the live value to SHADOWVUI, doing so executes
the command stored in the pv_2vui string field. After the
user has finished copying live values and/or editing the
SHADOWVUI values, the Run Simulation button may be
pressed to execute the source generation and ray trace
routines and to show a plot of the beam focus. Also the
ezcaShadowVUI widget is non-modal, meaning that the
user can do other things with the main SHADOWVUI
interface while this widget is running. In particular, the
user still has access to all the usual features of
SHADOWVUI, such as running macros. The widget code
can be modified to allow automatically running a macro
to be triggered either by the Run Simulation button or a
process variable event.

Dynamic Ray Tracing
The copying of live values to the simulation engine, as

well as running the source generation and a ray trace with
a new plot, may be set up to be down automatically for
true dynamic ray tracing. There is a limitation, however,
on the rate at which the ray tracing can occur. It is
possible to decrease the number of rays to increase the
simulation speed, but this may not be desirable. However,
a refresh rate of a new trace every few seconds should not
pose a problem.

Installation
The installation of the XOP extension ezcaShadowVUI

is done by creating an ezcashadowvui folder in the XOP
extensions directory and copying the ezcashadowvui.sav
file into it. EPICS should be installed with the extensions
[3] ezca, ezcaIDL, and EzcaScan so that the appropriate
libraries are available. Finally, the EZCA_IDL_SHARE
environment variable should point to the location of the
libezcaIDL.so file. The ezcaShadowVUI extension will be
made available in the near future.

CONCLUSION
The ezcaShadowVUI extension is in its preliminary

stage of development, but has proven useful in modelling
a real beamline, the SXRMB beamline at the Canadian
Light Source, and should prove useful in modelling other
beamlines. The most time consuming part of setting up
the dynamic simulation is determining the relationship
between SHADOW variables and beamline parameters
and then creating the structure to contain that information.
However, it is just a matter of reconciling the different
coordinates systems of one with the other. The real
challenge as always is to properly understand the
beamline and in particular the intricate details of pivot
points and rotation axis. In order to have a truly accurate
simulation, it is important to be attentive to these details.

REFERENCES
[1] Interactive Data Language (IDL) by ITT Visual

Information Solutions, 4990 Pearl East Circle,
Boulder Colorado 80301, United States of America;
http://www.ittvis.com/.

[2] http://www.aps.anl.gov/epics/.
[3] http://www.aps.anl.gov/epics/download/extensions/
[4] Roger J. Dejus and Manuel Sanchez del Rio, “XOP:
a multiplatform graphical user interface for synchrotron
radiation spectral and optics calculations,” Proc. SPIE,
Vol. 3152, 148 (1997).
[5] http://www.esrf.eu/UsersAndScience/Experiments/

TBS/SciSoft/xop2.3/extensions/
[6] C. Welnak, G.J. Chena, and F. Cerrinaa, “SHADOW:

A synchrotron radiation and X-ray optics simulation
tool,” Nucl. Instr. and Meth. in Phys. Res. A, Volume
347, Issues 1-3, 11 August 1994, Pages 344-347

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THCOMA03

Experiment Data Acquisition/ Analysis Software Data analysis

111

A SIMPLE DAQ SYSTEM BASED ON LABVIEW, PHP AND MYSQL

M. Tanigaki∗, K. Takamiya, R. Okumura,
Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494 Japan

Abstract

A tiny and simple DAQ system has been designed and
developed for the application to the control system in our
institute. This DAQ system is based on on LabView,
MySQL and apache, and shows good compatibility with
LabVIEW-based system like the control system for the
FFAG complex in our institute. The current status for the
development, as well as the recent accelerator-related sta-
tus in our institute, will be introduced.

INTRODUCTION

An FFAG accelerator complex[1, 2, 3] has been devel-
oped as a proton driver for the feasibility study on ADS
performed in the research reactor institute, Kyoto Univer-
sity. The control system for this FFAG accelerator complex
has some requirements on the flexibility, simplicity and re-
liability. The control system is required to have a sufficient
flexibility towards major and minor modifications in the
design and equipments of accelerator complex during the
construction, and to achieve a certain level of easiness on
its use and development for the people in our institute, who
are little familiar to accelerator itself. Additionally, high re-
liability and stability from the points of the nuclear safety
and the radiation protection are required since the com-
bined operation with a nuclear fuel assembly is planned in
the feasibility study on ADS.

To meet such requirements for the present control sys-
tem, we have developed a control system [4] based on
LabVIEW, known as its user-friendly GUI environment,
and PLC known as one of the most reliable control de-
vices in the field of factory automation. This control sys-
tem for the FFAG complex has proven itself to have suf-
ficient performance and to satisfy the requirements on the
design through the construction and operation of the FFAG
accelerator complex, in its operation for years. Based on
this success, this control system has been applied to other
equipments and facilities. One of such typical examples is
that the application to the pneumatic transportation facility
in KUR[5].

On contrary to the control system itself, little efforts have
been made for the data acquisition system up to now. In
most of the application cases, a simple data logging feature
is included in VIs by using the functions of LabVIEW such
as the chart VI. As the increasing demand on the systematic
management of the data for the multiple devices and on the
simplified method of DAQ for the users, we have started
the development of a DAQ system for our control system.

∗ tanigaki@rri.kyoto-u.ac.jp

In this paper, the outline and current status of our DAQ
scheme are introduced.

DAQ SYSTEM WITH ODBC DRIVER

At present, the FFAG accelerator complex in our insti-
tute is under modification to the injection scheme using H−

beam. The FFAG injector will be replaced to an 11 MeV
H− proton linac by the end of the fiscal year 2010. Addi-
tionally, the inclusion of the present control system to a new
control system based on EPICS, intending to the inclusion
of this FFAG accelerator to a larger accelerator complex for
the pulsed neutron source. Therefore, the main application
of the control & DAQ system for now is the devices and
instruments equipped to the 5 MW reactor, especially the
pneumatic transportation facility for the neutron irradiation
[5].

The outline of the pneumatic transportation apparatus
and the control system is shown in Fig. 1. The control sys-
tem for this pneumatic transport system is the same archi-
tecture as that for the FFAG complex [4]. The low level se-
quences of PLCs for controlling the pneumatic transporta-
tion system has been implemented in PLCs, and the man-
machine interfaces (MMIs) are developed with LabVIEW
on conventional PCs. In addition to the controlling system
of the pneumatic transportation apparatus and the monitor-
ing system, related external systems such as radiation con-
trol systems and measurement systems for experiments are
integrated. This integrated system might well be able to
realize secure operating and management of the pneumatic
transportation apparatus.

In this pneumatic transport system, a DAQ system based
on the ODBC driver, LabVIEW and MySQL is devel-
oped. So called, a “SQL Command Generator” VI is imple-
mented into every MMI PC as a sub VI of MMI VIs. Since

Figure 1: Outline of the pneumatic transportation apparatus
and the new control system.

THCOMA04 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

112

Data acquisition

��������	
�

����

	��

���	
� ���� ������

��������	
���

��

��������	��

�����	
��
����	����

���

������ ��� ��

���

!	
	�	�� "������ ��

Figure 2: Architecture of the DAQ for the pneumatic transport system at KURRI. The DAQ software is implemented as
a sub-VI to the existing MMI software for the control system. All the parameters are stored in the MySQL database and
these data are available to users through the web server.

(a) Start page of the data browsing.

(b) A typical example of data browsing stored in the
SQL server. In the present data browsing system, the
graphs are generated by “PHP/SWF Charts” available
from maani.us[6].

(c) Registered users are allowed to browse
the status via conventional web browsers.

Figure 3: Screen shots of the web-based data browsing sys-
tem.

all parameters are expanded on the global VIs in MMI PCs
in this control system, each implemented SQL Command
Generator VI obtains the status and information of con-
nected devices by referring via respective Global VIs, and
send the SQL command by use of a MySQL ODBC driver
to pass the data to the remote MySQL database server. The
database server stores and manages various data, such as
the start/stop time of irradiation, the pressure of CO2 gas in
the transport tube and the radiation levels in the pneumatic
transport facilities, on a database constructed on a MySQL
server.

For the access by users to the data stored in the respective
database, Apache, which is the most popular web server
application, is also installed in the server. The stored data
can be accessed through the internet using common web-
browsers installed in PCs or recent mobile phones (Fig.
3). Accessing logged data over the internet and receiving
warning messages by e-mail are enabled in the developed
systems.

DAQ SYSTEM WITH POST METHOD
AND PHP

The present DAQ system for the pneumatic transport
system works quite fine, but the application to other facil-
ities are not straightforward because of the direct imple-
mentation of ODBC drivers into MMI software. This pro-
cedure requires the developers to handle SQL commands
for the DAQ system. For example, once a developer de-
cides to add another parameter to be recorded, they have to
treat additional SQL commands.

In the common web-based services, the parameters in
these services are often send along with their names by
POST method, and processed by php scripts and stored
in databases on SQL servers. In the control systems in
KURRI, allocation tables for the parameters are defined
and each parameter can be uniquely assigned by the names
of the equipment and its respective parameter. Therefore,
we are able to apply such conventional POST method pro-
cedure to our DAQ system.

The architecture of the php-based DAQ system being
currently developed is shown in Fig. 4. This DAQ VI ob-
tains all of the parameters from PLCs in the same commu-

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THCOMA04

Experiment Data Acquisition/ Analysis Software Data acquisition

113

��������	
�
#$$�

���
����

��������	
���

��
#$$�

��������	
��

���

!����� ��� ��

!	
	�	��

�#�������

"������ ��

�	��

%���	�	��
��

�	��

%���
���& ������

Figure 4: Architecture of the php based DAQ system developed at KURRI. Unlike the present DAQ for the pneumatic
system, this DAQ system works as a stand-alone software. The web server is used not only for the data browsing by users,
but also for processing the data transfer based on the HTTP protocol.

nication procedure as the communication VI uses. Then the
parameters are converted to a set of chunks, in which the
device name, parameter name and its value are sequentially
listed. This DAQ VI also accesses a web page on an remote
web server, in which the php script for the data processing
is implemented. The data is then transferred by the POST
method, and processed by the php script based on their as-
signed names to be stored in a table on a MySQL database.
One table is usually prepared on a MySQL database for
each device, and the proper tables are selected by the name
of devices given in the is usually prepared by the equipment
base. As long as the developers follows the same allocation
table as used in the control system, the parameters can be
stored without any initial settings except creating a corre-
sponding table on a database with this scheme.

CURRENT STATUS

As for the DAQ systems discussed above, the DAQ sys-
tem for the pneumatic transport system has been served for
the actual experiments of neutron irradiation as soon as our
5 MW reactor resumed the operation in June 2010, and
no troubles arising from the DAQ system are reported up
to now. The php-based system has been almost finished
the evaluation period, and the actual implementation is ex-
pected soon.

As for our institute, another accelerator project may be
expected in near future. Recently, our research project
“Promotion of Leading Research toward Effective Utiliza-
tion of Multidisciplinary Nuclear Science and Technol-
ogy”, which has the construction of an accelerator-driven
neutron source as the key facility, is included in the list of
recommended large projects to the Japanese government.
This means we may have a possibility to build another pro-
ton/heavy ion accelerator with its energy of 30 ∼ 100 MeV
in our institute. We have started the re-organization of the
developed VIs and ladder sequences for our FFAG acceler-
ator complex and other equipment in our institute, as well
as the training of the technicians in our institute for the ex-
pected developments on the control system.

References
[1] D. Normile, Science 302, 379 (2003).

[2] M. Tanigaki, K. Mishima, S. Shiroya, Y. Ishi, S. Fuku-
moto, S. Machida, Y. Mori, and M. Inoue, in Proceed-
ings of EPAC 2004 (Lucerne, Switzerland, 2004), pp.
2676–2678.

[3] T. Uesugi, Y. Mori, H. Horii, Y. Kuriyama,
K. Mishima, A. Osanai, T. Planche, S. Shiroya,
M. Tanigaki, K. Okabe, et al., in Proceedings of
EPAC08 (Genoa, Italy, 2008), pp. 1013–1015.

[4] M. Tanigaki, K. Takamiya, H. Yoshino, N. Abe,
T. Takeshita, and A. Osanai, Nuclear Instruments and
Methods A 612, 354 (2010).

[5] K. Takamiya, R. Okumura, N. Abe, Y. Nakano,
K. Miyata, S. Fukutani, A. Taniguchi, and H. Ya-
mana, JOURNAL OF RADIOANALYTICAL AND
NUCLEAR CHEMISTRY 278, 719 (2008).

[6] maani.us, http://www.maani.us.

THCOMA04 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

114

Data acquisition

WEB SERVICES CYBER-SECURITY ISSUES*
D. Quock#, ANL, Argonne, IL 60439, U.S.A.

Abstract
The Web’s potential for distributed programming has

been proven not only in the business realm, but also in the
accelerator controls domain. Web services describes
clients and servers that communicate over the Internet’s
Hypertext Transfer Protocol (HTTP) using predefined
Internet-based Application Programming Interfaces
(APIs). It is the uniqueness of Web services transactions
such as cloud computing, data sharing, and data archiving
that give rise to the security concerns of Web services
(authentication, data integrity, non-repudiation, and
privacy). At Argonne National Laboratory’s Advanced
Photon Source, Simple Object Access Protocol (SOAP)-
based Web services were implemented into the Integrated
Relational Model of Installed Systems (IRMIS) as the
application interface to Oracle’s Content Server document
management software. This report reviews the basics of
Web services, cyber-security issues that are inherent for
Web services, current Web services security
implementation practices, and future directions of Web
service security development efforts where the overriding
goal of Web services security is to focus on managing
risk and protecting data.

BASICS OF WEB SERVICES
In simplest terms, Web services are distributed Internet

applications that have standard-based interfaces. Web
services are typically thought of as being divided into two
main technologies:

1. Big Web Services: This technology uses Extensible
Markup Language (XML) messages that follow the
Simple Object Access Protocol (SOAP) standard.

2. RESTful Web Services: The representational state
transfer (REST) software architecture uses PUT,
GET, DELETE and POST HTTP methods to
integrate Web browsers with underlying
client/server software applications.

Service-Oriented Architecture (SOA) is model-based

software that is typically constructed from loosely
coupled Web services. SOA can be broken down into the
three layers: business workflow, Web services, and
communication [1]. Table 1 demonstrates that SOA adds
three layers on top of the standard client-server
architecture and shows the associated Web services
standards that are used at each layer.

Table 1: SOA Architectural Layers

Architectural Layer Web Services Standards

Business Workflow BPEL
WSCI

Web Services WSDL
UDDI

Communications
 SOAP

XML

Client-Server Transports
 HTTP
 SSL
 TCP/IP

Web Services Standards
At the highest level of SOA, Business Process

Execution Language (BPEL) is used to describe and
execute the business processes. An alternative to BPEL is
the World Wide Web Consortium (W3C)’s standard Web
Service Choreography Interface (WSCI). These two
standards are currently diverging as industry is divided in
its support of either business workflow standard. The role
that BPEL (or WSCI) plays in SOA is orchestrating the
overall business workflow by providing mapping between
the services and business processes through documents.

At the next level of SOA, the standard Web Service
Description Language (WSDL) provides static interface
definitions for the software components that are
accessible to clients. The Universal Description,
Discovery and Integration (UDDI) is a specification for
repositories where organizations can publish services that
they provide and describe the interfaces to their services
via WSDLs.

At the communications layer of SOA, messages are
transmitted through SOAP, which is an envelope
containing a header and body. The services that are
communicating with each other can be identified through
their unique name contained in SOAP messages.

ADVANCED PHOTON SOURCE WEB
SERVICES

The benefits of SOA to organizations is the flexibility
of implementing business processes on top of Web
services and the ability to compose and re-compose
systems frequently. SOA provides a peer-to-peer style of
architecture with a general statelessness of services. One
example of how Web services technology was
implemented at Argonne National Laboratory’s Advanced
Photon Source is in the interaction between the in-house
built IRMIS accelerator controls relational database

*Work supported by the U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences, under Contract No. DE-AC02-
06CH11357.
#quock@aps.anl.gov

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THCOAA01

Data Networking and Web Technology Cyber Security

115

software application and Oracle Content Server document
management software.

Figure 1 shows an IRMIS Applications Organizing
Index display that has retrieved general document
information for documents stored in Oracle Content
Server (ICMS). The search for documents in Content
Server was done in IRMIS using a simple PHP SOAP
client utility that looks similar to:

 $client = new SoapClient($wsdl,

array(‘login’=>$user_name,’password’=>$user_password));

where $wsdl is the https Internet address of the location
where the SOA WSDL file can be obtained. In this
example, the WSDL file defines the interface to a
document search software component for Oracle Content
Server. The search results are retrieved and stored locally
by using the PHP statements:

 $param = array(“queryText”=>$searchString,”sortField”=>”dInDate”);
 $retVal = $client->AdvancedSearch($param);
 $search_results = $retVal->AdvancedSearchResult->SearchResults;

Figure 2 shows the home Web page for Oracle Content
Server where search options are provided to the user for
performing a manual search on its document database.
The same search string can be entered into the Content
Server’s Comment field to obtain the same set of
document search results. The benefit of using SOAP Web
services provided by Oracle Content Server in the IRMIS
PHP application is that the IRMIS user only needs to
interface to one software application (IRMIS) to get
information provided from two separate database
applications. The IRMIS display provides an Internet link
to directly launch each document in its native format, thus
providing even more ease of use and efficiency to the
user. The implementation shown here for Web services in
IRMIS is the very simplistic case of client software
interacting with a server behind the same firewall in the
same organization.

Figure 1: IRMIS display with ICMS search results.

Figure 2: ICMS search home page.

WEB SERVICES CYBER-SECURITY
ISSUES

The trade-off for having software components that are
defined by their interfaces and can be accessed on the
Internet is the increased complexity of the systems where
they are used. This increase in complexity in SOA
applications is due to several factors including:

• The software used to manage the Web services is

complex;
• The boundaries of communication may extend

outside of an organization’s intranet;
• Dynamic reconfiguration of a client application

can be easily obtained through both combination
and reuse of individual Web services.

This increase in complexity of a SOA application results
in a wider variety of cyber security threats. Examples of
such security threats are message alteration, message
reading, man-in-the-middle attacks, principal spoofing,
forged claims, message replay, and denial of service.

WEB SERVICES CYBER-SECURITY
STANDARDS AND ORGANIZATIONS

Web Services Organizations
To effectively deal with cyber security threats that are

specific to SOA technology, cooperation and coordination
among the vast number of businesses and other
institutions using and providing Web service is crucial.
The Organization for the Advancement of Structured
Information Standards (OASIS) is a not-for-profit
consortium that drives the development, convergence and

THCOAA01 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Data Networking and Web Technology

116

Cyber Security

adoption of open standards for the global information
society. The consortium produces more Web services
standards than any other organization along with
standards for security, e-business, and standardization
efforts in the public sector, and for application-specific
markets [2]. OASIS sponsors ebXML (Electronic
Business using eXtensible Markup Language), a modular
suite of specifications. The World Wide Web Consortium
is an international community where member
organizations, a full-time staff, and the public work
together to develop Web standards. Among the many
standards developed and supported by W3C are XML
Encryption and XML Signature [3]. Corporations such as
IBM, Microsoft, and Oracle also contribute to the
development of Web services standards.

Web Services Cyber-Security Standards
In addition to the Web services standards list in Table

1, there are several standards specific to addressing cyber-
security issues.
• Security Assertion Markup Language (SAML)

defines authentication and authorization assertions.
SAML assertions can be included in the header or
in the payload of a SOAP message.

• WS-* is a general nomenclature used to refer to a
family of Web services standards supported by
various organizations. Common WS- standards
include:

o WS-Security
Defines security tokens that can be used
for claims of authentication or proof of
some right.

o WS-ReliableMessaging
Describes a protocol that allows SOAP
messages to be reliably delivered between
distributed applications in the presence of
software component, system, or network
failures.

WEB SERVICES DESIGN PRACTICES
For new Web services applications, security

considerations should be applied to every aspect of the
software development life cycle:

• Security requirements
• Security architecture
• Web services security standards
• Certification (show that software complies

with security requirements and security
standards)

• Run-time security monitoring
• Penetration testing

 The possibilities for implementing software security

practices range from the very simple and well-known
coding techniques to extremely analytical and involved
source code analysis methodologies. A rule of thumb for

designing user interfaces is that simple interfaces with
few options are easy to test and audit. “Giant APIs require
giant security measures” [4]. Another commonly used
practice is SSL (Transport Layer Security) for encrypting
and verifying the integrity of every client request. Source
code analysis tools for identifying security weaknesses
include:
• Vulnerability databases that are published to the

general public (e.g., Microsoft publishes one);
• Pointer and reflection analysis that constructs a call

graph that allows input data to be traced along
function calls [1].

There are many Web services security analysis software

products available on the market. The functionalities and
standards that they typically examine include
conformance validation, integrity checks, XML schema
validation, XML encryption, XML signature, WS-
Security, user authentication, audit, alert, Web services
access control, and content inspection. IBM has
developed a service-oriented analysis and design process
for modeling, analyzing, designing, and producing a SOA
application that is based on Java and IBM WebSphere
software development tools. Microsoft, Oracle, Sun, and
various other companies have also developed Web
services design and Web services manager software tools.

CONCLUSION
The complex nature of SOA applications calls for

governance of SOA and its underlying Web services
technology. Cooperation among industry and Web
services standards organizations is crucial to ensure
reliable Internet-based business and government
processes, and safeguarding of intellectual property and
high-security-level government data. Web services
standards organizations are well established and have
received widespread support and contributions from
major computer and IT corporations. Smaller institutions
benefit from readily available Web services standards and
Web services security products. Theoretical research in
Web services security technology is active at many
universities and continues to advance the software
security design and monitoring tools available to the
general public [1]. At Argonne National Laboratory, Web
services applications have been deployed successfully as
they make efficient use of disparate software applications.

REFERENCES
[1] C. Gutierrez, ‘Web Services Security Development

and Architecture: Theoretical and Practical Issues,’
(IGI Global, Hershey, PA: 2010).

[2] OASIS, http://www.oasis-open.org/who/, 2010.
[3] W3C, http://www.w3.org/standards/webofservices/,

2010.
[4] C. Snyder and M. Southwell, ‘Pro PHP Security,’

(Apress, Berkeley, CA: 2005).

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THCOAA01

Data Networking and Web Technology Cyber Security

117

REMOTE ACCESS TO THE VESPERS BEAMLINE
USING SCIENCE STUDIO*

D. Maxwell#, D. Liu, E. Matias, D. Medrano, CLS, Saskatoon, Canada
M. Bauer, M. Fuller, S. McIntryre, J. Qin, UWO, London, Canada

Abstract
Science Studio is a web portal, and framework, that

provides scientists with a platform to collaborate in
distributed teams on research projects, and to remotely
access the resources of research facilities located across
Canada. The primary application for Science Studio is to
provide scientists with remote access to the VESPERS
beamline at the Canadian Light Source synchrotron in
Saskatoon Saskatchewan, and to readily process data
from this beamline at the SHARCNET high performance
computing facility in London Ontario. The VESPERS
beamline is a complex instrument that is composed of
many devices, such as valves, motors and detectors,
which are all controlled through the low-level EPICS
control system. Science Studio implements a simple,
intuitive and functional web-based interface to the
beamline for device control and data acquisition. The
Science Studio experiment management system allows
the acquired data to be easily organized and shared with
the research team. This paper will provide an overview of
the design, implementation and capabilities of the Science
Studio system, with a focus on remote control of the
VESPERS beamline.

SCIENCE STUDIO OVERVIEW
The Science Studio web portal is mostly implemented

in Java, and uses server-side web technology common to
enterprise applications such as Java Servlets, Java
Messaging Service (JMS), Java Database Connectivity
(JDBC) and Java Server Pages (JSPs). In addition, many
high quality open-source frameworks and libraries have
been leveraged to build a highly functional web portal.
The Spring [1] framework is used extensively throughout
to build very robust and highly configurable servlets
using the Model-View-Controller (MVC) architectural
pattern. The iBATIS [2] Object-Relational Mapper
(ORM) library is used to easily persist objects to a
MySQL [3] relational database. The XStream [4] library
provides fast object marshalling capabilities in both XML
and JSON formats. Security functionality is provided by
the JSecurity [5] framework using some custom
extensions. Other Java libraries and tools include
Apache Log4J [6], Apache Commons [7], Apache
Tomcat [8], Apache ActiveMQ [9] and Jetty [10].

Data Model
Science Studio defines and implements a data model to

capture the metadata associated with scientific research.
Figure 1 is a data object relation diagram for this data
model. The objects belonging to the experiment model

have been indicated. A primary objective of Science
Studio is to allow scientists, and other people, to
collaborate; therefore an important part this data model is
the person object. A person represents a user of the
system and contains information such as their name,
affiliation, email address and mailing address.

Figure 1: Data object relation diagram for the Science
Studio data model, with the experiment model indicated.

Research projects are the foundation of experiment
management in Science Studio. For that reason, the
project object is the top-level organizational element for
the hierarchical experiment model. A project is
composed of person, sample and session objects. The
collection of persons represents the people collaborating
on a project, or simply a project team. A sample
represents the physical specimen that is the subject of
investigation for a project team. A session is composed
of experiment objects and represents the reservation or
allocation of resources to the project team for a specified
time period. An experiment is composed of scan objects
and references a sample, instrument and technique object.
A laboratory is composed of instruments that are
associated by location or function. An instrument
references technique objects and represents a device or
resource used to conduct an experiment. A technique
represents the method or process used by an instrument to
produce data. A scan represents the actual experimental
data produced by an instrument, and contains information
about its storage location and file format.

Standard Data Format
The manipulation of experimental data is a requirement

for most scientific applications. Science Studio specifies
a standard format for experimental data files to facilitate

*This work was funded by CANAIRE under R&D project NEP-01; and
performed at the Canadian Light Source which is supported by
NSERC, NRC, CIHR and the University of Saskatchewan.
#dylan.maxwell@lightsource.ca

THCOAA02 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Data Networking and Web Technology

118

Web 2.0 and SOA

the sharing of data between applications. This format is
an extension of the more general purpose Common Data
Format (CDF) [11]. The CDF is a self-describing format,
with both binary and XML versions, used for efficient
storage of scalar and multidimensional data. The standard
format defines an overlying structure for the CDF that
provides more information about the type of experimental
data contained within a data file. Science Studio
implements utilities for reading and writing files in the
standard format, as well as, a framework for building
custom data format converters.

Security
Science Studio provides security features such as

authentication, authorization and session management. A
web application implements shared services for user
authentication such as the login and logout pages. This is
indicated in Figure 2 by the Login Servlet. Security
session management is handled mostly by JSecurity using
a customized servlet filter. A servlet can be easily
configured to use this filter, which will only allow access
to authenticated users.

Authorization is provided using a project-oriented
permission system. The members of a project team are
associated with a project role. The project role
determines the permissions that each team member has
within the project. Currently only two project roles are
used: Experimenter and Observer. Experimenters have
full access to the project. They are permitted to create,
read, edit and delete data objects belonging to the project.
Observers are only permitted to read data objects
belonging to the project. These permissions also apply to
remote access. Experimenters are permitted to control the
remote instrument, and Observers are only permitted to
view the remote instrument.

Web Portal
Science Studio implements an extensible web portal

that gives users a single, consistent entry-point for access
to other services. This rich web interface is built using
the Ext [12] JavaScript framework. In Figure 2, the
server-side of this web application is indicated by the
Core Servlet. A primary feature of the web portal is the
ability for users to browse the data model. The data
model is represented as data trees with projects as the
roots, and scans as the leaves. Users can navigate to data
objects using the tree, which will then provide different
options based on the data object type. For example,
selecting a scan allows users to view the experimental
data, or selecting a session allows them begin remote
access. Users can also create, edit and delete data objects,
provided they have the required permissions.

VESPERS REMOTE ACCESS
The VESPERS beamline is located at the Canadian

Light Source (CLS) synchrotron [13] in Saskatoon
Saskatchewan. VESPERS is a microprobe beamline that
operates in the energy range of 6 to 30keV using bending
magnet radiation. The experimental station is equipped
with both a CCD area detector and a four element Silicon
Drift Detector (SDD). Together they are capable of
multiple complimentary techniques such as X-Ray
Diffraction (XRD) and X-Ray Fluorescence (XRF)
spectroscopy.

XRD is a common technique used for determining the
microcrystalline structure of geological samples. This
technique uses the CCD detector to record the diffraction
pattern produced by a sample when exposed to a focused
x-ray beam. The CCD detector image size is 2084 x 2084
pixels or approximately 8MB. For an area of interest that

Figure 2: Science Studio architecture for VESPERS beamline remote access and data processing.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THCOAA02

Data Networking and Web Technology Web 2.0 and SOA

119

is 100 x 100 data points, the total size of the data set is
approximately 80GB. A data set of this size requires
many hours to process using conventional computers with
standard software. However, using the computers at the
SHARCHET [14] High Performance Computing (HPC)
center, in conjunction with special software, this large
data set can be processed in minutes. The SHARCNET
HPC center is located at the University of Western
Ontario (UWO) in London Ontario.

Science Studio allows users to remotely access the
experimental capabilities of the VESPERS beamline, and
then to readily utilize the computational capabilities of
SHARCNET. Shown in Figure 2 is an architectural
diagram of the main components, and their interaction,
for the remote access and data processing systems.

EPICS Control System
EPICS [15] is the standard control system at the CLS

and is used for control and data acquisition of nearly
every device at the facility. The Channel Access (CA)
protocol is used to communicate with EPICS over the
network.

Beamline Control Module
The Beamline Control Module (BCM) is a Java

application which provides a high-level interface to the
EPICS control system. The BCM communicates with
EPICS using a Java implementation of CA to monitor and
change the state of devices on the VESPERS beamline.
The BCM provides a device abstraction so that alternate
low-level control systems can be used. This is important
for use of the BCM outside of the CLS.

Web Application
The VESPERS beamline web application provides a

user interface for device control and data acquisition. The
Ext JavaScript framework is again used to build a rich
interface that uses asynchronous requests to provide
frequent (normally once per second) updates to the device
information. This web application allows the user to
interactively explore the sample, and then define a scan
area by simply drawing a rectangle on the sample image.
When the user starts a scan they are prompted to enter a
name for the scan. The progress of a scan is displayed
numerically, as the percentage complete, and graphically,
as an animated dot that moves across the scan area. The
user can also configure and test both the SDD and CCD
detector. The web application also gives access to three
video cameras, with pan, tilt and zoom capability, that
show various views of the experimental station. Although
all members of the project team, who have the
Experimenter role, are permitted to control the beamline,
only one user at a time is allowed to be in control of the
beamline. In Figure 2, the server-side of this web
application is represented by the VESPERS Servlet.

Data Processing Service
The raw data collected on the VESPERS beamline must

be transferred from CLS to UWO for processing, and the

processing results must to be transferred back to CLS for
presentation to the users. In order to fully take advantage
of the CANARIE Lightpath high-speed connection
between the CLS and UWO, the File Transfer Server
(FTS) and File Transfer Client (FTC) provide the
following features:

● Simultaneous TCP connections.
● Start transferring multiple files with one request.
● Asynchronous client using non-blocking I/O.
● File content compression using gzip [16].
● File range transfer over multiple connections.

The File Monitor Service (FMS) provides file system
event notification through HTTP. It is difficult to get I/O
event notification from the CLS data acquisition system,
by which experimental data is collected on the VESPERS
beamline. Providing pseudo-realtime processing of
experimental data requires that each piece of data be
transferred to UWO once it is available on the CLS file
system. This service can be deployed on any system with
native support for inotify [17], and that has the
inotify-java [18] library installed.

The basic sequence of events for the Data Processing
Service is shown in Figure 3. The VESPERS Servlet first
sends a request to the FMS to initiate monitoring of a
specified directory. The notifications for these events are
sent directly to the FTC, which then initiates the transfer
of the experimental data files from the FTS.

Figure 3: Event sequence for the Data Processing Service.

 REFERENCES
[1] Spring <http://www.springsource.org/about>
[2] iBATIS <http://ibatis.apache.org>
[3] MySQL <http://www.mysql.com>
[4] XStream <http://xstream.codehaus.org>
[5] JSecurity (renamed to Apache Shiro)

<http://incubator.apache.org/shiro>
[6] Apache Log4J <http://logging.apache.org/log4j>
[7] Apache Commons <http://commons.apache.org>
[8] Apache Tomcat <http://tomcat.apache.org>
[9] Apache ActiveMQ <http://activemq.apache.org>
[10] Jetty <http://jetty.codehaus.org/jetty>
[11] Common Data Format <http://cdf.gsfc.nasa.gov>
[12] Ext JS <http://www.sencha.com/products/js>
[13] Canadian Light Source <http://www.lightsource.ca>
[14] SHARCNET <https://www.sharcnet.ca/my/front>
[15] EPICS <http://www.aps.anl.gov/epics>
[16] gzip <http://www.gzip.org>
[17] inotify <http://inotify.aiken.cz>
[18] inotify-java <https://launchpad.net/inotify-java>

THCOAA02 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Data Networking and Web Technology

120

Web 2.0 and SOA

RESEARCH METADATA MANAGEMENT AT THE AUSTRALIAN
SYNCHROTRON

Richard. Farnsworth, Alistair Grant, Andrew Rhyder, Australian Synchrotron, Melbourne Australia
Nick Hauser, Bragg Institute ANSTO, Sydney Australia.

Abstract
This paper details the approach the Australian

Synchrotron [1] is using, in collaboration with the
Australian Neutron Source, run by the Bragg institute,
part of ANSTO [2] (Australian Nuclear Science
Technology Organisation) called OPAL (Open Pool
Australian Light-water Reactor) for some of the data and
metadata management issues. It explores the data and user
policies, describes the quantity and quality of data and
demonstrates the way forward based on both existing and
future directions in e-research, network communications,
user proposal and material databases, portal technologies
and integration techniques. The role of standards for
access and metadata creation is also explored. This work
is funded by an educational infrastructure grant
administered by Australian National Data Services.

DATA POLICY
In order to progress with publicly funded research

facilities data and metadata publishing the data policies
must be clear. The answer to the questions who owns the
data, when can you make it public, what can you do with
it should be clear. At the Australian Synchrotron twenty-
four months is allowed to the principle investigator to
publish publicly. The period is thirty-six for Bragg
institute instruments (ANSTO, OPAL). Either facility
may choose to process the raw data in order to make is
accessible or publishable. There is a growing trend
worldwide towards open technical data. There is also a
growing trend towards publishing not only a scientific
paper, but also the raw data that was used to produce it..
As both the Australian Synchrotron and the Bragg
institute are publicly funded, technical data created at
either location should be at some point made available to
the public. Currently there are some Australian
mechanisms for achieving this. One is called the ANDS
portal. [3] ANDS stands for the Australian National Data
Service.

DATA QUANTITY
The Australian Synchrotron operates nine beamlines

producing around two to three Terabytes of experimental
data per day across a wide variety of disciplines from
protein crystallography, medical, through to the
conservation and restoration of cultural objects and works
of art. In 2009 over five hundred groups conducted
research at the Australian Synchrotron. More are expected
this year and the next. The Australian Synchrotron
expects to be producing at least eight terabytes per day
when the next round of ten beamlines are installed in the
coming two to five years. Even if the Australian

Synchrotron just keep operating the existing beamlines,
there will be a significant increase in data collection
because of both the continual improvement in detectors
and the overall efficiency or “duty cycle” of the
beamlines. The objective of this project to make that data
available publicly. The data will be stored in the curated
archives immediately; however authorisation for access
will be allowed or otherwise depending on when the data
can be made available. Much smaller volumes of data are
created at the Bragg institute.

This project is seeking to provide services so that
researchers and institutions can manage their data. To
give them the power of something like “Google” over
their data – that is the ability to search, catalogue and
access. This promotes the use and re-use of data and so
adds to the efficiency of the data generating ability of
each facility.

MECAT
The chosen a name for this project is “MeCAT” [4], as

a nod to a similar project/product called ICAT. It was a
requirement to name the project, rather than the
technology being used. The project is to enhance the
technology to enable those things aforementioned
efficiencies.

COLLABORATION
It is worthwhile noting the collaboration details. The

two facilities have decided that if they collaborate and
pooled resources between the two similar facilities in
Australia, we could effectively get twice the efficiency of
the software development dollar in terms of software
resources.

It also a major step towards the creating an Australian
culture of same software in similar institutions. This leads
to the same experiences for researchers. This is becoming
increasingly strategically important to both facilities. It
would be ideal if every institute used exactly the same
software everywhere such that experimenters trained in
the use of software one area or instrument could use the
same skills in another. This is probably never going to be
completely possible, but this project assists by moving
toward that philosophical direction. It also helps with the
data management, because the software automatically
moves the data for those researchers that come from
known institutions to their home institutions.

OBJECTIVE OF PROJECT
The objective of this project is to provide services to

researchers to manage their experimental data and to
provide data search and access to the broader research

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THCOAA03

Experiment Data Acquisition/ Analysis Software Database systems

121

community. These services will enable better use and
reuse of the data. The ultimate aim is to combine these
services into a common environment to allow project
teams to interact with the instruments and even allow for
a data collaboration between ANSTO and AS

MECAT FOCUS
The Australian Synchrotron intends to focus this project
on three of its nine beamlines, because there is a great
deal of disparity between all nine - too much for the
project to deal with in the first instance. The Australian
Synchrotron will be looking at the Soft x-ray
spectroscopy, Infrared Microspectroscopy, and
Macromolecular Crystallography beamlines. The
Macromolecular Crystallography beamline already is
using parts of the MECAT project software. The
Australian Synchrotron is intending to take data from the
experimental end stations, the proposal database,
scheduling database and the EPICS control systems. At
ANSTO, their scope is a little different. The Bragg
institute is considering all of the neutron beam
instruments, these instruments are smaller data volume
producers, although of no less importance. Instead of
EPICS they use a control system which is a local
adaptation of the Swiss Spallation Instrument Control
System (SICS) a collaboration from the Paul Scherrer
Institute (PSI). The actual implementation at the Bragg
Institute is nearly identical.
 Both institutes will produce an ARCS compatible data
repository, ARCS is the Australian Research
Collaborative Services. This will then allow a set of
standards to harvest that data publicly using metadata.

ARCS

ARCS lets researchers look for data, transfer data and to
share material. It uses a concept called the “Data fabric”
which is an overloaded term that has only recently been

defined more precisely. It’s been used like the “cloud”,
but aligned for research data purposes and has central;
data storage, security etc. for facilities across Australia.
As time goes by, there will be more and more
experimental facilities using the data fabric provided by
ARCS. The following description of ARCS [4] is
pertinent:

The Australian Research Collaboration Service provides
tools and services that enable researchers to operate at
the forefront of their fields. It is intended to allow them to
securely store large volumes of data for more
collaboration. These tools and services also enable the
transfer of data for faster analysis and result, to share
material for convenience and control and finally to share
data securely only with authorised

TARDIS

The MECAT project has chosen to use a particular
technology to help collect the data for the databases,. It is
called TARDIS, and stands for The Australian Repository
for Diffraction ImageS, Ref [5]

TARDIS is a collaborative venture; coming out of the
eResearch community. It is Australian and was started at
Monash University, Australia [6]. It puts data into the
dataset for various communities. It started off as a
development for assisting users of the Protein
Crystallography beamline. It has been made open source
and is used for managing groups of files for a given
experiment.
TARDIS available at the website ref [5] and is used for
managing a group of files associated with an experiment –
as per the following schema.

Figure 1: TARDIS Schema showing authorisation and experiment, parameters, database and data files

THCOAA03 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

122

Database systems

TARDIS SCHEMA
Figure 1 shows how TARDIS [5] looks like in its full
schema. If we remove the authorisation, the complexity
reduced significantly. It encompasses an experiment
which consists of the “Dublin core” type information –
that is title, author date etc. Then there are the soft
parameters stored against that. Those parameters will
generally be unique to the instrument and science being
used for those experiments.

Now examine at the datasets themselves, there may be
many datasets associated with a given experiment. This is
the way that works for the two facilities in question and
similar intuitions. Finally there are the files themselves
and where they are located.
In summary, the schema consists of the experiment, the
experimental data, datasets and files.

CONCLUSION

MeCAT is a joint project between the Australian
Synchrotron and ANSTO to improve Metadata
management and publication at the facilities. It is using
and extending open source tools called TARDIS and will
offer Australian Scientists greater capabilities to share and
reuse data.

REFERENCES
[1] http://www.synchrotron.org.au/
[2] http://www.ansto.gov.au/
[3] http://ands.org.au/
[4] http://mecatproj.wordpress.com/
[5] http://tardis.edu.au
[6] http://www.monash.edu.au/

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THCOAA03

Experiment Data Acquisition/ Analysis Software Database systems

123

DIAMOND'S TRANSITION FROM VME TO FIELDBUS BASED
DISTRIBUTED CONTROL

I.J.Gillingham, S.C.Lay, R.Mercado, P.Hamadyk, M.R.Pearson, T.M.Cobb, M.T.Heron, N.P.Rees
Diamond Light Source, Oxfordshire, UK

Abstract
The interface layers of Diamond's accelerator and

photon beamline control systems have predominantly
been implemented as VME-based systems. Forthcoming
control systems, for new photon beamlines, have
requirements necessitating a divergence from Diamond's
adopted design patterns, including a reduction in available
rack space, and we also need to consider the management
of hardware obsolescence. To address these issues, a new
standard based on PCs and Ethernet field buses to the
instrumentation has been defined. This paper will present
the new design, how the design transition is being
effected and the key benefits to Diamond.

INTRODUCTION
Diamond Light Source is a 3 GeV third-generation light

source with a 561 m storage ring (SR), a full-energy
booster (BR) and a 100 MeV pre-injector Linac[1]. The
photon output is optimised for high brightness from
undulators and high flux from multi-pole wigglers. The
current operational state includes 19 photon beamlines,
with a further three beamlines in an advanced stages of
design and construction. A further phase of photon
beamlines is now proposed, and subject to funding,
detailed design and construction of these 10 beamlines
will commence from 2011.

 In planning for the next phase of photon beamlines, it
was timely to consider the control system architecture
applied to future beamlines, associated front ends and
experimental stations.

EXISTING CONTROL SYSTEM
ARCHITECTURE

Accelerator and beamline control systems use a
consistent approach to interface to the hardware, with
most equipment interfaced through embedded VME
systems. To support the interface requirements of the
equipment, a range of I/O modules based on Industrial
Pack (IP) modules (ADC, DAC, Serial, DIO) and VME
modules (IP carrier, motion, scalar and timing) is used.
The field signals are interfaced via either transition
modules or front-panel connections. A VME
microprocessor (MVME5500) runs VxWorks and EPICS
to serve up the control information to client applications.
There are in excess of 250 VME-based systems running
as part of Diamond's control system[2]. In addition, the
electron BPMs run EPICS IOCs directly on the Libera
beam processing hardware, and soft IOCs running under
Linux on PC hardware concentrate and process data or
interface to network attached devices over manufacturer-

specific protocols. One anomaly to this approach has been
video cameras which have been interfaced to the VME
IOC using Firewire and a PMC Firewire adapter located
on the VME processor board.

REASON FOR CHANGE
The existing control system architecture has served

well for the existing accelerators and beamlines; however
it was defined nearly ten years ago, so in the context of
the next phase of beamlines the opportunity to reconsider
the standards is being taken. In doing so, it is clear that
not all the hardware capability of VME is required for
beamline control; neither is the use of a hard real-time
operating system such as VxWorks. It is also apparent
that most I/O functionality required for control of
beamline equipment can now be realised through
Ethernet-attached I/O. There is also now good
infrastructure for developing and managing Linux based
EPICS IOCs on a PC architecture.

OUTLINE REQUIREMENTS FOR
PHOTON BEAMLINES

In considering the requirements for photon beamline
control the following technical systems are identified:
• Motion control
• Vacuum instrumentation and other serial devices
• Video cameras
• Analogue and digital signals
• Programmable logic controllers
• Timing signals
The interface from the IOC to the equipment should

make use of the installed network cabling, thereby
reducing I/O-specific cabling and giving flexibility in
reconfiguration and addition of equipment without the
need to pull new cables.

There should be greater partitioning of the IOC
functionality by technical area, e.g. motion, camera and
vacuum, by running a greater number of EPICS IOC
instances, either as separate processes on one Linux
system or as single processes, each on a virtualised Linux
system. This would minimise the disturbance to beamline
operation when making changes that necessitate restarting
an IOC.

The I/O associated with the control system should be
located close to the equipment being interfaced; i.e. for
signals located in experimental and optics hutches, the I/O
modules should be co-located in these areas. However,
this is constrained by the possibility of radiation-induced
damage to I/O in the optics hutches of high energy

THCOAA04 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Control hardware and low-level software

124

Front-end (Hardware Interface) Software

(~100keV) beamlines and by the space available in the
some beamline hutches.

NEW SOLUTION
Each IOC will run on a 1U Linux PC located within the

beamline instrumentation area. This is not regarded as a
“soft IOC” as the hardware is connected directly to it. It
will probably have several physically separate network
connections to support the different systems, so that
equipment with limited network stack and CPU capability
such as PLCs is not affected by high-data-rate devices
such as cameras operating in multicast mode. The
structure is shown in Figure 1.

Figure 1: Hardware Architecture

Motion Control
For motion control, a standard based on the Delta Tau

Geobrick LV Ethernet-based motor controller is used[3].
This provides 8 axes of motion control and comes
complete with amplifiers in a 4U rack-mount box. The
existing EPICS motor record software, already in use with
older VME hardware, was modified to be compatible with
this controller. This was realised by adding an ASYN
interpose layer, which provides support for the Delta Tau
Ethernet TCP/IP packet structure, and so avoids making
changes to the existing PMAC motor controller ASYN
driver.

Vacuum Instrumentation and other Serial
Devices

Vacuum instrumentation (Gauges and Pump
Controllers) and other serial devices will be interfaced
through RS232, RS422 or RS485 serial connections.
These will connect to a terminal server located in the
instrumentation rack and the terminal server via Ethernet

to the IOC. On the IOC most serial devices are handled
by the EPICS Stream Device module communicating to
the serial interface over virtual serial connections to the
terminal server.

Cameras on Ethernet
New diagnostic applications will use a range of GigE

cameras from AVT (formerly Prosilica).
A video server will run an EPICS IOC using

areaDetector[4] to control, process and store images from
up to 10 cameras and ffmpegServer[5] for visualisation.
AreaDetector is a modular system of EPICS drivers and
plug-ins that can be "rewired" at run time, allowing a
flexible image processing chain to be set up. Plug-ins for
controlling the camera, providing statistics on the images
that are produced, filtering them and writing them to disk
are included with areaDetector. FfmpegServer is a
Diamond-produced plug-in that compresses a stream of
images to mjpg and serves them over http.

Programmable Logic Controllers
Interlocking and protection of equipment is realised in

Omron CJ1 PLCs. These will be interfaced to the IOC
using Ethernet and the FINS[6] protocol over UDP. An
EPICS driver has been developed and provides direct
read/write access to each PLC's I/O register and memory
areas.

The Omron CJ PLC will optionally use remote I/O
modules called SmartSlice[7] which will be located in the
beamline optics and experiment hutches. The SmartSlice
remote I/O comprises a Communications Unit and a
number of I/O Units providing digital I/O, analogue I/O,
temperature, counter and positioning interfaces.

The SmartSlice I/O Units communicate with the host
PLC over a private Ethernet connection running the
PROFINET protocol. PROFINET[8] provides flexibility
so that it is simple to configure additional I/O modules.
The interface is realised over standard Ethernet
connections.

ADCs DACs and DIO
To interface ADCs, DACs and digital I/O, a range of

I/O modules from Beckhoff Automation (Verl, Germany)
has been selected. These use EtherCAT[9], an industrial
Ethernet-based fieldbus system. This I/O will be used for
all non-interlocking type applications, and provides lower
latency from the plant to the IOC than the PLC solution.
It further minimises the number of I/O points in the PLC-
based interlocking system and so minimises the need for
changes to the PLC which necessitate revalidation of the
interlock logic.

The EtherCAT protocol provides low-latency data
transfer from the I/O modules into the host computer. It
operates on the principle of a master that communicates
with slaves using EtherCAT telegrams that are passed
around each node and back to the master. The EtherCAT
master uses standard Ethernet controller hardware and a
software implementation of the EtherCAT functionality,
whilst the slaves use a custom slave controller.

EPICS
Client

1U PC IOC
PCIe EVR

Camera

Timing
System

PLC

Terminal
Server

ADC/DAC

Pumps

I/O

Gauges

Interlocks

Motion

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THCOAA04

Control hardware and low-level software Front-end (Hardware Interface) Software

125

The custom interface implements a Fieldbus Memory
Management Unit (FMMU), which allows the mapping of
logical addresses in the telegram to physical ones within
the slave. This processing occurs on the fly as one slave
passes the telegram through to the next slave, introducing
a delay of a few nanoseconds. Slaves also automatically
close a communication ring when the outgoing Ethernet
link (downstream section) is not connected, by returning
the telegram to the master back through the chain of
slaves.

The telegram structure allows several slaves to be
addressed in a single Ethernet frame. This characteristic
significantly reduces the overhead in comparison to other
Ethernet fieldbus protocols, and is well suited to address
devices that may have a payload of only a few bytes, such
as digital I/O devices that are typical in industrial
automation.

Although the protocol will operate with other Ethernet-
based services and protocols on the same physical
network, the proposed Diamond Remote I/O solution will
adopt strict segregation of the EtherCAT bus.

Because we are using Linux, the hardware supported is
limited to Realtek and Intel cards, plus a 'generic'
interface.

Timing Signals
The Diamond timing system is applied across the

accelerators and beamlines[10]. On the beamlines it is
used to decode orbit and bunch clocks to enable
synchronisation of experiments to the stored beam
structure. It provides gating signals which at injection,
during top-up operation, are used by beamline detectors to
mask out the stored beam disturbance. The timing system
also provides time stamps for EPICS record processing.
To support this functionality in the new architecture, it is
envisaged that a PCIe version of the Event Receiver
module will be developed. This will make the time stamp
information available in the PC-based IOC and will bring
out the decoded signals on a 1U interface panel.

SUMMARY OF PROGRESS TO DATE
Ethernet-based motion control subsystems are already

implemented and deployed on a number of beamlines
connected to both PC and VME IOCs. They have proved
to provide effective control of stepper and servo motor
systems, e.g. monochromators, slits, mirrors etc. Remote
diagnostics and configuration are also proving to be very
valuable.

Similarly interfacing a range of instruments over
terminal servers is also actively being used and makes use
of already developed Streams support modules.

The FINS interface to the Omron PLC has been
implemented and deployed to integrate a single PLC
controlling LN2 distribution. The design of standard
remote I/O modules has also been undertaken. Given the
risk of possible radiation damage, SmartSlice remote I/O
units have been in soak-test for the past two months in
one of Diamond's optics hutches. The implementation of
SmartSlice systems is being planned for forthcoming
beamline control and front-end equipment protection
systems.

The EtherCAT based remote I/O has been through
initial evaluation and testing with a Linux x86 PC as a
host. Initial tests have been performed using an Intel
E1000 controller on a standard RHEL5 dual-core Intel
Pentium 4 Xeon PC. A user-space polling process, fully
using one of the two available cores, was able to
reproduce a pulse read from an ADC and to drive a digital
output with a delay of 200 microseconds. Further effort is
planned to develop EPICS device support for the various
EtherCAT I/O modules to be used on Diamond.

REFERENCES
[1] R.P.Walker, “Commissioning and Status of The

Diamond Storage Ring”, APAC 2007, Indore, India.
[2] M.T.Heron et.al., “Implementation, Commissioning

and Current Status of the Diamond Light Source
Control System”, ICALEPCS 2007, Knoxville, 2007.

[3] N.P.Rees et.al., “Development of Photon Beamline
and Motion Control Software at Diamond Light
Source”, ICALEPCS 2007, Knoxville, 2007.

[4] http://cars9.uchicago.edu/software/epics/areaDetector
.html

[5] http://controls.diamond.ac.uk/downloads/support/ffm
pegServer/

[6] OMRON FINS Commands Reference manual
(W227-E1-2)

[7] OMRON Slice I/O Units Operation Manual (W455-
E1-06)

[8] OMRON GRT1-PNT PROFINET I/O
Communication Unit Operation Manual (W13E-EN-
01)

[9] ETG. EtherCAT - the Ethernet fieldbus.
http://www.ethercat.org/pdf/ethercat_e.pdf .

[10] Y. Chernousko, P. Hamadyk, M. T. Heron, “Review
of the Diamond Light Source Timing System”,
RUPAC 2010, Protvino, Russia, 2010

THCOAA04 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Control hardware and low-level software

126

Front-end (Hardware Interface) Software

A DISCRETE HYSTERESIS MODEL FOR PIEZOELECTRIC ACTUATOR
AND ITS PARAMETER IDENTIFICATION

Y. Cao and X. B. Chen#

Department of Mechanical Engineering
University of Saskatchewan, Canada

Abstract
Hysteresis is an important nonlinear effect exhibited by

piezoelectric actuators (PEA) and its modelling has been
drawing considerable attention. This paper presents the
development of a novel discrete model based on the
concept of auto-regressive moving average (ARMA) for
the piezoelectric-actuator hysteresis, and its parameter
identification method as well. Experiments were carried
out to verify the effectiveness of the developed model.
The result obtained shows that the developed model can
well represent the hysteresis of the PEA.

INTRODUCTION
Piezoelectric actuators (PEA) have been widely used in
nanopositioning applications, such as AFM , STM , DVD
disc reading and writing [1], diamond lathe machine [2],
lithography, X-ray imaging [3]. However, the
performance of a PEA can be significantly degraded by
its hysteresis. Hysteresis is a memory effect of
piezoelectric actuators and, as a result, the hysteresis
exhibited at an given time instant depends on not only the
input at the present time but also the operational history
of the system considered. In order to develop control
schemes on PEA, modelling of PEA has been drawing
considerable attention and several models have been
resulted to describe the hysteresis effect, such as Preisach
model [4], the ferromagnetic material model [5] and the
nonlinear auto-regressive moving average model with
exogenous input (NARMAX model) [6]. However, most
of the models developed in literatures are continuous and
the model-based controller design is proceeded in the
continuous time domain. With the advance of computer
technology nowadays, controllers are mostly
implemented digitally. Note that not all the continuous
controllers can work on the sampled digital system as
desired since the discrete sampling can sometimes make
the continuous system unstable. Therefore, it is advantage
to develop a discrete hysteresis model of PEA for its
digital controller design. Unfortunately, little work about
the discrete hysteresis model or the digital controller
design for PEA has been found yet. In this paper, the
ferromagnetic material hysteresis model is discreted and,
by combining it with the concept of auto-regressive
moving average (ARMA), a novel model is developed to
represent the hysteresis of PEA. Specifically, the next
section of this paper is the introduction to the discrete
ARMA-based hysteresis model, which is followed by the
experimental identification and verification results by
using the discrete ARMA-based hysteresis model as

compared to the general discrete form of hysteresis model
[7]. The last section gives the conclusions of the paper
and future work.

DISCRETE ARMA-BASED
 HYSTERESIS MODEL

The ferromagnetic material hysteresis model introduced
by Adriaens and Koning [5] is illustrated in the following:

[()] ()y x f x y xg xα= − +& & &

 (1)

where x is the input of the hysteresis and y is the output,
()f x

and ()g x

are functions of x with which you can

“shape” the hysteresis loop. It has been experimentally
verified that this differential equation is also suitable for
describing electric hysteresis such as PEA. In theory, PEA
shows the length saturation. In practise, however, the
displacement of the PEA stays far away from saturation.
Therefore, chose () /f x ax α= and ()g x b=

as the shape

function, Equation (1) can be rewritten as:

()y x ax cy bx= + +& & & (2)

where 1/c α= − . [7] applied the difference equation to
discrete Equation (1) as follows:

 (1) () (1) () [() ()]y k y k x k x k ax k cy k+ − = + − +
 [(1) ()]b x k x k+ + − (3)

This paper discrete Equation (1) by integral.

Discrete form of the ferromagnetic material
hysteresis model

When the input signal is monotonically increasing,
0x >& , take integral on both side of equation (2) in one

sampling interval, one can derive:
(1) (1) (1) (1)k T k T k T k T

kT kT kT kT
ydt a xxdt c xydt b xdt

+ + + +
= + +∫ ∫ ∫ ∫& & & &

 (4)
where T is the sampling interval.

Equation (4) leads to:

(1)2 2

()

1(1) () [(1) ()]
2

x k

x k
y k y k a x k x k c ydx

+
+ − = + − + ∫

 [(1) ()]b x k x k+ + − (5)
which is the discrete form of the first order hysteresis
differential equation (2).

Using trapezoid equation to estimate the integral term,
Equation (5) yields:

(1) 2 (1)(1)

2 (1) 2 (1)
k ky k a b

c k c k
α β
β β
+ +

+ = +
− + − +

xbc719@mail.usask.ca

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL004

Experiment Data Acquisition/ Analysis Software Data analysis

127

2 (1) ()
2 (1)

c k y k
c k
β
β

+ +
+

− +
 (6)

where 2 2(1) (1) ()k x k x kα + = + − ,

 (1) (1) ()k x k x kβ + = + − .
Given the zero initial condition that (1) 0y = ,one can

derive:
(2) 2 (2)(2)

2 (2) 2 (2)
y a b

c c
α β
β β

= +
− −

(3) 2 (3) (2)(3) []
2 (3) 2 (3) 2 (2)

cy a
c c c
α β α
β β β

+
= + ⋅

− − −

2 (3) 2 (3) 2 (2)[]
2 (3) 2 (3) 2 (2)

cb
c c c
β β β
β β β

+
+ + ⋅

− − −
L

Therefore, the output y can always be represented as a
function of input x by recursion:

1 2(1) (1) (1)y k ay k by k+ = + + + (7)

where

1 1
(1) 2 (1)(1) ()

2 (1) 2 (1)
k c ky k y k

c k c k
α β
β β
+ + +

+ = +
− + − +

 (8)

2 2
2 (1) 2 (1)(1) ()

2 (1) 2 (1)
k c ky k y k

c k c k
β β
β β

+ + +
+ = +

− + − + (9)
When the input signal is monotonically decreasing,

0x <& , repeating the above process, one can derive:

1 2(1) (1) (1)y k ay k by k+ = + + + (10)

where

1 1
(1) 2 (1)(1) ()

2 (1) 2 (1)
k c ky k y k

c k c k
α β
β β

− + − +
+ = +

+ + + +
 (11)

2 2
2 (1) 2 (1)(1) ()

2 (1) 2 (1)
k c ky k y k

c k c k
β β
β β
+ − +

+ = +
+ + + + (12)

 In order to verify the effectiveness of the discrete form
of the first order hysteresis differential equation, a
SIMULINK model was built to generate the simulation
data. Parameters a, b, c are chosen to be 0.0064, -0.0378,
0.1144 such that the output displacement of the
SIMULINK model can fit the measured displacement.
Meanwhile, another group of output data was generated
by Equations (3) and (7)-(12). Table 1 shows the
comparison of the discrete error using Equation (3) and
Equation (7)-(12). The input is a sinusoidal signal whose
frequency is set to be 1Hz ~300Hz with 70V magnitude.
From the result, it can be concluded that the discrete
hysteresis Equation (7)-(12) is more accurate in
describing hysteresis than the general Equation (3).

Table 1: Discrete error by using different methods

Input Frequency
(Hz) 50 100 200 300

By using Equation
(7)-(12) 0.0167 0.0335 0.0671 0.1010

By using Equation
(3)

0.0171 0.0341 0.0681 0.1022

Discrete ARMA-based hysteresis model
The general ARMA model has the form as follows:

 1 0

() () ()
yz NN

i i
i i

z t a z t i b y t i
= =

= − + −∑ ∑ (13)

X.B. Chen, Q.S. Zhang et. al. [8] have made a
conclusion that the second order system can be used to
approximately represent the dynamics of the piezoelectric
stage if the mass ratio between the stage and the actuator
increases. Thus, using a second order ARMA model, one
can derive:

1 2 0 1 2() (1) (2) () (1) (2)z t a z t a z t b y t b y t b y t= − + − + + − + −
(14)

Substitute the discrete hysteresis Equation (7) and (10)
into Equation (14), the discrete ARMA based hysteresis
model will be derived as:

1 2 0 1 0 2() (1) (2) ' () '' ()z t a z t a z t b y t b y t= − + − + +

1 1 1 2 2 1 2 2' (1) '' (1) ' (2) '' (2)b y t b y t b y t b y t+ − + − + − + − (15)
It will be used to describe the rate-dependent performance
of a piezoelectric actuator later.

PARAMETER IDENTIFICATION AND
EXPERIMENTS

Experiments are implemented on a PEA (P-753, Physik
Instrumente). The actuator can generate displacement in a
range of 15 μm with a resolution of 0.5 nm. For
displacement measurements, a capacitive displacement
sensor of the P-753 PEA is used. It is a built in sensor
with a resolution of 1nm. Both the actuator and the sensor
are connected to a host computer via an I/O board (PCI-
DAS1602/16, Measurement Computing Corporation) and
controlled by SIMULINK programs. All measured
displacements used in this study were measured with a
sampling interval of 0.05 ms. The unit of the measured
displacements is μm. The mass ration of the stage and the
PEA is 49.8 which indicates that the dynamics of the
piezoelectric driven stage can be regarded as a second
order system approximately according to our previous
study [8].

Figure 1: Piezoelectric driven stage

Online estimation method is applied to identify the
parameters in the model by giving a bunch of sinusoidal
inputs with frequency varying from 10Hz to 200Hz and
amplitude being 70V. Table 2 shows the parameter

THPL004 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

128

Data analysis

identification results for discrete ARMA-based hysteresis
model. The parameter c is identified to be -0.0305 by
using Box-Kanemasu method. The initial value of the
hysteresis operator parameters a, b, c are still identified
from the 1Hz 70V sinusoidal input data using LS method.

Table 2: Discrete error by using different methods

Parameters 1a 2a 0 'b 0 ''b

Value 1.6531 -0.676 -0.00276 -0.0732

Parameters 1 'b 1 ''b 2 'b 2 ''b

Value 0.0064 0.174 -0.00353 -0.0976

Another two types of inputs is applied to the piezoelectric
actuator and the corresponding output is measured for
model verification. One is the piecewise continuous
combination of different amplitude sinusoidal inputs with
the same frequency. The other one is the superposition of
four sinusoidal inputs with different frequency, amplitude
and phase delay.

Table 3 shows the estimation error according to discrete
ARMA-based hysteresis model when applied a piecewise
continuous combination of different amplitude sinusoidal
inputs. The frequency varies from 10Hz to 400Hz. In
order to show the effectiveness of the discrete method
developed in this paper, the estimation error is compared
with the general discrete form by using difference
equation referred in [7].
Table 3: Estimation error for the Piecewise continuous

combination of different amplitude sinusoidal inputs

Frequency (Hz) 10 50 200 400

Discrete
ARMA-based

hysteresis model
0.0943 0.0989 0.1112 0.1603

General
discrete form
 of hysteresis

0.0946 0.0996 0.1128 0.1627

 Compare with the model error corresponding to the
same type of input data, it can be concluded that as the
input frequency increases, the estimation error increases
for both discrete methods. Meanwhile, the discrete
ARMA-based hysteresis model has a lower estimation
error than the general discrete model shown in [7],
especially at high frequencies.

CONCLUSIONS
This paper presents the development of a novel discrete
ARMA based hysteresis model to describe the hysteresis
of PEA. Online estimation method was applied to identify

the model parameters. In order to illustrate the
effectiveness of the ARMA-based hysteresis model,
experiments are carried out and the results are compared
with the general discrete model (3). It shows that the
discrete ARMA-based hysteresis model can better predict
the hysteresis of PEA. However, the model shows a larger
estimation error in high frequency application than in low
frequency application due to the estimation of the integral
term in the discrete hysteresis equation. Using a higher
order polynomial equation to estimate the integral term
maybe helpful to improve the discretization. Therefore, a
piece of the future work will be on the use of a high order
polynomial equation to estimate the integral term to
improve the behaviour of the discrete ARMA-based
hysteresis model. Moreover, the discrete control scheme
will be developed to insure the stability of the digital
control system for the PEA.

ACKNOWLEDGEMENT
The support to the present study from the China

Scholarship Council (CSC) and the Natural Sciences and
Engineering Research Council (NSERC) of Canada is
acknowledged.

REFERENCES
[1] Santosh Devasia and S. O. Reza Moheimani, A

Survey of Control Issues in Nano-positioning, IEEE
Transactions on Control System Technology, Vol.15,
No.5, Sep.2007

[2] H. J. Zhang,a_ S. J. Chen, and M. Zhou, Fast tool
servo control for diamond-cutting microstructured
optical components, J. Vac. Sci. Technol. B 27„3…,
May/Jun 2009

[3] H. Zhang, D. Chapman, Z. Zhong, C. Parham, M.
Gupta, Crystal tilt error and its correction in
diffraction enhanced imaging system, Nuclear
Instrument and Methods in Physics Research A 572
(2007) 961-970

[4] I. D. Mayergoyz, Mathematical Models of Hysteresis,
Physical Review Letters, Vol.56, No. 15, April 14th,
1986

[5] Han J.M.T.A. Adriaens, Willem L. de Koning and
Reinder Banning, Modeling piezoelectric actuators,
IEEE/ASME transactions on mechatronics, VOL.5,
No.4, Dec. 2000

[6] Liang Deng, Yonghong Tan, Modeling hysteresis in
piezoelectric acuators using NARMAX models,
Sensors and actuators, A149, 2009, P106-112

[7] Jozef Vӧrӧs, Modeling and Identification of
Hysteresis using Special Forms of the Coleman-
Hodgdon Model, Journal of Electric Engineering,
Vol.60, No.2, 2009, 100-105

[8] X. B. Chen, Q. S. Zhang, D. Kang, and W. J. Zhang,
On the dynamics of piezoelectric positioning
systems, Review of scientific instrument 79. 116101,
2008

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL004

Experiment Data Acquisition/ Analysis Software Data analysis

129

AUTOMATIO OF THE MACROMOLECULAR CRYSTALLOGRAPHY
BEAMLI ES AT THE CA ADIA LIGHT SOURCE

M.N. Fodje*, R. Berg, G. Black, P. Grochulski, K. Janzen, Canadian Light Source, 101 Perimeter
Road, Saskatoon, SK, Canada S7N 0XN.

Abstract

The Canadian Macromolecular Crystallography Facility
(CMCF) is a suite of two beamlines 08ID-1 and 08B1-1.
Beamline 08ID-1, is an undulator beamline for studying
small crystals and crystals with large unit cells, while
beamline 08B1-1 is a bending-magnet beamline for high-
throughput macromolecular crystallography with a high
level of automation. The primary method of access to
CMCF 08B1-1 will be remote, in what is commonly
referred to in the field as ”Mail-in” crystallography. We
are developing a software system for automating both
beamlines, with modules for beamline control,
experiment control, data analysis, information
management, and graphical user interaction. The system
is developed using the Python programming language and
makes use of popular open-source frameworks such as
Twisted, Django and GTK+. Once completed, the system
will allow automation of the macromolecular
crystallography experiment from experiment setup to data
analysis, thereby increasing the efficiency of the CMCF
beamlines and reducing the need for user travel to the
synchrotron.

BACKGROU D
The growing impact of macromolecular structural

analysis to pharmaceutical, academic and industrial
research has resulted in a growing demand for access to
protein crystallography beamlines. This demand is
reflected not only in the number of samples available for
analysis, but also in the increased number of scientists
from different fields now using structural information in
their research. As a result, many more users with less
crystallographic training are demanding access to
macromolecular crystallography (MX) beamlines at
synchrotron facilities. Fortunately, the MX experiment is
highly amenable to automation [1]. It is not surprising
therefore that there are many on-going efforts by various
synchrotron facilities to provide highly automated MX
beamlines to the community of users [1-3].

The synchrotron MX experiment can be broken down
into distinct steps (see Table. 1). These include sample
preparation, beamline setup, sample mounting, sample
alignment, sample characterisation, data acquisition and
data processing. The details of each step may vary based
on the specific sample being examined and type of
experiment desired With the exception of the first step,
which is usually carried out by experimenters at their
home laboratories, the remaining steps can be automated
to a very high degree. It is therefore possible in principle
to build a fully automated beamline where experimenters
simply prepare and send their samples to the beamline,

data is automatically acquired, and experimenters are
never needed on-site.

Table 1: Steps involved in an MX experiment

Step Description

Sample
Preparation

Samples are frozen in cryogen at the home
laboratory and couriered to the synchrotron
by experimenters

Beamline Setup The beamline is configured and optimized

Sample Mounting The sample is mounted on a Goniometer

Sample
Alignment

The sample on the Goniometer is
positioned such that the sample rotates
within the X-ray beam, for data
acquisition

Sample
Characterisation

Initial data frames are collected and
processed to obtain improved parameters to
be used for data acquisition

Data Acquisition Data frames are collected

Data processing Data frames are integrated and reduced to
reflection files for further analysis and
structure determination by the users

Automation of an MX beamline requires tight

integration of various hardware and software components.
In addition to the beamline hardware required for delivery
of a high-quality and stable beam at the sample position,
robotic sample mounting devices and computer hardware
for data processing are also required. The software
system is a central component of every automated
beamline and great care has to be taken to ensure that it is
reliable and enables the acquisition of the best possible
data. Here, we describe the architecture and
implementation of the software for automation of the
08B1-1 and eventually the 08ID-1 beamlines at the
Canadian Light Source (CLS).

SOFTWARE ARCHITECTURE
The software system being developed for automation of

the CMCF Beamlines is a modular system, layered above
the low-level beamline instrument control system which
is based on the Experimental Physics and Industrial
Control System (EPICS). The main system modules are
the Experiment Management Module (EMM), the
Beamline Control Module (BCM), the Data Processing
Module (DPM), and the Information Management
Module (LIMS) (see Fig. 1).

 __

* Email: Michel.fodje@lightsource.ca

THPL005 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

130

Data acquisition

Figure 1: CMCF Software Architecture for automation, showing the various software modules, cross communication
between the modules, and provided functionality.

Information Management Module

The Information Management Module, also known as
the Laboratory Information Management System (LIMS)
is responsible for the storage of information about
samples, sample shipments, experiment requests,
experiment results and data sets. This module provides a
web-based interface for users to submit sample
information and review experiment results, and also a
web-based interface for beamline staff to manage
beamline sessions. It also provides crystal information
and experimental requests to the EMM.

Beamline Control Module
The Beamline Control Module (BCM) is responsible

for directly controlling the beamline hardware. This
module is a high-level module, which must be
distinguished from the EPICS based beamline control
system. The BCM is an integrated unit which controls the
beamline hardware through the EPICS Channel Access
protocol, in order to carry out the following functions
automatically:
• Beamline configuration.
• Beam optimization.
• Sample mounting and dismounting.
• Sample alignment.
• Data acquisition.

Data Processing Module
The Data Processing Module (DPM) is in charge of

integrating and reducing collected data frames into
crystallographic reflection files. Specifically the DPM
carries out the following functions:
• Scoring of samples to assess quality and suitability

for data acquisition.
• Determination of sample parameters and an optimum

strategy for data acquisition.

• Integration and reduction of diffraction images into
reflection files.

• Data conversion into user-friendly formats for further
processing.

Experiment Management Module
The experiment management module (EMM) is at the

top of the of the beamline software hierarchy. The role of
this module is to substitute the experimenter in carrying
out scheduling and coordination of the steps involved in
the MX experiment. As a result, the functioning of this
module is experiment-centric rather than beamline-
centric. This module delegates tasks to the other modules
based on experiment information received from the
LIMS. For example, sample mounting is delegated to the
BCM, while sample characterisation is delegated to the
DPM.

IMPLEME TATIO
The beamline software system is implemented in the

Python programming language. Python is an interpreted,
object oriented, high-level programming language, suited
for rapid application development [4]. The availability of
several high-quality Python-based frameworks for
graphical interface development, web-application
development and network server-client development
made Python an obvious choice for the implementation
language.

The LIMS is implemented using the Django web-
application framework [5]. External interfaces used for
exchanging information with other modules such as the
Experiment Management Module, are implemented as
JSON-RPC (JavaScript Object Notation Remote
Procedure Call) interfaces [6].

The other modules, the BCM, EMM and DPM, are
implemented using a combination of the Twisted
Framework, and the Glib/GObject system. The
Glib/GObject system, a part of the GTK+ toolkit [7] is a
low level library which provides interfaces for event-

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL005

Experiment Data Acquisition/ Analysis Software Data acquisition

131

driven programming together with a dynamic object
system. It is widely used for graphical interface
development but can be used for non-graphical
applications. The BCM uses GObject extensively to
achieve an event driven architecture, where changes in the
control system are propagated asynchronously to the rest
of the system as they occur. For example, data acquisition
is automatically paused when the synchrotron beam is no
longer available. The GTK+ toolkit is also used for all
interactive graphical interfaces such as the MX Data
Collector (MXDC) (used for interactive data acquisition
at the beamlines).

The Twisted Framework is a highly flexible, secure and
stable networking engine written in Python with
interfaces for inter-process communication, asynchronous
programming, and web-application development [8]. The
Perspective Broker modules are used for all
communication between the BCM, DPM and EMM. This
includes remote method calls and transmission of data
objects. Twisted is also used to provide remote
administrative python consoles for live debugging of the
modules.

 The BCM, DPM and EMM also make use of the
Multicast DNS (Domain Name System) service discovery
protocols to publish and discover configuration
parameters of available services to which other modules
may connect. For example, the EMM automatically
determines at run-time the host address and port of the
BCM, and DPM services which can be running on any
machine within the local network. In addition, services
can easily be migrated to different hosts and other
modules will automatically be notified to reconnect at
run-time without manual reconfiguration.

The software system relies on existing established
software packages from the crystallographic community
for specialized functions. Specifically, the BCM makes
use of the XREC package [9] for automatic alignment of
samples. Furthermore, the DPM makes use of the XDS
[10], CCP4 [11] and BEST [12] software packages.

CO CLUSIO
The CMCF Software system will enable remote access

to the facility in what is usually referred to as “Mail-in”
crystallography, with a high level of automation. Users
will prepare their samples at their home labs and ship the
samples to the CLS. Using information provided by the
users through the web-based LIMS, data will be
automatically collected by the EMM delegating to the
BCM and DPM as appropriate. After review of the results
by beamline staff, the results will be made available to
users through the LIMS. When fully functional, this mode
of operation will increase the efficiency of the beamlines
and ultimately the number of samples that can be
analyzed.

ACK OWLEDGEME T
The Canadian Light Source is funded by the University

of Saskatchewan, the Canadian Institutes of Health
Research (CIHR), the National Research Council (NRC),
the Natural Sciences and Engineering Research Council
(NSERC), the government of Saskatchewan, and Western
Economic Diversification Canada

REFERE CES
[1] S. Arzt, et al. “Automation of macromolecular

crystallography beamlines,” Progress in Biophysics
and Molecular Biology 89 (2005) p124–152.

[2] S.M. Soltis et al. “New paradigm for macromolecular
crystallography experiments at SSRL: automated
crystal screening and remote data collection,” Acta
Cryst. (2008). D64, p1210-1221.

[3] G. Snell, et al. “Automated Sample Mounting and
Alignment System for Biological Crystallography at
a Synchrotron Source,” Structure, 12 (2004), p537–
545.

[4] G. van Rossum. http://www.python.org ,
[5] Django Project. http://www.djangoproject.org .
[6] JSON-RPC Working Group. “JSON-RPC 1.1

Specification”, http://www.json-rpc.org.
[7] GTK+ Toolkit, http://www.gtk.org.
[8] The Twisted Framework, http://twistedmatrix.com.
[9] S.B. Pothineni, T. Strutz and V.S. Lamzin.

“Automated detection and centring of cryo-colled
protein crystals,” Acta Cryst. D62 (2006), p1358-
1368.

[10] Collaborative Computational Project, Number 4.
“The CCP4 Suite: Programs for Protein
Crystallography,” Acta Cryst. D50 (1994), p760-
763.

[11] Collaborative Computational Project, Number 4.
“The CCP4 Suite: Programs for Protein
Crystallography,” Acta Cryst. D50 (1994), p760-
763.

[12] G.P. Bourenkov and A.N. Popov “A quantitative
approach to data-collection strategies” Acta Cryst.
D62 (2006), p58-64.

THPL005 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

132

Data acquisition

MECHANICAL VIBRATION MEASUREMENT SYSTEM AT THE
CANADIAN LIGHT SOURCE

J.W. Li, E. Matias, Canadian Light Source, Saskatoon, SK, Canada
X.B. Chen, W.J. Zhang, University of Saskatchewan, Saskatoon, Canada.

Abstract
In recent decades, synchrotron radiation has developed

into a valuable scientific tool around the world. At
synchrotron radiation facilities, the mechanical vibrations
in the optics hutch and experimental hutch, especially in
the vertical direction, enlarges the beam size and changes
intensity of the monochromatic X-ray beam. To
investigate mechanical vibrations at the Canadian Light
Source (CLS), a vibration measurement system was
developed. This paper presents our investigations on
mechanical vibrations at four beamlines and endstations
at the CLS.

INTRODUCTION
At synchrotron radiation facilities, the vibration of the

electron and/or photon beam, especially in the vertical
direction, enlarges the size and changes its intensity. This
degrades the performance of the beamline. It is reported
that the amplitude of floor vibrations at the ATF2 project
is approximately 50 μm, which is even larger than the
vertical beam spot size expected at ATF2 [1]. In another
report related to synchrotron radiation lithography, the
quality of micro structures fabricated by the lithography
beamline is greatly affected when the amplitude of the
vibration is bigger than a quarter of the minimum feature
size [2].

Many other factors that are responsible for vibrations at
synchrotron radiation facilities were reported in the
literature, such as traffic, human activities, strong wind
and/or ocean waves, water pipes, and moving mechanical
components. Thus, careful investigations of vibrations at
synchrotron radiation facilities are crucial, especially if
the photon beam size is within a few micrometers.

Studies of vibrations have been conducted at
synchrotron radiation facilities worldwide and a brief
review can be found in [3]. Although the CLS floor was
carefully designed, we found that beamline developments
still necessitate carrying out vibration studies. In this
study, we investigated vibrations in the experimental and
optics hutches at four beamlines and endstations at the
CLS: CMCF 08ID-1 beamline, HXMA 06ID-1 beamline,
REIXS 10ID-2 beamline, and the STXM endstation at
SM 10ID-1 beamline. This work identified key vibration
sources.

INSTRUMENTATIONS
The Canadian Light Source Vibration Data Acquisition

system includes a Vector Signal Analyzer (VSA) (Model:
Hp Agilent 89410A; Manufacturer: HP) and
accelerometers (Model: 393B31; Manufacturer: PCB
PIEZOTRONICS). Accelerometers produce a voltage

proportional to the acceleration of their connected object.
The VSA converts the output voltage of the
accelerometers into a voltage power spectral density (Sv).
Acceleration power spectral density (Sa, unit: (m/s2)2/Hz)
is obtained from Sv by the following equation [4]:

2a
S

S v
a =

 (1)

where a is the sensitivity of the accelerometers.
Displacement PSD (Sd, unit: μm2/Hz) is calculated using
Sa by the following equation [4]:

4

12

)2(
10
f

SS a
d π

×
=

 (2)

The RMS displacement over a given frequency band
(f1, f2) can be calculated using the following equation [4]:

∫= 2

1

)(
f

f d dffSZ

 (3)
The sensitivity of the accelerometer a=1.02 v/(m/s2).

The frequency range of the measurement is 0.1 Hz to 300
Hz. The frequency resolution of the accelerometer is
better than 0.1 Hz. In this study, we used two indexes for
vibration evaluation--the displacement power spectral
density (PSD) and the root mean square (RMS)
displacement. The displacement PSD shows the strength
of the displacement variation as a function of frequency.
The RMS displacement represents the amplitude of
displacement variations within a specific frequency range.

IDENTIFICATION OF VIBRATION
SOURCES

The experimental set-up is discussed in [3].

Fan coil unit
The fan coil unit is hung on the ceiling in the CMCF

08ID-1 experimental hutch (SOE). Figure 1 shows that
the fan coil unit induced vibrations have frequencies of
25.5 Hz (RMS displacement: 2.0×10-4 µm), 26.5 Hz
(RMS displacement: 3.1×10-4 µm), and 53 Hz (RMS
displacement: 4.0×10-5 µm) which is the harmonics of
26.5 Hz.

Detector cooling system
The equipment is used for cooling the detector of the

MicroProbe endstation and it is approximately 0.5 m
away from the microprobe endstation in the HXMA
06ID-1 experimental hutch. The microprobe endstation is
very sensitive to vibrations since a very small beam spot

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL006

System Engineering Building reliable systems

133

(3 µm × 5 µm) is required. Thus, three dimensional
vibrations of the microprobe endstation were
investigated--particularly, the effects of the detector
cooling system on the endstation were studied. In this
paper, however, only vibrations in vertical direction are
presented. Figure 2 shows the displacement PSD of the
microprobe endstation in the z-direction (vertical). RMS
displacements in three dimensions are calculated. We
found that when the detector cooling system is turned off,
the total RMS displacements are 0.001 µm in the x-
direction, 0.0013 µm in the y-direction, and 0.0032 µm in
the z-direction. When the detector’s cooling system is
turned on, the total RMS displacements increase to
0.0130 µm in the x-direction, 0.0054 µm in the y-
direction, and 0.0109 µm in the z-direction. This suggests
that the operation of the detector’s cooling system will
significantly increase the vibration of the microprobe
endstation by 1200% in the x-direction, more than 300%
in y-direction and approximately 240% in the z-direction.

Vacuum pump
The Varian TriScroll pumps are widely used as rough

vacuum pumps on many beamlines at the CLS. Figure 3
shows the displacement PSD of the floor vibrations in the
CMCF 08ID-1 SOE experimental hutch when the Varian
TriScroll pump is turned on (red line) and off (blue line),
respectively. Figure 3 shows that the TriScroll pump
induced vibrations with a frequency of 29.7 Hz (RMS
displacement: 1.5×10-3 µm) and with harmonics of 59.4
Hz (RMS displacement: 1.2×10-4 µm) and 89.1 Hz (RMS
displacement: 4.7×10-5 µm). Figure 3 shows that the
Varian TriScroll pump produces the most significant
vibrations (in terms of RMS displacement) on the CMCF
08ID-1 beamline.

Figure 1: Floor vibrations when the fan coil unit is turned

on/off.

Figure 2: z-direction vibrations.

Chiller
The chiller is used for water cooling system and it is

approximately 3 meters away from the monochromator
outside the optics hutch at the HXMA 06ID-1 beamline.
Figure 4 shows that when the chiller is turned on and the
damping material is removed, both floor and
monochromator vibrations at a frequency of 27.2 Hz
dramatically increase, compared to the vibrations when
the chiller is turned off. This means when the chiller is in
normal operation it causes vibration with frequency of
27.2 Hz and the vibration propagates from the floor to the
monochromator. Figure 4 also shows that when the
damping material is used, the vibration of 27.2 Hz
disappeared from the monochromator and floor. This
implies that the used damping material can effectively
isolate the chiller induced vibration.

Figure 3: Floor vibrations when the Varian TriScroll pump

in SOE is turned on/off.

0 50 100 150 200 250 300

10-12

10-10

10-8

10-6

10-4

Frequency (Hz)

D
is

pl
ac

em
en

t P
S

D
 (u

m
2 /H

z)

Detector cooling system Off
Detector cooling system On

30 40 50

10-8

10-6

Frequency (Hz)

D
is

pl
ac

em
en

t P
S

D
 (u

m
2 /H

z)

0 50 100 150 200 250 300

10-12

10-10

10-8

10-6

10-4

Frequency (Hz)

D
is

pl
ac

em
en

t P
S

D
 (u

m
2 /H

z)

TriScroll pump On
TriScroll pump Off

28.5 29 29.5 30 30.5

10-8

10-7

10-6

Frequency (Hz)

D
is

pl
ac

em
en

t P
S

D
 (u

m
2 /H

z)

0 50 100 150 200 250 300

10-12

10-10

10-8

10-6

10-4

Frequency (Hz)

D
is

pl
ac

em
en

t P
S

D
 (u

m
2 /H

z)

Fan coil unit On

Fan coil unit Off

24.5 25 25.5 26 26.5 27

10
-8

10
-7

Frequency (Hz)

D
is

pl
ac

em
en

t P
S

D
 (u

m
2 /H

z)

THPL006 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

System Engineering

134

Building reliable systems

Figure 4: Vibration identification and isolation.

Figure 5: Cryostat system induced vibrations (in

vertical direction).

Figure 6: Cryopump induced vibration (in the vertical

direction).

Cryostat system
The cryostat compressor is placed outside of the REIXS

10ID-2 experimental hutch and is approximately 1.5
meters away from the endstation The cryostat system
includes the cryostat compressor and a cold head inside
endstation chamber. The cold head and the cryostat
compressor always work simultaneously and thus they are
considered as one unit called cryostat system here. Figure
5 shows that the cryostat system produces vibrations with
very broad frequency range from approximately 20 Hz to
80 Hz and many of these vibrations have fairly large
displacement PSD (over 10-6 µm2/Hz). Similar
observations were found in the horizontal direction,
which are not shown in this paper. The cryostat system
does not affect the REIXS 10ID-2 beamline so far due to
the relatively large beam spot (200µm × 200µm).
However, it has been found that its operation significantly
affects its neighbour SM 10ID-1 STXM endstation, which
is discussed in [3].

Cryopump
The Helix Cryo Torr 8F cryopump compressor is

located outside of the REIXS 10ID-2 experimental hutch
and just beside the cryostat compressor. Figure 6 shows
that the cryopump produces vibrations with very broad
frequency range from approximately 40 Hz to 120 Hz, but
most of these vibrations have relatively small
displacement PSD (below 10-6 µm2/Hz). Similar
observations can be found from vibrations in the
horizontal direction, which is not shown in this paper. So
far no evidence has been found that the cryopump
induced vibrations cause problems for operations of either
the REIXS 10ID-2 beamline or the STXM endstation.

CONCLUSIONS
The results demonstrate that mechanical movable

equipment in optics hutch and experimental hutch can
cause significant vibrations. The information provided in
this paper is important to understand and control
vibrations not only for beamlines at the CLS but also for
other synchrotron radiation facilities worldwide.

REFERENCES
 [1] M. Masuzawa, R. Sugahara and H. Yamaoka, “Floor

Tilt and Vibration Measurements for the ATF2.
IWAA, California, September 2006.

[2] M. Fukuda, N. Endo, H. Tsuyuzaki, M. Suzuki and
K. Deguchi, Jpn. J. Appl. Physics. 35 (1996), 6458-
6462.

[3] J.W. Li, E. Matias, N. Chen, C.-Y. Kim, J. Wang, J.
Gorin, F. He, P. Thorpe, Y. Lu, W.F. Chen, P.
Grochulski, X.B. Chen and W.J. Zhang, Journal of
Synchrotron Radiation, (submitted in 2010).

[4] J. Paulsen, Vibration Data Acquisition System User’s
Manual. Canadian Light Source Inc. Document
Number 8.9.44.1. Rev. 0., Approval date: April 28,
(2006).

0 50 100 150 200 250 300

10-10

10-8

10-6

10-4

Frequency (Hz)

D
is

pl
ac

em
en

t P
S

D
 (u

m
2 /H

z)

Cryopump On
Cryopump Off

40 60 80 100 120

10-10

10-8

10-6

Frequency (Hz)

D
is

pl
ac

em
en

t P
S

D
 (u

m
2 /H

z)

0 50 100 150 200 250 300

10-10

10-8

10-6

10-4

Frequency (Hz)

D
is

pl
ac

em
en

t P
S

D
 (u

m
2 /H

z)

Cryostat system On
Cryostat system Off

20 30 40 50 60 70 80

10-8

10-6

10-4

Frequency (Hz)

D
is

pl
ac

em
en

t P
S

D
 (u

m
2 /H

z)

0 50 100 150 200 250 300

10-12

10-10

10-8

10-6

10-4

Frequency (Hz)

D
is

pl
ac

em
en

t P
S

D
 (u

m
2 /H

z)

Mono: Chiller off
Mono: Chiller on Damping off
Mono: Chiller on Damping on
Ground: Chiller off
Ground: Chiller on Damping off
Ground: Chiller on Damping on

26.5 27 27.5 28 28.5

10-8

10-7

Frequency (Hz)

D
is

pl
ac

em
en

t P
S

D
 (u

m
2 /H

z)

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL006

System Engineering Building reliable systems

135

REMOTE ACCESS TO A SCANNING ELECTRON
MICROSCOPE USING SCIENCE STUDIO*

D. Maxwell#, E. Matias, CLS, Saskatoon, Canada
M. Bauer, M. Fuller, S. McIntryre, T. Simpson, UWO, London, Canada

Abstract
Science Studio is a web portal, and framework, that

provides scientists with a platform to collaborate in
distributed teams on research projects, and to remotely
access the resources of research facilities located across
Canada. The Western Nanofabrication Facility is located
at the University of Western Ontario and houses a variety
of instruments for lithography, deposition and
characterization. One of these instruments is an Oxford
Instruments X-ray System fitted to a Scanning Electron
Microscope. This x-ray system has been integrated into
Science Studio. This allows users to remotely access the
system and to upload experimental data into Science
Studio. Remote control of the instrument is provided
using a remote desktop, so users have access to the full
capabilities of the instrument. Through Science Studio,
access control and session management are also provided
for this instrument.

SCIENCE STUDIO
The Science Studio web portal is an extensible platform

that allows scientists to collaborate on research projects,
and provides remote access to scientific resources. One
resource that is integrated into this system is the
VESPERS beamline located at the Canadian Light Source
synchrotron [1]. Science Studio provides beamline users
with remote access to this powerful scientific tool, and
allows experimental data to be easily shared among the
project team.

Science Studio is also a framework that can be used to
more easily enable remote access to other devices. This
framework provides session and experiment management
features. Session management allows for remote access
to be allocated or scheduled for a specific project team.
Experiment management allows the project team to
organize and share experimental data. Within the
framework is a customizable web portal that provides
users a single consistent entry-point for remote access and
other services. This web application allows users to
manage experiment information and experimental data
using in a rich web interface. Security features, such as
single sign-on and access control, are also included in the
Science Studio framework.

X-RAY MICROANALYSIS SYSTEM
The Western Nanofabrication Facility (WNF) is an

open user facility at the University of Western Ontario
(UWO) for the fabrication of micro- and nano-structures.
This facility has an assortment of equipment and
instrumentation that provides its users with a wide range
of capabilities; including lithography, deposition, etching
and characterization [2]. An instrument of particular
interest to users is the LEO (Zeiss) 1540XB Scanning
Electron Microscope (SEM) with an integrated Oxford
Instruments X-Ray Microanalysis (XRMA) system.

The SEM is a stand-alone instrument with specialized
hardware and software for device control and data
acquisition. The SEM control software is used for

Figure 1: Science Studio architecture for remote access to the x-ray microanalysis system.

*This work was funded by CANAIRE under R&D project NEP-01; and
performed at the Canadian Light Source which is supported by
NSERC, NRC, CIHR and the University of Saskatchewan.
#dylan.maxwell@lightsource.ca

THPL007 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Data Networking and Web Technology

136

Web 2.0 and SOA

positioning the sample at the region of interest, focusing
at the desired magnification and acquiring high resolution
microscopy images.

The XRMA system includes an x-ray detector, which
mounts directly onto the SEM, and the required control
hardware and software. This system provides elemental
mapping and chemical analysis of the sample in-situ. The
data acquisition and analysis software for the XRMA
system is called INCA. The XRMA system is connected
to the SEM to enable data acquisition; however, it has
very limited control of the SEM. It is this XRMA system
that is available for remote access through Science Studio.

REMOTE ACCESS
Remote access to the SEM control software is not

required or perhaps desirable as misuse of this software
could result in damage to the instrument. An on-site
operator must be present to mount the samples into the
vacuum chamber of the SEM. This operator will also be
responsible for positioning the sample and focusing the
image at the desired magnification. In order to allow the
remote user to guide this process, using the telephone or
another communication method, they are able to observe
the SEM control software. This is done using a
VGA2USB [3] frame grabber device that intercepts the
VGA output of the SEM control computer and converts
that signal to a video stream. This device is connected to
the XRMA control computer using USB, and the supplied
software is used to view the video stream.

INCA is a powerful application for both acquisition and
analysis of experimental data. This software is a highly
capable spectral analysis tool, with a well designed,
user-friendly, graphical interface. Therefore, it is
desirable to provide the user will full access to the INCA
software.

To meet this objective a Virtual Network Computing
(VNC), or remote desktop, solution is implemented to
provide the remote user with direct control of the XRMA

control computer, and most importantly, the INCA
software. The architecture diagram is Figure 1 outlines
the components of the remote access system, and their
interaction.

Remote Desktop
The TightVNC [4] remote desktop software is used for

this project because of its open-source license, excellent
performance and availability of a Java Applet TightVNC
client. The TightVNC server supports the use of the
Mirage [5] video driver, which provides very efficient
screen capturing for the Microsoft Windows operating
system.

The XRMA control computer is only connected to the
UWO private network. In order to allow remote access
over the Internet, an SSH tunnel is established between
the XRMA computer and the Science Studio server using
the PuTTY [6] SSH client.

Special measures are used to ensure the security of the
VNC server without further action required by the user.
The VNC server port is protected behind a firewall so it
cannot accept connections directly from the Internet. The
user initiates a VNC session by sending an HTTP request.
When the server receives this request, a tunnel is
established to forward network traffic between a random
port and the VNC server port. The HTTP response
contains the random port number, so the VNC client is
able to connect to the correct port. This tunnel will only
listen for a short period of time (normally ten seconds) for
the VNC client to connect, and it will only accept a single
connection.

The screen capture in Figure 2 shows XRMA remote
access. In the web browser window, on the right, is the
remote desktop session. The INCA software is shown
with a region of interest defined by a green rectangle on
an image of the sample. The video stream from the SEM
control computer is visible in the bottom right corner.

Figure 2: Screen capture of remote access to the x-ray microanalysis system using Science Studio.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL007

Data Networking and Web Technology Web 2.0 and SOA

137

Web Application
The XRMA remote interface has two main components.

The first component is access to the XRMA computer
using remote desktop. The second is a web application
that provides the integration with Science Studio. In
Figure 1, this is represented by the Nanofab Servlet.

The web application is a rich interface implemented
using the Ext [7] JavaScript framework. In Figure 2, the
web application is shown on the left. The web application
serves two important functions. It allows the user to
initiate a remote desktop session with either view-only
access or full access to the XRMA computer. And
secondly, it allows the user to upload data from the
XRMA computer to the Science Studio experiment
management system.

When the user acquires data on the XRMA computer
using INCA, they save the experimental data files to a
network file share that is hosted on the Science Studio
server. Then the web application is used to select the files
from this share for upload into Science Studio. This will
create a scan object within the experiment model.

Members of the project team can then access these files
by selecting this scan in the project navigator. The
project navigator is shown in Figure 2 on the left side of
the web application.

REFERENCES
[1] D. Maxwell, et al., “Remote Access to the VESPERS

Beamline using Science Studio,” PCaPAC, Saskatoon,
Oct. 2010, THCOAA02.

[2] Western Nanofabrication Facility
<http://www.uwo.ca/fab>

[3] VGA2USB Frame Grabber, Epiphan Systems Inc.
<http://www.epiphan.com/products/frame-grabbers>

[4] TightVNC < http://www.tightvnc.com>
[5] Demoforge Mirage Driver for TightVNC

<http://www.demoforge.com/dfmirage.htm>
[6] PuTTY Telnet and SSH Client

<http://www.chiark.greenend.org.uk/~sgtatham/putty>
[7] Ext JS <http://www.sencha.com/products/js>

THPL007 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Data Networking and Web Technology

138

Web 2.0 and SOA

CLS USER SERVICES WEB PORTAL*

D. Medrano#, L. Carter, D. Maxwell, CLS, Saskatoon, SK S7N 0X4, Canada

Abstract
The Canadian Light Source (CLS) User Services Web

Portal is a collection of web applications that allows users
and staff to manage experiment proposals, complete
safety training and submit end-of-run surveys. Each user
wanting beam time must submit a proposal describing
their experiment. Once submitted, the proposal goes
through a peer-review process where it is either approved
or rejected. All on-site personnel are required to complete
safety training. Staff and users are provided with training
modules which are completed online. Most training
modules consist of two parts: the presentation and the
exam. The exams are graded automatically and the results
are stored. At the end of each run, users are encouraged to
complete an online survey. The survey gives users the
opportunity to provide feedback on what was good about
their CLS experience and what can be improved to
provide them with better service. This paper will give an
overview of the design, implementation and capabilities
of web portal.

INTRODUCTION
The CLS is an international research facility with a

large number and variety of visitors, including students,
scientists and contractors. Access to the facility is based
on three different roles: users, staff and contractors. Users
are scientists that come from all over the world to run
scientific experiments on the beamlines, collect data and
publish results. Staff operate and maintain the facility and
support users in their research. Contractors are personnel
hired by the staff for a certain amount of time to complete
a task. Contractors can range from labourers to project
managers. The goal of the portal is to provide a user
friendly and maintainable system to store information
associating people with these roles.

PORTAL ARCHITECTURE
Figure 1 shows the architecture of the web portal. It

consists of six parts. The first part is the Apache Tomcat
servlet container. It is in charge of hosting the four web
applications which are the main focus of this paper. These
web applications include: training, proposal submission,
end-of-run survery and proposal information Application
Programming Interface (API). The second part is the
Microsoft Active Directory (AD) server. Its purpose is to
store all user, staff and contractor login information.
Usernames and passwords are authenticated against AD
when someone logs into the portal. All communication to
AD is done through the Lightweight Directory Access

Protocol (LDAP). The third part is the MySQL database
server. It contains multiple databases for storing training,
proposal, and end-of-run information. Java Database
Connectivity (JDBC) is used to communicate with the
server. The fourth part is the workflow engine. The
workflow engine is used to create the peer-review process
a proposal must go through once it is submitted.
Workflows are created using the Yet Another Workflow
Language (YAWL) [1] and communication is done
through the Simple Object Access Protocol (SOAP) [2].
The fifth part is other web systems that make use of the
proposal information API. Communication is done
through HTTP using Representational State Transfer
(REST) [3]. The last part is the web browser which an
end-user uses to access the web portal.

Figure 1: Architecture of the web portal.

TRAINING WEB APPLICATION
Any person coming to or working at the CLS that

requires unescorted access must successfully complete
and maintain their training. There is a standard set of
training modules everyone must complete depending on
their role. Users, staff and contractors use the web
application to complete training and review training
history. When someone takes an exam, a test is generated
from a bank of questions in the database. Once a test is
submitted, it is marked automatically by the system and
the results are recorded. If a person fails the test they must
retake it. Staff with the role of administrator use the
application to create, edit or delete training modules,
generate training reports, create new logins, manually
enter training scores and manage training groups and
roles.

 The training application is written in Java using the
Spring Model-View-Controller (MVC) [4] web
framework. MVC is an architecture pattern that isolates
domain logic from input and presentation. Figure 2 shows
the breakdown of the application.

__

*Work supported by CANARIE under R&D project NEP-01 and
performed at the CLS which is supported by NSERC, NRC, CIHR and
the University of Saskatchewan.
#Dionisio.Medrano@lightsource.ca

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL008

Data Networking and Web Technology Web 2.0 and SOA

139

Figure 2: Structure of the training application.

The first layer is the Model. The model is made up of

the database schema, XML maps, data access objects, and
Java domain objects. The database schema is
implemented in MySQL. The domain objects are the Java
representation of the database tables and they are mapped
together by XML files called maps. This is done with a
persistence framework called iBATIS [5]. The data access
objects use the XML maps to fetch and store domain
objects into the database.

The second layer is the Controller which contains
controllers and backing objects. Controllers are small
pieces of code that capture end-user input by handling
HTTP requests and performing tasks. The backing objects
are Java objects that do not fit in the model but help with
getting data to and from the end-user.

The last layer is the View which consists of JavaServer
Pages (JSP), JavaScript and AJAX. The JSPs use the
JavaServer Pages Standard Tag Library (JSTL) to render
Java objects and data in HTML. The JSPs also use
JavaScript and AJAX to provide the end-user with a more
rich and dynamic user interface (UI).

PROPOSAL SUBMISSION WEB
APPLICATION

The proposal submission application allows users to
create and submit proposals. When creating a new
proposal, the user must fill out all required information.
Examples of the information they must fill out include:
type of proposal, name of proposal, funding sources,
research team, scientific merit, beamline(s) they wish to
use, safety hazards, and equipment they wish to bring.
Once the proposal is submitted, reviewers are assigned.
The proposal goes through a number of reviews. For
example, a beamline scientist does a technical review to
see if the experiment is feasible on the beamline. If the
proposal passes all its reviews, a final grade is assigned
and beam time is allocated. Administrators use the
application to manage proposals, beamlines, endstations,
equipment and cycles.

The proposal submission application is written in
Groovy [6] and Grails [7]. Groovy is a dynamic object-
oriented programming language which runs on the Java
Virtual Machine (JVM). Grails is an open source web
application framework which uses Groovy. The
application is divided into three reusable Grails
components called plugins. These plugins include
clsDomain, clsAdmin and clsStaff. The clsDomain plugin
contains the domain model, meaning that it has all the
Groovy objects and relationships between them. The
clsAdmin plugin contains controllers and views that
administrators use. The clsStaff plugin has the controllers
and views that staff and users use. Both the clsAdmin and
clsStaff plugins use the domain model from the
clsDomain plugin.

Grails uses Grails Object Relational Mapping (GORM)
to generate the database schema and to map the database
tables with the domain objects. This is done by Hibernate
[8] which is an object-relational mapping library and
persistence framework. Figure 3 shows the database
schema generated by the GORM. All the views are done
using GroovyServer Pages (GSP). GSPs are very similar
to JSPs but use a different tag library.

Figure 3: Database schema for the proposal submission

application.

END-OF-RUN SURVEY WEB
APPLICATION

In order to provide the CLS with feedback, users are
encouraged to fill out an online survey about how well
their research went while using the facility. The survey
consists of a list questions split up into sections. Each
question is multiple choice, but there are also some text
fields where additional comments can be made. Once a
user submits the survey, the feedback is shared with
beamline scientists, the Director of Research and

THPL008 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Data Networking and Web Technology

140

Web 2.0 and SOA

appropriate departments. This helps CLS staff identify
areas where improvements can be made to provide users
with better service. Administrators gather all the feedback
to generate reports for the Users’ Advisory Committee.

The end-of-run survey application is implemented
using Spring MVC. It has the same structure as the
training application. However, the domain model is very
simple consisting only of two objects.

PROPOSAL INFORMATION WEB API
There are some other software systems at the CLS that

are interested in having proposal information. The
proposal submission web application already captures this
information so it would be beneficial for it to share it
instead of having each system duplicate and store the
same information. In order for it to make the information
accessible, a web API is being developed.

An example of another system that needs proposal
information is the Canadian Macromolecular
Crystallography Facility Laboratory Information
Management System (CMCF LIMS) [9]. It is a web
application for managing sample, shipping and
experiment information related to macromolecular
crystallography experiments at the CLS. It assists users to
prepare crystal samples for shipping, request experiments
to be performed automatically, manage experimental
parameters, inspect and download experiment results.

When a user wants to do an experiment on the CMCF
beamlines, they submit a proposal using the proposal
submission web application. Once they have been
allocated beam time they use the CMCF LIMS to manage
their experiment. The LIMS requires certain information
from the proposal, such as, proposal ID and primary
contact person information. Instead of having the user
enter that information again the LIMS uses the API to
fetch it from the proposal submission database.

The proposal information API is implemented in Grails
as a RESTful web service. The API uses the domain
model from the clsDomain plugin but implements its own
controller. When a system wants to fetch data, it sends an
HTTP request to a resource backed by the controller. The
controller handles HTTP request, looks up the
information and formats it in JavaScript Object Notation
(JSON) and sends it to the requestor. In order to protect
sensitive data, the requestor is authenticated before the
request is handled. Currently the API is read-only,
meaning that data can only be read from and not written
to the database.

SUMMARY
The design, implementation and capabilities of the web

portal have been discussed at a very high level. Currently
both the training and end-of-run survery web applications
are being used in production. The end-of-run survey was
deployed in January of 2008 and the training application
in January of 2010. Both the proposal submission
application and proposal information API are still in
development.

REFERENCES
[1] http://www.yawlfoundation.org/
[2] http://www.w3.org/TR/soap/
[3] http://en.wikipedia.org/wiki/Representational_State

_Transfer
[4] http://www.springsource.org/
[5] http://ibatis.apache.org/
[6] http://groovy.codehaus.org/
[7] http://www.grails.org/
[8] http://www.hibernate.org/
[9] M. Fodje, et al., PCaPAC 2010 Conference

Proceedings, THPL005

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL008

Data Networking and Web Technology Web 2.0 and SOA

141

EPICS DATA ACQUISITIO SOFTWARE AT THE CLS

G. Wright, R. Igarashi, Canadian Light Source, Saskatoon, Saskatchewan, Canada

Abstract
The Canadian Light Source (CLS) Data Acquisition

library provides a simple scan and store interface for CLS
beamlines. Originally intended as a tool for testing and
commissioning, it has been used in QT and GTK+ user
applications at the beamlines. The current version
supports dynamic loading of custom output modules to
allow re-definable data transport methods and multiple
simultaneous output formats.

I TRODUCTIO
During the construction phase of the initial beamlines

at the CLS, the need for a simple graphical user interface
to perform simple motion control and record results
became apparent. An application was written using the
GTK+ toolkit. As time progressed, the scanning code
was moved into its own library, and this library provides
the building block for a number of applications at CLS
beamlines. These applications now provide a signification
portion of the data acquisition toolkit available at a
number of the CLS beamlines.

KEY FEATURES

Configuration
A simple configuration file defines the scan and data

collection (events).
All data acquisition structures can be accessed and

manipulated by the calling program. Standard
configuration files can be used to define the initial scan,
and with simple data structure manipulation the
acquisition can be modified without requiring a custom
configuration file.

All Process Variables and range values for acquisition
can be specified by macro strings. Again, a standard
configuration file can be updated for different data ranges
without dealing directly with the configuration.

The data output stream is passed to Output Handlers
to determine where and how the data is dealt with. This
provides the opportunity for customized handling for new
data formats or visualization without rebuilding the
library.

All scans and events run in independent threads. This
allows simultaneous collection of data or recording of
large data sets simultaneously with a positioner update.

Scans and Events
The acquisition library has two main components. The

first component, the scan, is the definition of the control
for the experiment – typically moving a device, and then
requesting a detector to detect. A single scan typically
only controls a single device. Scans can be nested,
allowing multi-dimensional scans.

The second component is the event. An event is
triggered from a scan, typically when a detector has
finished reading. The event collects data from a list of
process variables and requests an Output Handler to deal
with the data.

Output Handlers
The section of code that generates the most controversy

is the part that defines the output data format. In the data
acquisition library, this part of the code has been
generalized to a set of function calls that can be set at run
time. An object-oriented “factory” for creating links to
different handlers interfaces different data formats and
different data transports to the acquisition library,
allowing a great deal in flexibility on the calling
applications’ part to deal with new display and storage
requirements, and even allow multiple simultaneous data
files to be written in different formats.

The second benefit of using output handlers is that any
viewer becomes generalized, and can either be integrated
directly in the application (as was done for the Motor
Scan screen in IDA (Interactive Data Acquisition,
described later) or streamed to an independent application
(such as BLGraph or Grace).

The output handlers have two components: the data
format, and the data stream. The data format defines the
appearance of the data, whether it’s a simple comma
separated value text output, or a compact binary output.
The data stream is the destination, such as a data file, a
named pipe, or a TCP/IP port.

Each instance of an output handler has a set of
properties that can be updated through a standard
application interface. An application can obtain
information on properties and allow these to be controlled
directly by the user, so new handlers can be configured
without needing to update the user interface software.

Data Visualization
The primary tool used for data visualization with the

acquisition library is BLGraph. This ROOT-based
display tool is highly configurable. Dynamic selection of
data fields for display, and manipulation of multiple fields
with functions, as well as customizing configurations for
quick set up of standard acquisition runs makes this a
good match for acquisition library. As well, previously
recorded data can be retrieved and viewed.

APPLICATIO S

QT Widget Support
The Qt Widget library from Nokia offers a powerful

Rapid Application Development tool (designer) and the

THPL009 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

142

Data acquisition

ability to create new widgets that inherit from existing
widgets to be used directly with designer. The acquisition
widget has signal and slot support for the main
functionality of the acquisition library.

The Data Acquisition GUI
The early separation of the acquisition library from the

GUI has, in many ways, allowed more features to be
added to the GUI. Initially written as a GTK+ application,
the GUI was rewritten using QT.

IDA
The IDA application was written to handle fairly

standard synchrotron beamline scans. In addition to
setting run parameters for data acquisition, it also includes
simple positioner scans (usually used to position a sample
before scanning), run time estimates, detector selection,
and callouts for energy detuning. The application has no
hard-coded Process Variables: it uses a macro definition
file to determine Process Variable names. This has
allowed quick setup of synchrotron experiments at other
beamlines.

IDAV
IDAV is customized for each beamline it runs on

(currently SGM and SXRMB beamlines at the CLS). This
minimizes the number of applications that need to be
running to control and monitor the beamline while data
acquisition is in progress.

Science Studio
The Science Studio project being developed at the CLS

uses the acquisition library. This is currently in use at the
VESPERS beamline.

nD Scanner
The nD scanner grew out of testing the multi-

dimension scanning of the acquisition library and the
ROOT support for the acquisition library. The application
was originally intended as a commissioning tool, but has
grown into an application for end-user data collection.

CER ROOT SUPPORT
ROOT supports dynamic library loading. By providing

a C++ class that calls the acquisition library, many of the
ROOT features – including a C++ interpreter – are
available when using the library. The rich display
capabilities of ROOT make for quick work building a
custom viewer which extends beyond the capabilities of
existing viewers.

RECE T DATA CO FIGURATIO FILE
CHA GES

One of the most common pieces of code rewritten in
each application is an input parser. Using an XML-
compliant configuration file gives greater flexibility in
input formats, and makes it easier to adapt to future

changes in file format. The greatest potential is recording
of property values for output handlers, avoiding separate
configuration files for the output handlers or having a
higher-level application need to rewrite the save-and-
restore of output handler properties.

GOI G FORWARD
Any system has many opportunities for improvement.
• Despite the gain of a simple configuration file to

describe a complex data scan, there are still many
opportunities for streamlining the configurations. To
this end, support for partial configuration file
loading would allow a configuration file per detector
(or detector type) that would set up and read back
data without knowing the type of experiment, and a
partial file that knows how to run a scan for a
beamline (but not know the type of detector) to
quickly and easily expand the capabilities of a
beamline when a new detector is added. The
possibility exists that multiple detectors could be
easily used together without an additional
configuration being manually created.

• Expanding the possible actions to include calls to a
language interpreter (e.g. python) would give greater
dynamic capabilities to scans.

• Adding a python module to call the library would
give benefits very similar to ROOT, but
approachable to individuals who are familiar with
python but not with ROOT.

• Scan types that aren’t based on a start and end value,
but rather some other condition would improve the
simultaneous scan capability to have a master ‘scan’
with simultaneous scans that would recognize the
completion of the master scan.

• Creating a ‘sscan’-type EPICS record would allow
embedding the scan in EPICS applications when
necessary.

ACK OWLEDGEME TS
Jeff Warner provided the initial design work for IDA.
David Chevrier created IDAV. The enthusiasm of many
beamline scientists provided the inspiration to
continuously improve the capabilities of the data
acquisition system.
The Canadian Light Source is funded by

• University of Saskatchewan
• Canadian Institutes of Health Research (CIHR)
• National Research Council (NRC)
• Natural Sciences and Engineering Research Council

(NSERC)
• Government of Saskatchewan
• Western Economic Diversification

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL009

Experiment Data Acquisition/ Analysis Software Data acquisition

143

CLS LINAC SAFETY SYSTEM UPGRADE

Hao Zhang, Elder Matias, Grant Cubbon, Carmen Britton, Robby Tanner, Carl Finlay
Canadian Light Source Inc., Saskatoon, Canada

Abstract
 The Canadian Light Source (CLS) upgraded the safety
system for Linear Accelerator (Linac) in October 2009.
IEC 61508 SIL 3 certified components and methods were
adopted in the development of the new system. This paper
outlines major aspects of the upgrade.

INTRODUCTION
 In the CLS, Access Control and Interlock Systems
(ACIS) are used in restricted areas to protect personnel
from radiation hazards. In the Linac area, a legacy ACIS
was used since 1980’s until October 2009. The system
was based on early Micro84 Programmable Logic
Controller (PLC). Given the age of the system, difficulty
in procurement of spares as the vendor had discontinued
support for the platform; a decision was made to upgrade.
Another reason is the old AICS used 120 VAC whereas
CLS has adopted 24 VDC for all other control systems.
The upgrade ensures the Linac ACIS is consistent with
other systems in the facility. All the old sensors, wirings,
components, and PLC units were removed. The new
ACIS was redesigned and built from scratch.

 The new ACIS adopts a two-level, redundant protection
mechanism which consists of two independent chains,
one governed by a safety-rated PLC system providing
SIL-2 as defined by IEC 61508 [1], and a relay-based
hardware logic to provide diversity for safety functions.

 The system controls access to an area divided into 6
lockup zones [2]. The zone layout was also changed in the
upgrade. The zones contain the electron gun, accelerator
sections, switchyard, LINAC-to-Booster Transfer Line
(LTB), the LTB/Booster Ring (BR1) interface and some
adjacent areas including the BR1 RF cavities.

 Fundamentally, all lockup zones operate in the same
principle, each having its own Emergency Off Stations
(EOS), Door Interlock Switches (SWDI), Lockup Stations
(LUS), zone lockup lights (ZLL) and horns (HRN).

BACKGROUND

Regulatory Context
 CLS holds a Particle Accelerator Operating Licence
(PA1OL-02.00/2012) issued by the Canadian Nuclear
Safety Commission (CNSC) to operate as a Class 1B
facility; as a result the definition of internal process is left
to the CLS with the CNSC providing review, oversight,
and audition.
Project Plan/Management

 The upgrade was carefully planned and documented.
The plan identifies project objectives and goals, specifies
the upgrade scope, lists standards and guidelines for the
development, and defines roles and responsibilities of
team members. The plan also includes work structure
breakdown, budget, timelines, and a list of documents
need to be generated or modified. The plan served as the
guiding document during the development process.

Safety System Development Process
 The upgrade followed a V-model variant for safety
system development.

Figure 1: Safety System Development Process

 The process starts with the hazard analysis, based on
which requirements and specifications are generated, and
design and implementation naturally followed from there.
Testing was performed in all stages. Respectively,
integration and unit testing verify the design meets the
requirements and the installation is done as the design.

Hazard Analysis
 Since the layout of Linac lockup zones was to be
changed, a Hazard Analysis (HAZAN) [3] was necessary
to identify the hazards and associated mitigations required
with regard to the proposed redesign and upgrade. This
was performed by the Health, Safety, and Environment
(HSE) department of CLS. The document issued was used
as input to the following development stage.

Requirements
 The hazards which have been identified and allocated to
the ACIS for mitigation in the HAZAN were then
examined and refined to generate requirements for the
ACIS. Other internal or external guidelines, such as
human factor guideline [4] and Canadian Electrical Code
were also incorporated as requirements in this stage.
Operation experience on the old Linac ACIS and other
ACISs was also taken into consideration. A design
manual was generated to document all requirements.
Linac lockup zone layout drawings were generated to

Implementation

Development

Integration
Testing

Requirements
Specification

Hazard Analysis

Design Unit
Testing

Development/
Installation

System
Validation

Testing

 * Research described in this paper was performed at the Canadian
Light Source, which is supported by the NSERC, NRC, CIHR, the
Province of Saskatchewan, Western Economic Diversification Canada,
and the University of Saskatchewan.

THPL010 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

System Engineering

144

Safety systems

capture detailed requirement and design information. The
drawings show zone configurations and lockup paths. All
components were identifies and numbered, which makes
an IO count possible and perfect input document for
wiring diagrams.

FUNCTIONS
 The Linac ACIS provides four major functions: secure,
lockup, annunciation, and interlocking. As mentioned, the
system consists of two separate chains, each having their
own inputs and outputs.The PLC chain provides all four
functions; the relay chain provides redundant functions in
safety critical aspects of secure and interlocking.

Secure
 A lockup zone is secured only when all the doors are
closed and none of the EOSs is pressed. The secure
function is implemented independently in both chains.

 Limit switches are used to monitor door position. Each
door has two physically independent switches for
signalling the two separate chains.

 An EOS consists of an emergency off button, a reset
button, and three mechanically-interlocked and latching
contacts - two normally close contacts for signaling the
two chains and one normally open contact for activating a
local red LED when the EOS is pressed. If the emergency
off button is pressed, all contacts remain latched and the
red LED remains on until the reset button is pressed.

 Linac is interlocked if any of the zones are not secured.
The redundant design ensures even component in one
chain fails, the other still functions to interlock the Linac.
Lockup
 A zone is considered locked up only when the lockup
sequence, designed by the HSE for each individual zone,
has been performed successfully in this particular zone.
Two inspectors are required to perform the sequence,
which involves walking through a prescribed path within
certain time limit to ensure every part of the zone is
inspected in a timely manner.

 LUSs are installed in selected locations to ensure the
path is followed and the process is timed. Each LUS has a
lockup button for signalling the PLC chain, and a green
LED to provide visual indication to the inspectors.

As an administrative procedure, the lockup sequence is
performed by inspectors and redundantly verified by the
PLC. As the complexity of a system increases, so does the
potential to introduce errors and possibly hazards.
Implementing the multiple sequences in hardware is more
likely to introduce error and potential hazards than it is to
provide extra protection. Therefore, lockup function is
implemented only in the PLC chain.

Annunciation
 Horns and flashing lights are used to provide audible and
visual annunciations.

Interlocking
 Linac is interlocked from both chains through multiple
permissive channels, such as Linac RF and gun triggers,
RF source switch, etc., to avoid single failure point.

Figure2: implementation of secure and lockup functions

HARDWARE
PLC Configuration
 Siemens AS414-4H processor was selected for the CPU.
With the fault-tolerant run-time license installed on the
processor, the built-in fail-safe run-time logic is activated.
Password protection is also activated to protect the
processor from re-programming.

 SIL-3 certified modules with internal diagnostics and
redundant circuitry are used for field I/O. These modules
are installed in remote I/O stations communicating with
the CPU over Profibus using the PROFISAFE protocol.
Fibre-optic cable is used for data link. This configuration
is based on accepted practice for SIL-3 applications as per
IEC 61508. The protocol is deterministic and failsafe
when used with failsafe hardware. The use of distributed
I/O via fibre-optic cable provides electrical decoupling of
the system, thus avoiding problems associated with
running signals over long distances. Given potential
problems with ground loops, EMI noise and signal
degradation using conventional means, this architecture is
more reliable and safe.

Field Wiring
Most of the field wirings are located in the basement
Linac hall, where leaking underground water at certain
locations can cause problem. Proper NEMA type
enclosures were carefully chosen for PLC panels, junction
boxes, EOSs, and LUSs to achieve water protection. For

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL010

System Engineering Safety systems

145

the same reason, field instrumentations are wired using
water-proof multi-conductor armoured instrumentation
cables, which run in dedicated conduit with distinct color
and not shared with other systems or equipment. All field
components are CSA approved.

SOFTWARE
 The PLC programming toolset is Siemens SIMATIC
Manager, using Continuous Function Chart (CFC), a
graphical language involving interconnecting elementary
Function Blocks (FB) to implement control logics.

Program Structure
 The code is structured hierarchically following the actual
lockup zone layout. A folder is assigned to each zone, and
each zone folder has three CFC charts, which can be
considered as programming logical sections. The three
charts contain codes to monitor and control EOSs, doors,
and lockup sequence respectively. Another folder
assigned to control room and contains charters for zone
status summation and interlocking.

Figure3: Program hierarchy structure

Failsafe Code
 Safety critical codes are developed using TÜV-certified
function blocks from S7 Fail-Safe Systems Library to
ensure fail-safe feature. All failsafe codes are assigned to
Organizational Block (OB) 35 by default and are
executed cyclically every 100ms in runtime.

 Siemens allows developers to create their own standard
or failsafe FBs. In CLS, FBs for typical ACIS functions
were developed in earlier projects and a CLS ACIS block
library are created to save them. In the Linac upgrade,
some CLS made FBs were reused and some new FB’s
were developed and added into the library.

Simulation
 The ACIS program had been tested thoroughly using
Siemens software simulator, PLCSIM, before it was
downloaded to the CPU for on-line testing. Since the
system involves only On/Off variables, software
simulation is sufficient to test the control logic.

Version Control
 For safety system software, it is critical to ensure correct
version is loaded on the processor. Siemens S7 F system
provides safety program signature to uniquely identify a
particular state of the safety program. Generally speaking,
a 32-bit number known as the signature is generated
across all the fail-safe blocks of the safety program at the
end of the compilation phase.

 In CLS, MKS Source Integrity is used for software
version control. Versions of the ACIS program at
different development and maintenance stages are saved
in the MKS repository. With the signatures as identifiers,
we can easily locate the correct version for download.

VALIDATION AND VERIFICATION
 A Validation and Verification (V&V) procedure was
developed to examine if the operation of the ACIS within
specifications as outlines in requirements and design
documents. The overriding approach to the testing
methodology is a meticulous and exhaustive series of
tests to ensure that the system operates as required. The
V&V was performed by HSE personnel before the system
was approved for operation. Any modifications to the
system after the V&V will cause the V&V procedure
being updated and the V&V has to be performed again.

CONCLUSION
 The new ACIS was approved for operation in October
2009. Couple of lessons have been learned. Thorough
planning and complete documentation in the initial
project stage was the key for timely completion. A great
portion of early development time went on clearly
identifying, defining, and visualizing requirement details
in the zone layout drawings and in design manual. This
turned out increased the efficiency in the following
phases. In the implementation stage, hierarchical program
structure provided better readability and made it easier for
future Siemens WinCC Graphical User development.
Reuse of ACIS FBs reduced programming time. The
development of new FBs expanded the block library for
future projects. The CLS will continue to use a relay-bsed
chain to backup simple, life-safety functions.

REFERENCES
[1] “Functional Safety of Electrical/Electronic/

Programmable Electronic Safety-Related Systems"
IEC 61508 or ANSI/ISA S84.01-1996

[2] “LINAC, LTB1, BR1, & HR1 ACCESSCONTROL
AND EMERGENCY OFF SYSTEM LAYOUT”,
CDAC/RAD/0039405, Rev 7.

[3] “LINAC ACIS Upgrade Hazard and Risk Analysis”,
11.18.52.1, Rev. A

[4] McKibben, M. 2008. “CLS Human Factors
Workscope”, 0.1.1.1, Rev. 1

THPL010 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

System Engineering

146

Safety systems

FEC IN DETERMINISTIC CONTROL SYSTEMS OVER
GIGABIT ETHERERNET

Cesar Prados Boda, Tibor Fleck, GSI, Darmstadt, Germany

Abstract

Forward Error Correction (FEC) is a technique for re-
covering from bit errors and frame losses in real-time net-
work applications. Classic recovering strategies, like TCP
retransmission, are not suitable due to delay, timing and
bandwidth constraints. In this paper, we introduce the FEC
technique in a novel deterministic fieldbus, White Rab-
bit [1] (WR). WR is developed over frame-based computer
networking technology, Gigabit Ethernet, GbE. WR pro-
vides an effective and resilient way to serve as a determin-
istic data transfer medium and to interconnect large dis-
tributed systems, like Control Systems for Particle Accel-
erators. The reliability of WR falls on the FEC, which pro-
vides the means to guarantee that only one control message
per year will be lost or irretrievable as a result of the Bit
Error Rate of the physical medium (fiber optic or copper).
We propose in this paper a FEC base on LDPC [2], and tai-
lored for broadcast communication in switched networks
over noisy channels without retransmission.

INTRODUCTION

Control systems have distributed nodes that need to be
connected under specific operation constraints: synchro-
nization accuracy, determinism, bandwidth limitation etc...
Besides, the medium over which the communication hap-
pens, is a noisy channel where the bits of the frame could
be erased or modified. Also, the switches used to propa-
gate the information can mislay or dump such information
as a result of collisions in the routing process. So as to en-
sure an adequate performance of a control system, it has to
be endowed with a mechanism capable of overcoming the
errors in the communication. Such mechanism is called
Frame Error Protection (FEP) and among the different al-
ternatives, in this paper the Forward Error Correction will
be discussed. We present the groundwork of an underway
research to provide high reliability to time-critical control
systems based on GbE and switched networks. The paper
is organized in three sections. The first section presents the
framework where the FEC is being developed, WR Project,
and its boundary conditions. The second section presents
how these boundary conditions affect the transmission of
data over GbE. In the final section, we analyze the whole
scenario and present a FEC scheme to ensure the required
reliability.

CONTROL SYSTEMS AND WHITE
RABBIT PROJECT

WR is a solution to the generic problem of transferring
data in a fast, deterministic and safe manner. WR Pro-
tocol (WRP) [4] allows the delivery of timing and con-
trol data over a Gigabit Ethernet LAN. WR can be seen
as an extension of Gigabit Ethernet, which provides syn-
chronous mode, deterministic routing, bi-directional ex-
change of frames between nodes and precise delay mea-
surement.

The synchronous mode is achieved by using Syn-
chronous Ethernet along with IEEE 1588, PTP protocol.
This combination of protocols provide the means to dis-
tribute through the physical layer a common clock within
the entire network up to e.g. 2000 stations, allowing 1ns
synchronization and 20ps jitter. The frame transmission
delay between two stations will never exceed the sum of 64
byte clock cycle plus the propagation time in the longest
communication path of the network.

To distinguish between WR and other possible Ethernet
traffic in the network, two different frames are defined: SP,
Standard Priority frame, which is non-deterministic, and
HP, High Priority frame, which is deterministic. The latter
frame type is specified in the WRP network to transport
messages with the highest priority. HP are frames for time-
critical control data, as a consequence, they are routed with
lowest latency as possible, forcing fragmentation of non-
HP traffic if required. These frames have absolute priority
over SP frames and non-WR traffic to maintain low and
deterministic transmission delay.

Coming along with the protocol, compliant hardware is
being developed in order to support the protocol’s features.
There are three essential devices: White Rabbit Master,
which generates the HP frames and is master clock as well,
White Rabbit Switch and White Rabbit Receiver. As a con-
sequence of the device’s role and application requirements,
the number of units needed in a standard network will con-
sist of one WR Master, M WR Receivers, and NWRSwitch

with P downlink ports each.
WR allows different approaches to organize the topology

of the network depending on the specific requirement of the
applications. The strategy for data transmission is based on
the distribution from the master to all the other nodes of the
network, directly or indirectly according to a Star or Tree
topology. The HP frames will be broadcasted from the top
of the network, where the WR Master dwells, to the bottom
of the network reaching all the WR Receivers.

One of the principal features of the protocol is the notion
of determinism, used to guarantee the execution of events
within a certain period time. On account of the differential

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL011

System Engineering Building reliable systems

147

nature of the time, it is possible to create a slice of time
in which everything is perceived as deterministic, what it’s
called in WR jargon, Granularity Window, GW, [3]. Once
we define the span of determinism, size of the GW, WRP
provides the means to the transportation of the HP frames
and the execution of the events in the very same GW.

Table 1: Granularity Window for 100 μs

G
ra

nu
la

ri
ty

W
in

do
w ≈ 5μs Info Frame Preparation

t1 Coding
≈ 12μs Transmission

t2 Decoding
≈ 12μs Info Frame Interpretation
≈ 12μs Fail-safe time

GbE AND SWITCHING NETWORKS

Gigabit Ethernet [5] uses as a physical medium opti-
cal fiber or twisted-pair cable for sending Ethernet frames.
Such frames can be altered due to noise, interference, dis-
tortion or bit synchronization errors. The Bit Error Rate or
Bit Error Ratio (BER) is the number of bit errors divided
by the total number of bits transferred. If a bit error in
a frame leads to the complete loss of the frame, the Fig-
ure 1 illustrates that a frame would be lost in every 8 104

frames sent. It can be also deduced from the figure that
small frames are less susceptible to interference, as they are
statistically more likely to miss noise caused by internal or
external sources.

Figure 1: Bit Error Rate in GbE.

The BER can be considered as an estimation of the Bit
Error Probability (BEP) in a channel. The sample space
Ω of BER will be defined by the collection of all possible
outcomes, which means for a single bit:

Ω = E, NE , Error, Not Error (1)

and it is determined by the experimental results of the
physical medium.

Broadcast communication is a non thrifty method to con-
vey information in a switched wired distributed system, but
terrible effective for simple communication networks. As
we presented in the first section, the frames with control
events, HP frames, will be broadcasted from the Master
throughout the network in order to reach all the WR Re-
ceivers, even though the information is not relevant for all
receivers. The downside of this approach is a higher global
BER. The transport medium that physically consists of a
number N of wires, can be considered as an equivalent sin-
gle cable with a higher BER, as many times as wires are. In
other words, the BEP of the system as a whole, is the union
of all the probabilities of every single medium path. Since
the events defined by the BEP are not mutually exclusive,
the union of their probabilities is:

BERsystem = BEP (BEP1 ∪ ... ∪ BEPn) (2)

WR protocol is thought to be a full compliant extension
of Ethernet, therefore Cyclic Redundancy Check algorithm
is calculated and introduced into the HP frames according
to the standard IEEE 802.3 [5]. This field allows early de-
tection of header corruption during HP frame routing. If
the header is corrupted, it will be detected and this frame is
immediately dropped.

FORWARD ERROR CORRECTION

In the previous sections we presented the scenario for
which we are developing a FEP system for data transmis-
sion. In short, the master codes the information, adding
redundant bits to the frame. This allows the receiver to de-
code the frame, which implies the detection and correction
of errors. In addition the error control has to be able to deal
with the following requirements:

• Time constraints due to Granularity Window.
• No feed back channel and not retransmission.
• Stream of HP events within a Granularity Window.
• Recovery of lost and flawed frames.
• Small length of the frame .
• Fully Ethernet compliant.
• One lost frame per year.
• Code Hardware implementation.

The time constrains for WR disqualifies a great number
of slow FEC, like Reed Solomon,of which decoding time is
proportional to θ(k3), with k number of bits in the frame.
As can be seen in the Table 1, in a GW of 100 μ, the total
time available for coding and decoding is ≈ 70μs. Not only
the limitation of time, but also the limitation of upstream
traffic, rules out the possibility of positive/negative feed-
backs from receivers to sender and the retransmission of a
lost o flawed frame, like TCP. This fact reduces drastically
the range of suitable strategies. To some extend the GW
may limit the length of the frames as well. This reduces the
performance of some FEP algorithms that find their optimal

THPL011 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

System Engineering

148

Building reliable systems

operation with a minimum length. Moreover, the compati-
bility of WR with Ethernet forces the frame structure, dis-
allowing other suitable organization of the information in
the frame. Also, CRC introduces frame losses in the case
of an error in the header, disqualifying all the FEP based
on one frame transmitted and redundant date on it. The
only suitable strategy for WR, capable of overcoming and
achieving one lost HP frame per year, is the Forward Error
Correction in combination with a repetition strategy.

So as to reckon the magnitude of the problem, we
present a case where a WR network is made up of 2000
WR Receivers, WR Switches (1 up-link port and 15
down-link ports each) and one WR Master. There are
deployed 144 16-ports WR Switches, 1 up-link port
and 15 down-link ports. The connection among WR
Switches - WR Switches, and WR Master - WR Switches
is established by fiber optic with a BER of 10−12. The
connection among WR Switches - WR Receivers is
established by fiber optic as well, or copper cable, CAT-5
with a BER of 10−10. The frame consists of 23 bytes in the
header and 1000 bytes in the payload. The GW of the sys-
tem is 100μs, and in every GW only one frame will be sent.

The numbers of cables and global BER of the network is
detailed in Table 2.

Table 2: Global BER
No. FO . No. CAT-5 BER FO. BER CAT-5

FO 2144 – � 2.144 10−9 –
FO & CAT-5 144 2000 � 1.44 10−9 � 2 10−7

Hence, the probability of getting at least one bit error in
the header of the frame P (be header), is expressed by:

P (be header) =

bits header∑

n errors=1

(
bits header

n errors

)
BERn errors

· (1 − BER)frame length −n errors (3)

The probability of getting at least one error in the header
of the frame and not in the body can be fairly understood
as the Frame Loss Ratio, since a frame with a single error
in the header will be always dropped. Through the course
of one year, according with the wording of the case, there
are 3.145 1011 windows. It leads to assume that within one
year the system will suffer 12.4 104 losses using fiber optic
and 11.5 106 using fiber optic and CAT-5.

Table 3: Lost Frames in One Year
P At least one Error in Header Frame Lost per Year

Fiber Optic 3.94 10−7 12.4 104

Fiber Op. & CAT-5 3.67 10−5 11.5 106

This scenario shows that the coding scheme has to guar-
antee that a control information frame reaches the receivers
even if during the routing the header is been corrupted and

dropped. The quick and first answer to this quandary would
be to use a repetition scheme. Repetition code repeats bits
across a channel to achieve error free communication. Rep-
etition generally offers a poor compromise between data
rate and bit error rate. The main attraction of the repetition
code is the ease of implementation and straightforward de-
coding process in case of free errors communication , oth-
erwise, the Maximum Likelihood algorithm has to be used
to determine which symbol was transmitted. We have per-
formed simulations where it has been proved that this strat-
egy alone is not suitable. Furthermore, we have evaluated
others codes, without success, like Convolutional, LT or
Raptor Code. The first code doesn’t fullfil our time require-
ments and the last two codes are protected under patent, or
Therefore the current research is aimed to develop a clever
scheme of repetition in combination with the codes Low-
Density Parity-Check (LDPC) to protect the information as
well. LDPC codes is a class of linear block code and are
defined by a sparse Parity-Check matrix, Hmxn, the en-
coded bit string, Ym and a given bit string Xm . This sparse
matrix is often randomly generated, subject to the sparsity
constraints, which contains only a few 1’s in comparison to
the amount of 0’s.

Yn = Hm,n ∗ Xm (4)

The main advantage of LDPC is the close performance
to the capacity for a lot of different channels and linear
time complex algorithms for decoding. Furthermore they
are suited for implementations that make heavy use of par-
allelism. The algorithm used to decode LDPC in our case
is the belief propagation algorithm.

The testing implementation of the FEC is developed in
VHDL and integrated on the nodes. The test-bed is set
up with several WR Switches, providing the networking
infrastructure, the WR Master prototype will generate the
encoded frames and a WR Receiver prototype will decode
and check the integrity of the data. In order to alter the
normal behavior of the channel, the cable and nodes will be
subjected to artificial noise and errors. From this research
is expected to find out and tune up the best parameters for
the repetition strategy and the best structure of the Parity-
Check Matrix.

REFERENCES

[1] J.Serrano, C.Prados, M.Kreider, R.Baer, T.Fleck ”The
White Rabbit Project” s ICALEPS’09, Kobe, October 2009,
WEP029, http://www.JACoW.org

[2] R. G. Gallager. ”Low-Density Parity-Check Codes”, MIT
Press, Cambridge, MA, 1963

[3] Mathias Kreider, Tibor Fleck ”FAIR Timing Master”, PCa-
PAC 2010, WEPL011

[4] White Rabbit Switch. Functional Specification.
http://www.ohwr.org/projects/white-rabbit

[5] IEEE 802.3-2008 standard

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL011

System Engineering Building reliable systems

149

LLRF CONTROL SYSTEM UPGRADE AT FLASH
V. Ayvazyan, K. Czuba, Z. Geng, M. Grecki, O. Hensler, M. Hoffmann, M. Hoffmann, T. Jezynski,

W. Koprek, F. Ludwig, K. Rehlich, H. Schlarb, C. Schmidt, S. N. Simrock, H.-C. Weddig
DESY, Hamburg, Germany

Abstract
The Free Electron Laser in Hamburg (FLASH) [1] is a

user facility providing high brilliant laser light for
experiments. It is also a unique facility for testing the
superconducting accelerator technology for the European
XFEL and the International Linear Collider. As a test
facility, the accelerator undergoes a constant modification
and expansion. The last upgrade was started in autumn
2009 and has finished recently [2]. The beam energy is
increased to 1.2 GeV by installing a 7th superconducting
accelerating module. The new module is a prototype for
the European XFEL. In order to increase the free-electron
laser (FEL) radiation intensity by linearization of the
beam phase space the 3rd harmonic superconducting RF
cavities are installed in the injector. The old DSP based
LLRF control system [3] has been completely upgraded
to latest generation controller boards, down-converters for
higher intermediate frequency, algorithms like beam
loading compensation, feed-forward waveform
generation, etc. are improved. In order to improve the
reference frequency signals the master oscillator and
frequency distribution system has been upgraded as well.

INTRODUCTION
The FLASH injector consists of a laser-driven

photocathode in a 1.5-cell RF cavity operating at 1.3 GHz
with a peak accelerating field of 40MV/m on the cathode.
The electron injector section is followed by a total of
seven TESLA type 12.2 m long accelerating modules
each containing eight 9-cell superconducting niobium
cavities. The accelerating gradients of the cavities are
typically between 20 MV/m and 25 MV/m. Four cavities
of sixth module and seventh module are providing
gradients above 30 MV/m. The accelerating modules are
powered by four RF stations consisting a klystron (tree 5
MW klystrons and one 10 MW multi-beam klystron), a
high voltage pulse transformer and a pulsed power supply
(modulator). In addition, the RF gun has its own RF
station with a 5 MW klystron. The gradient and phase
accelerating field (vector sum) of the RF gun and the
accelerating modules are controlled by dedicated LLRF
regulation system which has been completely upgraded
during shutdown period. The FEL radiation is provided
by 30 m long undulator section. The undulator consists of
periodic structure of permanent magnets which have a
fixed gap of 12 mm. The wavelength of the FEL radiation
depends on the energy of the accelerated electrons. It can
be tuned between 4.3 nm and 120 nm.

After the upgrade a successful operation of FLASH at a
wavelength of 4.45 nm has been achieved [2]. For 4.45
nm radiation wavelength the accelerator provides beam
energy of 1.207 GeV.

PRINCIPLES FOR LLRF CONTROL
The RF system signal flow is shown in figure 1. The

cavity probe signal is converted from the cavity frequency
of 1.3 GHz to an intermediate frequency (IF) of 250 kHz
for superconducting modules and 54 MHz for 3rd

harmonic module. This lower IF holds the original
amplitude and phase information of the field inside the
cavity.

FLASH/XFEL

Waldemar Koprek, DESY
FEL2010, 23-27.08.2010, Malmö

master
oscillator

Timing

Vector
Modulator

Klystron
power transmission

FPGA
DSP

ADC

ADC

DAC

DAC

Digital Feedback Board

ADC

LO

for/ref
power

probeLO
Generation

LO

cavity

IF

RF

RF

Figure 1: Architecture of the LLRF system.

It is digitized with ADCs (sampling rates of 1 MHz or 81
MHz are used). The digitized signal is going to the digital
field detector which extracts the I and Q components out
of the input stream. We use two different methods: IQ-
sampling and so-called non-IQ-sampling or IF-sampling.
The resulting field vector of each cavity is multiplied by a
rotation matrix to calibrate amplitude and phases. Finally
the field vectors of 8 cavities are summed up for the
vector sum of a whole cryogenic module, and those of 2
cryogenic modules are summed up to the vector sum of
the RF station which is driven by single klystron. The
vector sum of the 16 cavity fields represents the total
voltage and phase seen by the beam. This signal is
regulated by a feedback control algorithm which
calculates corrections to the driving signal of the klystron.
The measured vector sum is subtracted from the set-point
table and the resulting error signal is amplified and
filtered to provide a feedback signal to the vector
modulator controlling the incident wave. A feed-forward
signal is added to correct the averaged repetitive error
components. Beam current information (measured by
toroids) is used to scale the feed-forward table to provide
fast feed-forward corrections if the beam current varies.
The cavity detuning is determined from forward power,
reflected power, and probe signal and is used to control
the fast piezo tuners to reduce cavity detuning errors to
less than a tenth of the cavity bandwidth.

THPL012 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Facility

150

Status Reports

DIGITAL FEEDBACK HARDWARE
After upgrade RF Gun and all accelerating modules are

controlled by similar modern FPGA based controller
boards with unified firmware and software. The digital
feedback hardware consists of Simcon-DSP board (figure
2) which has a VME interface, 10 ADCs to read the
intermediate frequency signal from the field probe
signals, FPGAs (Xlinnx Virtex II Pro) and DSPs (Tiger
Sharc) to execute the control algorithms and 8 DACs, 2 of
them drives the vector-modulator for field control. Other
components include a timing and synchronization
module. The field detection hardware consists of a down
converter which converts the cavity field frequency of 1.3
GHz to an intermediate frequency. Additional features
included variable input attenuators for level adjustment,
an input for a calibration signal and a local oscillator
distribution system. The challenging requirements of the
down converter are low noise, good linearity over large
dynamic range, and small crosstalk.

Figure 2: Simcon DSP board.

DIGITAL FEEDBACK SOFTWARE
The cavity field controller algorithm consists of the

field detection scheme (figure 3), calculation of the
calibrated vector sum, the field error measurement, the
controller filter, a feed-forward signal, and the drive
signal generation.

FLASH/XFEL

Waldemar Koprek, DESY
FEL2010, 23-27.08.2010, Malmö

Field
Detection

Vector

Sum
+- Feedback

Controller
Error

Signal

Control Tables and Registers

ADC DAC
Cavity

Probes

To

Klystron

Set
point

VME Interface
FPGA

CPU

DOOCS Server

FSM Control Algorithms

Figure 3: Controller firmware and software architecture.

Beam loading compensation through feed-forward and
real time beam measurements are supported. The LLRF
control system is integrated with FLASH control system
DOOCS [4] by a development of device and middle layer

servers. During the shutdown one DOOCS front-end
server was developed for all 5 RF stations. Furthermore
the DOOCS standard server is used for automation, like
simple state machines, and the FLASH data acquisition
system for bunch-to-bunch monitoring tasks, e.g. quench-
detection.

The control system for the cavities which are driven by
a single klystron is considered as a functionally complete
unit of the RF system. The feedback algorithm is
implemented in the FPGA system. The digital signal
processing in turn gets its parameters from the controller
server. The controller server software handles: generation
of set-point, feed-forward and feedback gain tables from
basic settings, rotation matrices for I and Q of each
cavity, loop phase constant, start-up configuration files,
feedback parameters and exception handler control
parameters. The interrupt service routines are used to start
the data reading from the controller board. The
parameters of the feedback algorithm are modified by the
FPGA programs in the time slot between beam macro
pulses. It allows a save changing of the parameters of the
control algorithm. The functionality of the server gives
the user the opportunity to down/upload data into the
FPGA (feedback algorithm parameters) and download
and start the controller firmware. The server calculates
and adjusts the set of the feedback algorithm parameters
in accordance with the required field gradient and phase
value.

PIEZO CONTROL
The cavities operating with high gradient are deformed

due to Lorenz force that causes detuning of the order of
the cavity bandwidth from resonance frequency. Detuned
cavity reflects the supplied RF power that requires
excessive RF driving. For the compensation of Lorenz
force detuning (LFD) the piezo actuator is used to excite
the cavity mechanically. Each cavity in new accelerating
modules (1st, 6th and 7th) is equipped with double piezos
that allow compensating of LFD and measurement of
cavity vibrations simultaneously.

Figure 4: LFD compensation in 6th accelerating module
(green – detuning with piezo compensation, red - without)

The piezo control system is able to compute detuning in
each cavity basing on RF signals and calculates the

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL012

Facility Status Reports

151

parameters of compensating piezo excitation pulse. The
signal from programmable generator is amplified by high
power piezo driver. The amplitude of voltage applied to
piezo can be up to 70V and current up to 1A. The results
of LFD compensation in 6th module is presented in figure
4. Using piezos the dynamic and static detuning was
compensated to only few Hz during flattop in all cavities
except the 5th one where piezo is not fixed properly.

APPLICATIONS
A set of generic and especially devoted programs

provide the tools for the operators to control the RF
system. Some of them are created based on the
MATLAB, others, for example, vector sum calibration
are implemented as a DOOCS middle layer servers. The
adaptive feed-forward is implemented on a front end
server, to allow pulse to pulse adaptation.

The application software includes automated operation
of the frequency tuners, calibration, phasing of cavities,
and adjustment of various control system parameters such
as feedback gains, feed-forward tables, and set-point
correction during cavity filling. Extensive diagnostics
inform the operator about cavity quenches, cavities
requiring tuning, and an excessive increase in control
power.

Adaptive Control
The RF field regulation is subject to various, random

and deterministic disturbance sources. Both disturbance
contributions are reduced in closed loop operation by
applying a feedback compensator. However repetitive
disturbances are particularly suppressed by adaptation of
the system input drive, using the known system response
from previous pulses. The reference for the RF field is in
general not changed very frequently, so the control task
can be seen as a repetitive process for the pulsed
operation mode of this accelerator. The basic update
algorithm [5] is given by

uk+1(t) = uk(t) + L(t) ek(t)
where uk and ek are defined as the system input and the
deviation of the measured RF output to the given set-point
for the pulse number k, respectively. L(t) is a linear, non-
causal, time varying filter based on the identified system
model. The current implementation of the system allows
changes of all controller tables inside the FPGA between
two consecutive pulses. With the minimum computation
time necessary for this algorithm, as well as fast data
transfer is fast enough, the adaptation can be performed
synchronized to the repetition rate of FLASH. Therefore
three steps have to be performed between two pulses:
Read from previous pulse the error and feed-forward
signals e and u, compute the feed-forward signal of next
pulse, and write the feed-forward signals to FPGA tables.

MASTER OSCILLATOR AND
FREQUENCY DISTRIBUTION

LLRF system provides stable phase reference signals
for diagnostics and experiments. The Master Oscillator

(MO), which has been upgraded at 2008 already [6],
generates various RF frequencies required for accelerator
operation. The phase reference system distributes these
signals to various locations in the accelerator with low
phase noise and very low phase drift. The local oscillator
signal is distributed to all of the down converter channels
for cavities probe, forward and reflected signals. Typical
stability requirements are: 100 fs for short term (few
minutes) and 1 ps for long term (several hours).

During this upgrade several MO system components
have been improved. The new 1.3 GHz signal generation
hardware was installed with improved phase noise and
drift performance. The short term stability of about 45 fs
was achieved (phase noise integrated from 10 Hz to 1
MHz) directly at the MO output. The temperature
coefficient of phase changes demonstrated by the new
device does not exceed 200fs/oC, which significantly
improved the long term phase reference stability.
Additionally, new power amplifier with increased output
power and several signal sub-distribution boxes were
installed in order to provide the reference signal to bigger
number of accelerator devices.

SUMMARY
The FLASH LLRF system regulating amplitude and

phase of the accelerating fields has been upgraded to
latest generation controller hardware. All modules are
controlled by similar modern FPGA based controller
boards with unified firmware and software. In addition
beam diagnostics signals are in use for fast intra pulse
feedback [7]. Algorithms are improved: beam loading
compensation, feed-forward waveform generation, etc.
For cavity frequency control piezo control has been
implemented. In order to improve the reference frequency
signals the master oscillator and frequency distribution
system has been upgraded as well. FLASH achieved
beam energy above 1.2 GeV and lasing below 5 nm with
a remarkably improved LLRF control performance.

REFERENCES
[1] W. Ackermann et al., Nature Photonics 1 (2007) 336
[2] S. Schreiber “FLASH Upgrade and First Results”,

FEL’10, Malmö, Sweden, 2010, 2010
[3] V. Ayvazyan et al., “RF Control System for the

DESY FLASH Linear Accelerator”, EUROCON’07,
Warsaw, Poland, 2007

 [4] K. Rehlich “Status of the FLASH Free Electron
Laser Control System”, ICALEPCS’07, Knoxville,
Tennessee, USA, 2007

 [5] C. Schmidt et al., “Recent LLRF measurements of
the 3rd Harmonic System for FLASH”, IPAC’10,
Kyoto, Japan, 2010

 [6] K. Czuba et al., “The RF Phase Reference
Distribution System for The European XFEL”,
PAC'09, Vancouver, Canada, May 2009

 [7] C. Behrens et al., “Intra-train Longitudinal Feedback
for Beam Stabilization at FLASH”, FEL’10, Malmö,
Sweden, 2010

THPL012 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Facility

152

Status Reports

#apazos@embl-hamburg.de

SCRIPTING TOOLS FOR BEAMLINE
COMISSIONING AND OPERATION

A. Pazos#, S. Fiedler, EMBL-Hamburg, Hamburg, Germany
P. Duval, DESY, Hamburg, Germany

Abstract
Scripting tool capabilities are a valuable help for

beamline commissioning and for advanced user operation.
They are the perfect complement to static Graphical User
Interfaces allowing one to create different applications in
a rapid way. A light middle-layer for scripting support has
been foreseen for the EMBL structural biology beamlines
at the PETRA III synchrotron in Hamburg, Germany, to
provide 'controlled' rather than 'direct' access to the
control system devices. This prevents conflicts with the
control system and allows control of the supported
operations. In order to account for the wish of different
scripting languages by the beamline scientists an
extension of the scripting capabilities of the TINE control
system has been implemented. To the existing shell
support, a Python extension (PyTine) has been added and
a Perl wrapping has been also prototyped (tine4perl). An
explanation of these implementations and the different
wrapping possibilities is also described in this paper.

INTRODUCTION
The EMBL-Hamburg outstation is commissioning three

beamlines at the new PETRAIII light source at DESY
(Hamburg). In addition, two beamlines at the DORIS
storage ring are available for testing and prototyping the
arriving instruments.

The control software is based on a client/server
architecture integrated with the TINE control system [1].
Each device exports a TINE server that allows its remote
operation. Flexibility has been a key feature since the
design phase. For this reason different kinds of
programming languages like C/C++, Python and
LabviewTM are supported.

The client side is mainly represented by Graphical User
Interfaces (GUI) that connect themselves to the existing
device servers. Two kinds of GUIs are available
depending of the application. On one side there is an
advanced control GUI that allows the operation and
tuning of the entire beamline. This is mainly used by the
beamline operators and experienced personnel. On the
other side there is a GUI for visiting scientists with
limited functionality with the main purpose of performing
the data collection.

Some procedures, not even supported by the advanced
GUI, need to be executed during the commissioning.
Moreover, advanced users have the requirement of
executing different strategies that are not foreseen at the
user GUI.

In both situations the availability of a flexible and rapid
way of executing this set of actions is very desirable. For
this reason a scripting layer has been introduced at the
software architecture allowing one to “glue” calls to the
device servers. For gluing and system integration a
scripting language can be 5-10 times faster than a system
language [2] and the strong typing makes the programs
easier to manage.

It is not desirable to the overall operation of a beamline
that a user, not familiar with the installed hardware, is
allowed to freely execute server functions. Of course,
there are control system security measures, but overlaying
the servers with a light scripting interface makes the
system safer. Thanks to this scripting layer, the naming
convention of the functions can be freely chosen.

SCRIPTING REQUIREMENTS
On the basis of our experience with beamline operation

and after evaluating the specifications given by the
beamline scientists, a list of requirements for the desired
scripting environment was compiled:
• Easy to learn (for the developers and for the users)
• Easy to maintain
• Flexible (possible to refactor)
• Dynamic (does not need variable declarations)
• Well defined syntax
• Well documented
• Possible to control the accessible functionality
• Separated from the device specific layer
• Command-line support
• Sequencer support
• Reliable
• Secure
• User proof
• Multi-platform
• Open-source

TINE FOR SCRIPTING
The TINE control system originally supported a set-up

of shell commands meant to build shell scripts both in
Linux and Windows. Examples for these are the ‘tget’ (to
receive data from a server) and the ‘tput’ (to send data to
a server) commands. These functions are implemented in
C and make use of the TINE C API. They receive as an
input the necessary information (address, property, data
type and data size) to make a call to a server.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL013

System Engineering Deployment and Commissioning

153

At first instance, they have been extensively used for
commissioning and currently are used for setting up
initialization scripts. For experienced users and
developers, they allow efficient operation. . However, for
users not familiar with the shell environment they might
appear cumbersome.

Considering the defined requirement list and adding
some extra valuable points (listed bellow), Python [3] was
selected as the main supported scripting language.
• It has object oriented possibilities.
• Is getting more popular inside many scientific

communities.
• It is also a powerful programming language.
• There are multiple open source libraries available.
• It is also possible to compile and to create

executables.
• It is extendable and embeddable.
• There exists graphical support (PyQT [4] and

others).
• There is already experience in our group.
• The GUI used at our MX beamline (MxCube [5]) is

based on Python.

PYTINE
Initially there was no API for accessing the TINE

control system from Python. First ideas where shown at
the TINE Workshop, 2007 [6] demonstrating the
possibility and the ease of performing such a task. With
this starting point an evaluation of the different
alternatives was performed.

Native implementation
A native implementation of the TINE control system in

Python was evaluated. This would have meant a long term
project with complex network implementations. It also
would imply a big effort for maintaining and keeping it up
to date. This possibility was beyond the scope of the
project, having a TINE C API and taking into account that
the most-widely used implementation of the Python
programming language is written in C.

Python Bindings
The idea was to wrap the TINE C library, implementing

Python bindings on top of this (see Fig. 1).

Figure 1 – PyTINE implementation overview

This concept had been successfully used for giving
support to other programming languages, such as
LabviewTM and MatLabTM. The use of the TINE Java
library was discarded because of better experience of the
developers with the C API. The desired outcome was a
Python library totally transparent to the C interfaces.

The possibility of using a translator library was also
tested. The most popular systems were installed and
evaluated: Boost.Python [7] and Swig (Simplified
Wrapper and Interface Generator) [8]. The Boost libraries
turn out to support more functionality for Python and to
be more extended than Swig, but in both cases the
translation was not a fully automatic process. For this
reason, a native binding inside the C code, without
dependencies on a third part library, was decided. This
was based on the direct use of the Python.h library and
generated with a standard gcc compiler.

All the TINE client functionality was wrapped and a set
of new functions was implemented in order to provide a
generic friendly interface. This collection constitutes the
PyTINE API and its main characteristics are:
• Callback capabilities.
• Support for the TINE data types.
• Data structures available.
• Tested in Linux and Windows.
• Plot functionality integrated, thanks to the use of the

PyPlot library [9].
• Integrated inside Labview applications using

LabPython [10].

Scripting Middle Layer
As mentioned in the previous section, the PyTINE

library is not meant to be invoked directly by the user
scripts. It is imported by a set of Python modules,
provided by the developers, which create the available
functions for implementing scripts. Each of these modules
have a specific functionality attached to one or more
device servers. They are implemented following an object
oriented approach.

In order to perform for example a non-standard data
collection, a user can easily implement a Python script.
This will call the supported methods of the dataCollection
class, which internally take care of the correct operation
(see Fig. 2).

import dataCollection

//set the exposure parameters
prefix = tst1
dir = /home/marccd/images
run = 1
distance = 320
startphi = 0
phirange = 1.0
exposure = 1.0
frames = 10

move distance to start synchronous
dataCollection.moveDistance(325)

start data collection
i = 1

THPL013 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

System Engineering

154

Deployment and Commissioning

while i <= frames:
 status = dataCollection.exposeFrame(PHI,
exposure, startphi, phirange, run, dir ,prefix)
 print “Exposing frame ”, i , “ result: “,
status
 i++

print “Data Collection Finished”

Figure 2 – Script to set parameters like rotation angle,
starting angle for the phi axis of a diffractometer, detector
to crystal distance and initialize a rotating crystal data
collection with Xrays recorded by a CCD area detector

TINE4PERL
After the implementation of PyTINE the possibility of

interfacing TINE with Perl [11] was also tested. The
target was to get and put synchronous data of the basic
data types. Making use of the flexibility and extensibility
of the control system it is possible to accommodate
different developer’s flavours regarding programming
languages.

Thanks to the experience acquired with the prior
implementations, this turned out to be a minor task.
Because only the basic functionality was needed and the
good support provided for Perl [12], the Swig translation
library was selected. To do this, a SWIG interface file
(with the extension .i) had to be written. In this file, the
ANSI C prototypes that have to be accessed from Perl are
listed. In addition, some SWIG directives had to be
included. In our case, some specific functions to treat
arrays and strings were implemented. Invoking the SWIG
command two files are produced: the tine4perl_wrap.c,
which contains the C wrapper functions and the
tine4perl.pm, which contains the supporting Perl code
needed to load and use the module. As last step, the
wrapped file has to be compiled and linked into a shared
library (see Fig. 3).

INCL = /usr/include/tine/
LIBS = /usr/lib

CPP = g++ -fPIC -shared
CC = gcc -g -fPIC -Wall -I${INCL} -c
CCL = cc -g
LM = -lm
LD = ld -G
SWIGPERL = swig -perl5
CCPERL = gcc -I${INCL} -c

tine4perl.so: tine4perl.o
 ${LD} tine4perl.o tine4perl_wrap.o
${LIBS}/libtinemt.so -o tine4perl.so

tine4perl.o: tine4perl.c
 ${SWIGPERL} tine4perl.i
 ${CCPERL} tine4perl.c tine4perl_wrap.c
`perl - MExtUtils::Embed -e ccopts`

Figure 3 – TINE4PERL ‘make’ commands. It uses a
standard gcc compiler and the generated objects to the
multithread tine library

CONCLUSION AND OUTLOOK
A scripting language is suited to perform different tasks

than a system programming language. We have seen in
our applications that if they are used together they can
create very powerful programming environments
fulfilling complementary requirements.

A scripting language should be as simple as possible. In
some occasions it is beneficial not to provide a direct
access to the system but to use a middle layer controlling
the access to the device servers.

It is important to evaluate very carefully the existing
wrapping solutions, including automatic converters, in
order to support a new scripting language. Depending on
the desired functionality it might be better to use one
method or the other. On the one hand, the use of an
automatic converter for complex implementations, that
possibly include pointers and data structures, it can prove
to be a tedious task, making it necessary to learn a special
syntax. On the other hand, an automatic converter can
create fast bindings for simpler wrappings.

In our environment, where all the software is integrated
in a control system, flexible and open systems allow us to
extend their functionality and to support new
programming languages.

This scripting concept and architecture developed to
control synchrotron beamlines could be extended and
applied to different instrumental environments and
integrated with different control systems.

REFERENCES
[1] P. Bartkiewicz and P. Duval, “TINE as an accelerator

control system at DESY”, Meas Sci Technol,
18:2379–2386, 2007, p. 2379-2386

[2] J. Ousterhout, “Scriptiong: Higher Level
Pogramming for the 21st Century”, IEEE Computer
magazine, March 1998

[3] Python Programming Language, www.python.org
[4] PyQt White Paper, www.riverbankcomputing.com
[5] J. Gabadinho et al., “MxCuBE: a synchrotron

beamline control environment customized for
macromolecular crystallography experiments”, J.
Synchrotron. Rad., 2010, 17, 700-707

[6] D. Franke, “TINE+Python Bindings”, (see
http://tine.desy.de TINE Workshop 2007).

[7] C++ Boost Libraries, http://www.boost.org/
[8] Simplified Wrapped and Interface Generator (SWIG),

http://www.swig.org/
[9] Matplotlib, http://matplotlib.sourceforge.net/
[10] Labpython, Open Source Python tools for

LabviewTM, http://labpython.sourceforge.net/
[11] Perl Programming Language, http://www.perl.org/
[12] D. Beazley et al., “Perl Extension Building with

SWIG”, O'Reilly Perl Conference 2.0, 1998, San
Jose, California

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL013

System Engineering Deployment and Commissioning

155

THE ANKA B-FIELD TEST FACILITY CONTROL SYSTEM, BASED ON A
SPEC MACRO PACKAGE ENHANCED SETUP*

Karlheinz Cerff, Thomas Spangenberg, Wofgang Mexner, Institut for Synchrotron Radiation, (ISS)-
ANKA, Karlsruhe Institut of Technology, (KIT)-Campus North, Germany.

Abstract
The ANKA B-field test facility provides users with a

flexible tool to investigate magnetic field distributions
of different setups of coils or permanent magnets,
optimal sensor types, geometrical alignments of probes
and the possibility to change the independent physical
stimuli to generate and alter magnetic field
distributions [1]. From the point of Software
development it is taken as an example of a straight-
forward device implementation with a recently
introduced type of macro based ‘building block
system’ for devices in SPEC, [2]. This macro package
provides the C-like SPEC with an object orientated
framework with a namespace and class concept to
represent the power supplies of different brands, probe
positioning devices and measurement amplifiers.

INTRODUCTION
The B-Field Test facility provides measurement data

of magnetic field distributions of coils or permanent
magnet structures, within the range of um spatial
resolution, over positioning ranges up to meters,
devices in use are,
• a stepper motor driven, encoder monitored linear

positioning probe, equipped with a variable
geometrical arrangement of Hall-sensors to measure
B-field induced voltage gradients.

• Two power supplies, consisting of a main and a
second, multiple power supply, driving individual
shaped I-current ramping functions for corrector
coils.

• A Digital Multi-Meter (DMM) of Keithley, type
‘k2700’ to read out, up to n Hall-probes.

The control software package should also generate a
raw data fit for a polynomial of variable degree i (i<
=9), for up to n Hall-probes. At last the control system
monitors the safe operation of the Test facility, for
example it shuts down the main power supply when a
superconducting coil under test is quenching.

IMPLEMENTATION
In the context of the ‘Macro package based Enhance-

mend of SPEC controlled Experimental Setup’[3], this
means that the device properties are stored as elements
of data structures (SPEC global associative arrays).
The task of the software development is, to
• set up an abstract model of the B-Test Facility

hardware devices.
• write the device drivers for B-Test Facility motor,

power supplies and digital multi meters.

• linking the resulting SPEC macro functions to the
Interface generated by enhanced macro package.

The introduction of a set of interfacing rules minimizes
the risk of damage to existing SPEC-structures,
furthermore it opens the possibility to port in this way
generated SPEC-‘classes’ to other experimental facili-
ties.
Table.1: B-Test facility, list of realized implementation
of functions, devices, SPEC ‘-instances’ and –‘classes’.

physical
function

device SPEC-
‘instance’

SPEC–‘class’
(macro)

motor controller,
one channel

OMS-Maxv ‘m0’ Motor.mac

main power sup-
ply, 1 channel.

FUG NTV-
1000

‘fugbig’ Fug.mac

power-supply
small, 8 channels

FUG NTV-
100

‘fug’ Fug.mac

Digital multi-me-
ter
Hall-probes

Keithley,
K2700/7703

‘k2770’
‘Hall n’

Anka-
Keithley.mac

 Setting up the B-Test Facility, the two power supplies
are defined as members of the ‘class’, represented by
FUG.mac. They are both instantiated as objects ‘fug’
and ‘fugbig’ in the declared global associative array
‘FUG’, writing a set of device dependent standard-
values to it. SPEC-associative Arrays offer as possible
arguments arbitrary strings or numbers instead of
integers [2]. In the ‘class’-macro keithley_anka.mac,
the Keithley DMM is instantiated as object “k2700”
and the connected Hall-probes as objects “Hall-1”-
“Hall-15. The minisetup class’ macro contains the
‘standardvalues’ declarations and a data fit object to fit
raw data to a polynomial up to the order of nine.

Benefit
• Two FUG devices, representing nine power supply

‘objects’ can be accessed by 11 (for the main power
supply) and 73 (for the corrector power supply)
standard-function calls obeying the naming rules
introduced by the macro package.

• Up to fifteen Hall-probes have to be addressed by
255 standard function calls for the Hall-probes plus
three functions for the K2770.

The advantages using the object oriented approach is
clearly visible, there is no need to write, a set of 84
nearly identical conventional SPEC-functions for
power supplies and additional 255 functions to handle
the output, in addition existing ANKA-beamline driver
modules for motors can be used.

THPL014 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

156

Data acquisition

Figure 1: Macro Package generated structures (blue), driver software to be written (green and cyan),
SPEC-built in functions (grey), interface function calls (white)

BUILDING THE B-TEST FACILITY

DEVICE MODELS
Loading and executing, the blnamespaces-macro,

which is the heart of enhanced setup, submits the
functionality for setting up the namespace and global
array structures:
beamline_define_state (“x”,”default”)
beamline_init_namespace (“x ..”)
Both function are processed only once, because all
devices are instantiated in one state “default” and
namespace “x”. In principle the concept allows
multiple state definitions “others” which could be used
for example to define different arrangements of Hall
sensors The functions below instantinate the device-
objects given in the first column:
beamline_setDRV(“fugbig . ”,”FUG”)
beamline_setDRV(“fug . ”,”FUG”)
beamline_setDRV(“k2700a . ”,”KEITHLEY”)
beamline_setDRV(“hall n . ”,”KEITHLEY”)
The power supplies are abstracted by:
status, ramping behaviour, address, type, set/get/
voltages, I-currents, I-current-rates. The device models
are stored as sets of object variables in the associative

arrays “FUG” and “KEITHLEY”, generated by the
macro package init functions, s. Fig.1:

devn . property = “value” structure:

FUG["fug"]["$active"] = 0
FUG["fug"]["$adress"] = "192.168.4.4:23"
FUG["fug"]["$fugtype"] = "FUG-NTV 100"
FUG["fug"]["$maxcurrent"] = 10
FUG["fug"]["*current1"] = 0
FUG["fug"]["currentrate 1-n"] = 0.2
FUG["fug"]["dcpower 1-n"] = 0
FUG["fug"]["readout 1-n"] = 1
The prefix in the second array elements marks the state
of properties: “private”, “read only”, “read/write” or
“command “.

B-TEST FACILITY DEVICE DRIVERS
The program code which has to be written are the

device driver macros for power supplies “fug” and
“fugbig” and the digital multi meter with connected
Hall- probes.
The functions can be grouped in :

dev–N hardware
calls
sockets

blnamespace
stmacs-function
mapping Macro

Macro Package for Enhanced Setup Device Drivers Data Structures

bl._States_n
bl_state _1= „ default “

namespace „x“

glob. array dev.N
FUG[][]

glob. array dev.1...
[state.device.prop]

blnamespaces-macro

init functions:
beamline_define_state ()
beamline_init_namesp
ace()
beamline_setDRV ()

setvalue functions:
beamline_setdefaultvalues ()
devicename_standardvalues()
device_sync ()
user functions:
blset_devname_property()
blread_devname_property ()
blcmd_devname_cmdname []
blstate_devname
blct
blget_devname_property()
blshow_devicename
blinit_devicename()
blreset_devicename

user-functions in external
applications

SPEC-Session

implements :

dev-1hardware calls,
sock_put /get

driver -macro for
device-N object

driver-macro for
device-1 object

is programmed de-
vice dependent

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL014

Experiment Data Acquisition/ Analysis Software Data acquisition

157

• internal functions, like socket functions to set/get
specific hardware register values, to reset or
initialize devices, to address sub device and
functions to process data strings received.

• Functions for data synchronisation with the pre-
defined standard values in associative arrays or with
the ongoing values of the hardware device of
interest,

• functions to set /get device parameters by calling
external measurement devices used at ANKA-beam
lines

• functions, which are ‘built in’ SPEC, here used for
the linear motor drive with encoders to position
Hall-probes.

FUNCTION-MAPPING
A set of ‘standard-’ or user functions’ for

communication is generated automatically by the
macro package. The bulky type of driver functions with
long argument lists is mapped to a set of user friendlier
functions. The functions have the general form:

def user_function (value, argument) ‘{
<return> driver function (“device name . property”)
}

The simplest user functions don’t have arguments, for
example a ‘blct‘-call, gives the outputs of all para-
meters of the assembly of power supplies, DMMs, and
Hall-probes of the B-Test facility:
A generic example for function mapping, will be the
‘setcurrentrate’ user function for 8-fold power supply
‘fug’, device No 3, with a I-current rate of 0.2A/sec.
The user function call is ,

• blset_fug_currentrate3(0.2)
mapping to the device driver function :
• FUG_setcurrentrate3(“fug”, 0.2, 3).

This calls the SPEC socket functions of the driver to
write an appropriate value to the hardware register sub
address 3 of the power supply “fug”, after command
reference given in [5]:
def FUG_setcurrentrate3(device,quiet,value,) '{
__FUG_setcurrentrate(device,quiet,value,2) }'

call of __internal driver function :
def __FUG_setcurrentrate(device,quiet,value,devnr) '{

#which type of power supply ?:
if (FUG[device]["$fugtype"]=="FUG-NTV 100") {

write external inputs for ps with devnr=2+1 to’
 value’:

value = NumberInput ("current rate", FUG [device]
[sprintf ("setcurrentrate%i",devnr+1)] ,0, 1, quiet,
value);

call subdevice 3, addressing, convention, s. com-
mand reference [5]

__FUG_sendcommand(device,sprintf ("%s>S%iR
%g\n",sprintf("#%i",int(devnr/2)),devnr-
2*int(devnr/2), value));

The __internal function uses the basic ‘built in’
 SPEC socket_put function:

def __FUG_sendcommand (device,command) '{
sock_put(FUG[“device”]["$address"],command);

}
}'

value gets the formatted readback from subdev. 3:
value = __FUG_splitanswer(__FUG_readback
(device));

__internal function calls basic sock_get function:

def __FUG_readback(device) '{ local tmp;
tmp=sock_get(FUG[“device”]["$adress"]);

 }'
updates appropriate element of global array FUG

with current read back value:

FUG[device][sprintf("setcurrentrate%i",devnr+1)]=_
_FUG_readcurrentrate (device, quiet ? 0 :1,devnr);
 }

CONCLUSION
The object oriented implementation, by use of

existing beam-line software modules make the
procedure straightforward since only the missing
drivers for power supplies, digital multi-meters and the
raw data evaluation algorithm, have to be introduced.
But synergy proceeds, the FUGs will be the power
supplies of future insertion devices [4] at ANKA, so
the Software modules written to control its devices can
easily be ported to the control system of the next
ANKA superconducting undulator.

REFERENCES
[1] CASPER- A magnetic measurement facility
for superconducting undulators,
E Mashkina et al 2008 J. Phys.: Conf. Ser. 97 012020
[2] www.certif.com, software SPEC
[3] Macro Package based Enhancement of SPEC
controlled Experimental Setups, T. Spangenberg, K.
Cerff, W. Mexner
Proceedings of PCaPAC2010, Canadian Light Source,
Saskatoon, Canada , October 2010
[4] A modular control system based on ACS for
present and future ANKA insertion devices
K. Cerff, W. Mexner, T. Spangenberg, M. Hagelstein,
Proceedings of PCaPAC2008, Ljubljana, Slovenia,
October 2008
[5] FUG, Probus, ADDAT30, command refer-
ence, V2,13

THPL014 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

158

Data acquisition

MACRO PACKAGE BASED ENHANCEMENT OF SPEC CONTROLLED
EXPERIMENTAL SETUPS

Thomas Spangenberg*), Karlheinz Cerff, Wolfgang Mexner
Institut for Synchrotron radiation, ISS, ANKA, KIT-Campus North, Karlsruhe, Germany

Abstract

Certified Scientific Software's program package spec [1]
for X-Ray diffraction and data acquisition provides
reliable instrument control to scientists at synchrotrons
and other facilities worldwide. It’s very flexible C-like
macro language provides a large number of degrees of
freedom for experiment control as advantage and as big
disadvantage at the same time. A large number of
programmers with their own ideas and naming
conventions are contributing to the growth of
functionality. At the same time the risk of collateral
damage by accidentally overriding already existing
functions and variables grows constantly. To solve this
dilemma a new object oriented like software development
concept for spec is proposed. A few naming rules plus a
macro package in combination with a single client-server-
application expand the manageability and options to
control experiments considerably. As main goal spec gets
an object-like handling and a standardized user interface
of newly introduced devices. A generic server-client based
interface allows a smooth integration of spec in more
complex control environments via TANGO [2].

INTRODUCTION
Most of the physical and logical devices provides the

opportunity to operate them in a simplified model as a set
of independent properties which are offered by a certain
remote interface. Therefore it becomes possible to
integrate them rapidly into its own measurement setup
either by direct driver support or by some macro
integration.

As an example, the software package SPEC with its
flexible macro language and various interfaces offers a
number of paths to implement additional hardware into an
experiment.

It will be shown that the risk of interfering solutions
can be avoided for the device integration by introducing a
few design rules in combination with a macro package.
Additionally the client server based export possibilities of
the integrated devices will be increased significantly.

MACRO PACKAGE AND DATA
STRUCTURING

The basic idea of that macro package is to organize and
handle devices object like although SPEC’s pure macro
based programming language definition doesn’t support
objects directly. But the provided data structures permit
with a few limitations an object like structuring of data
and a macro supported creation of specific functions to

manipulate them.
Starting from the abovementioned simplified device

model the representation of the device properties is stored
into SPEC’s associative arrays (see Fig. 1) which yields
three advantages.
• First, all objects of one class are stored in only one

array variable. It is evident, that a naming conflict
can be prevented by using a single identifier per
class.

• Second, due to SPEC’s data type definition any type
of data can be stored into this array.

• Third, the two dimensional index organized by
strings is well suited to store data differentiated into
‘objects’, their properties, and their methods.

The data organization of the macro package is basically
funded to associated arrays and is introducing a naming
convention to their indices. SPEC defines associative
arrays as a string indexed data object which stores any
type of information. The first dimension of the two
dimensional index is used for the device name. The name
is usually chosen as an acronym which describes the
device function in the experiment (e.g. vc1 for vacuum
controller 1, see fig. 1).

The second part of the index string is primary subjected
to the device property. Additionally the first character is
used to transport the minimal necessary information about
the represented property which is used for the
automatically generation of the user interface. The
implemented scheme is as follows:
• ‘$’ indicates internal variables. There are no user

functions provided.
• ‘*’ indicates read only properties or variables. Read

functions are provided.
• ‘!’ indicates a command. A command function will

be available.
• no special character indicates a read/write property.

Read and write functions are provided.
The formal initialization overhead due to the macro

package is very small. There are 2 functions for the whole
macro package and only 3 additional steps are needed to
implement a new device. There are:
• The formal declaration of the device instance by

name and device type, followed by
• The initialization and declaration of start-up values

and finished by
• Initializing the device or synchronizing the stored

information.
The macro package evaluates the stored data and

creates automatically the functions to manipulate them
obeying the fixed naming scheme. Thereby the whole
user functionality will be generated.

*) thomas.spangenberg@kit.edu

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL015

Experiment Data Acquisition/ Analysis Software Data acquisition

159

EXAMPLE IMPLEMENTATION
An example may demonstrate the situation. Assuming a
hypothetical vacuum pump controller (similar as shown in
fig. 1) device vc1 which may store its data into the
associative array VPC. The declaration of that structure is
done by global VPC while loading the macro package for
that type of controller.

private: address
r/o: current
r/w: voltage
command: on/off

Figure 1: an example vacuum pump controller and its
properties

As it is common to object orientated approaches a set of
‘class-functions’ needs to be provided by the controllers
macro package. The first argument of all functions is the
device name. Other arguments are regulated and straight
forward connected to the idea of the object like access
and the simplified device model approach.

The value initialization is done by
VPC_standardvalues(device, [arg1 [,arg2...]]). This
special function (see fig. 2) doesn’t have strong naming
rule because it will never be used automatically by the
package and depends of course from the device which is
to be implemented.

The task of the function is comparable to a constructor
of an object. It has to pre initialize all instance variables
and at the same time it is declaring the user interface
functionality due to the fixed naming scheme
abovementioned.

def VPC_standardvalues(device,address) '{
VPC[device]["$adress"] = address
VPC[device]["*current"] = 0
VPC[device]["voltage"] = 0
VPC[device]["!on"] = "VPC_poweron"
VPC[device]["!off"] = "VPC_poweroff" }'

Figure 2: example device value initialization

Furthermore current implementations of the macro

package expecting the functions VPC_init(device) which
drops all pre setted values into the device,
VPC_sync(device) to synchronize the object to the
device otherwise, and VPC_state(device) which is
printing the read device state onto the screen.

Declared commands are realized by any function which
has to handle 2 arguments. The first is the device and the
second is the optional user argument. An example may be
VPC_poweron(device,option), which name was stored
into the device property '!on'.

For reading and setting the property XYZ the functions
VPC_readXYZ(device,..) and VPC_setXYZ(device,..)
need to be defined.

The read and set functions have to provide some other
arguments which will be discussed following.

FUNCTION ARGUMENTS
The macro package requires from all ‘class-functions’ a
strict organization of all arguments concerning their order
and the meaning. The first argument is always the device
name.
Reading and setting functions are already differentiated
by the second argument which is for reading functions an
integer indicating the verbosity of it. The complete
declaration of the example read function is as follows
VPC_readXYZ(device,verbose).
The argument verbose regulates the verbosity which can
be switched on or off.
Setting functions using as a second argument an integer
which lets them operate quiet. In that case the third
argument represents the value to be set. The declaration is
therefore
VPC_setXYZ(device, quiet, value)
It is quiet clear that these ‘driver class functions’ needs to
be programmed with respect to the device and are
therefore similar to other approaches in relation to the
necessary programming effort. The goal are the generated
user interface and the export capabilities.

USER INTERFACE
Just offering to the user device view orientated

functions doesn’t satisfy the users view to an experiment,
which is usually more orientated to the job that needs to
done than to a certain device.

The macro package evaluates automatically the array
stored information (the index names and ‘$*!’) and builds
the whole set of corresponding functions and macros
which are representing the user interface for any device.
Even different user custom is satisfied by creating a
function based access and a macro based access as well at
the same time.

The created set for the example is shown in table 1:

Table 1: corresponding set of device functions and
generated user functions
device function user function / macro
VCP_state(“vc1”) blstate_vc1

blstate vc1
VCP_readXYZ(“vc1”,...) blread_vc1_XYZ(...)

blread vc1.XYZ
VCP_setXYZ(“vc1”,...) blset_vc1_XYZ(...)

blset vc1.XYZ
VCP_poweron(“vc1”) blcmd_vc1_poweron

blcmd vc1.poweron

THPL015 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

160

Data acquisition

It is obviously that the hardware specific part VCP is
eliminated from the user functions or macro calls.
Therefore any device with similar options maybe
exchanged without big incidence for the user.
The argument structure may appear rather complicated
but the macro package derived functions offering a
verbose interface to the user as well as a quiet device
interface for further macro programming at the same time.
Furthermore increases the clear and straight forward
command structure for any implemented device the user
acceptance and comprehension.
In case of reading a certain property the user may type
blread_vc1_XYZ(1) or blread vc1.XYZ to get a print
out of the current value. Otherwise any macro may use
blread_vc1_XYZ([0]) to obtain the value of the property
returned silently. The 0 is optionally because a not set
argument is implicitly set as 0.

On the other hand blset_vc1_XYZ(1,3) sets the value 3
silently to the device property and the use of the
argumentless version blset_vc1_XYZ() indicates the
request for a user dialog. The macro versions of the same
functions are blset vc1.XYZ 3 and blset vc1.XYZ
respectively.

DEVICE EXPORT
SPEC supports among other things the export of variables
and arrays and furthermore the remote execution of code
by a socket connection. This server functionality is well
developed but isn’t SPEC’s main goal. Some care is
advisable concerning the bandwidth of a single socket
connection and therefore the strategy for data exchange
influences the benefit.
The internal structure of the devices organized by the
macro package, as stated before, is concentrated in two
arrays which stores the basic set of information about a
device. The name and the name of the device class array
can be obtained and therefore the whole information set
maybe derived in a second step. Observing and exporting
these two arrays into a client application offers the option
to derive the complete state information about all macro
package managed devices if additionally the device class
arrays are obtained as well.
This approach minimizes the total number of variables to
be observed by the client and the run-time influence of
the steady client-server connection. Only 2 + N variables
needs to be tracked.
The realized client itself is designed as a TANGO server.
The first one offers a generic access to all macro package
devices too.
Due to the strict data organization the TANGO-server can
offer a generic and complete interface to access any
property for reading and writing (if applicable). The
generic functions are string based and schematically (the
original TANGO calls are a bit less instructive) defined as
follows:
• string SPECgetdevices();
• string SPECgetproperties(string device);

• string SPECblread(string device, string property);
• void SPECblset(string device, string property , string

value);
• void SPECblcmd(string device, string command);
All reading interface functions are operating with a

buffered and automatically updated data base. Settings
and commands are scheduled into SPEC’s command
queue

CONCLUSIONS
The introduced macro package in combination with a few
naming rules offers a straight forward approach to an
object like access for device implementations with
SPEC’s macro language. Unwanted variable cross talking
is maximally avoided and a systematic macro generated
user interface can be provided at the same time.

The whole functionality can be exported into a socket
client which offers itself a TANGO server for the SPEC
macro package managed devices and permits a remote
control of them by other programs

REFERENCES
[1] http://www.certif.com
[2] http://www.tango-controls.org

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL015

Experiment Data Acquisition/ Analysis Software Data acquisition

161

 STUDY CASE OF A COLLABORATION PORTAL FOR A
INTERNATIONAL SCIENTIFIC PROJECT

Marcin Trycz and Luciano Catani, INFN-Roma Tor Vergata,

Via della Ricerca Scientifica, 1 - Roma, Italy

Abstract
In this paper we present the results of the design,

development and preliminary evaluation tests of a web-
based collaboration portal aimed at supporting the
teamwork of an international scientific collaboration.

In the academic research environment often people use
very simple collaboration tools, usually chosen out of
habit. In the case of international collaborative projects, in
which people don't work physically in the same place for
most of the time, these important tools are far from being
effective and appropriate. For instance, a collaborative
scientific project is made of teams of specialists from
different research institutions and countries that need to
share files, drawings, pictures, software etc. and
document the progress of their work. The different tasks
of the project are managed by work groups (WGs) of
specialists that organize their work by scheduling
meetings, workshops and by setting deadlines. Quite often
a single researcher contributes to more than one work
group.

The aim of our Portal is to offer a suite of web
instruments fulfilling the above requirements without
adding extra complexity to the procedures the scientists
are familiar with.

INTRODUCTION
In the present-day world of science, research projects

are often carried out by large collaborations of different
research institutions and universities. The need of
specialists for each task of the project requires the
contribution of top-quality scientists from different parts
of the world working in collaboration across the different
phases of the project development: design, operation and
the analysis of results.

Sometime the collaboration is based on in-kind
contribution from each partner requiring a constant
interaction to ensure the perfect matching of the
components.

Given these requirements, a continuous and effective
communication among members of work groups, and a
constant coordination of the latter, is crucial for the
successful development of the tasks. At higher level, WGs
leaders should continuously check the progress of their
own group against each other to ensure a uniform
development of the project.

Scientists, compared to many other professional
communities, are certainly skilled and well trained in
using computers and computer networks because of the
important role these instruments have in their daily work.

As consequence of this familiarity, scientists
spontaneously tend to profit from computer based

communication and collaboration tools, selecting by
themselves the solution they consider more appropriated.

This explains the tendency to develop solutions to their
collaboration needs that simply implement the tools they
are more familiar with: email especially, for
communication and documents distribution, file servers,
Internet shared agenda, polling services etc.

Experience teaches that, in spite of their familiarity
with Internet technologies, or probably as a consequence
of it, scientists are somehow reluctant to accept dedicated
all-in-one project management solutions that might be
selected and suggested by the management. Often, they
are convinced that the collaboration instruments they
currently use are sufficient or even more effective that the
new one.

The above considerations suggested us to start the
development of a web portal aimed to providing a
"smooth" replacement of basic communication and
collaboration tools with a centralized server.

OVERVIEW OF TOOLS AND
TECHNOLOGIES

The first task of our analysis process was the
identification of the framework suited for our needs.

We ended up with three candidates representing a wider
spectrum of technologies: Xoops, Joomla and Liferay.
The first two are PHP frameworks; the latter is by now
the only open source Java Portal. A deeper analysis
showed that only Liferay would have fulfilled our user
scheme. On the other hand this portal it's far from being
simple, but its complexity can easily be hidden to the final
user.

THE COLLABORATION PORTAL
The Portal is meant to be a web-based integrated set of

tools supporting a large collaborative project as a
communication and documentation service. The two main
goals of the Portal are prompt and effective information
sharing and well ordered archiving. The Portal also
contains additional services that support other aspects of
the collaborative work, a calendar for instance, and by
taking advantage of the Java portlet [1] “plugability”,
others can be added if need be.

Users Management
As we already mentioned, the main reason for adopting

Liferay was its powerful user management capability. In
international, or large national scientific collaboration
scientists from many different research organizations

THPL017 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Data Networking and Web Technology

162

Web 2.0 and SOA

contribute to the development and operation of a large
device, experiment, facility by collaborating to the
progress of the different activities dealing with the tasks
of the project.

Work Groups, constituted by experts of different
research organizations, are created around each task.
Typically, scientists from each organization are distributed
in many of the project’s WGs and every single scientist
might contribute to more than one WG. The collaborative
Portal should take into account this organization for a
targeted and effective deployment of it services (Fig.1).

In Liferay a user’s profile can be defined in details and
used to configure the services, roles, privileges and even
the layout of the user's home page with the information
and instruments relevant for role and responsibilities of
that particular user. Users won’t need to browse the whole
Portal to find what they’re looking for; sections that are
not interesting, or forbidden, will be hidden.

This powerful management of users profile allows
creating easily and effectively the different workspaces of
the Portal. Work Groups homepage (Fig.2) are accessible
only to members of that particular WG and links to these
WG homepages are automatically available in the
homepage of their members. Similarly, Institutions
homepages are accessible only to users affiliated to that
research organization.

As final result the Portal is automatically customized
for each user according to its profile. Moreover, since
users will find their own environment at the first login,
learning effort will be very limited.

Portal Workspaces
One of the main concepts and functional components of

the Portal are the workspaces. Liferay allows for much
flexibility in this aspect, the workgroups, the institutions,
even single users can have their own separate workspace.
The administrators can decide if the contents of a
workspace need to be accessible for reading to all the
registered users (i.e. all participants to the project) or only
to members of that particular Workgroup.

The management of the Workgroups is dynamic. It
means that the project structure doesn't need to be set a
priori when the Portal is under development; the

Workgroups can be added and removed any time when
the Portal is running.

Although Liferay offers other powerful features, for our
purposes we chose to use only part of its structure. For
instance we didn't implement user's personal workspaces
to simplify the interaction with the Portal and to focus
user’s attention to collaborative activities and services.

The access to the Portal is restricted. Nevertheless the
Administrator can configure the workspaces in such way
to make some information accessible to unregistered
users.

Applications and Tools
The Logbook and the Document Library are the core of

the Portal's functionality. The Logbook, developed by
customizing the original Blog portlet, is the main tool for
sharing information and documenting the progress of the
teamwork. The Document Library is the repository for
both files uploaded by means of either the built-in
interface or as attachments to Logbook entries. While
editing Logbook entries, attachments can be assigned to a
specific folder according to the topic, achieving a well-
organized allocation of files in the repository, which can
be accessed via either the Logbook's interface or a
dedicated browsing page.

The Calendar allows management of events and
deadlines; users can be reminded of relevant events
through an automated email system. The Bookmarks tool
allows highlighting important links in a side frame. The
Activities portlet aggregates all the relevant recent
activities, sorted by date, at a glance: new Logbook
entries, recent uploaded documents and new Calendar
events.

Search is enabled for all of the Portal's content, and is
implemented with Lucene text-search library.

As already mentioned before, the main feature of the
Portal is the integration of these simple, well-known tools
into a fully functional application.

The inter-operation and the co-presence of these tools
in a managed environment provide added value to this
solution.

As an example, we present in more detail benefits
offered by the Portal for some collaborative tasks as
compared to the "standard solutions":

Figure 1: Basic navigation workflow

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL017

Data Networking and Web Technology Web 2.0 and SOA

163

Figure 2: An example of user’s home page.

Documenting a work group activities
This duty is usually accomplished by sending email to

all WG members and each user needs to organize its own
mailing list in the mail browser and keep it up to date. A
typical issue is tracking back the old messages in the
search for particular information. That is usually not
trivial, although some mail browsers allow threading by
subject. The Logbook (Fig.3) approach is still simple but
more effective: entries are available to all current
members of the WG in a dedicated section of the Portal,
sorted by date and stored for later browsing. An RSS
service, available for this as well as for many other
sections of the Portal, allows users to be promptly
informed about relevant activities.

Files distributing and archiving
The dedicated Documents Library is a more efficient

replacement of a file server.

Figure 3: The Logbook page

A WG can choose a simple one-level folders structure,
another might need a more complex multi-level tree-like
file system for a structured archiving. The main way to
add files to the Library is through the Logbook interface,
but single files can be added through the dedicated
Documents Library interface. Either way a message that a
new file has been uploaded to the Portal will be added in
the Recent Activities section in both user’s and WGs’
homepage. As well as the Logbook entries, all the files
can be searched by title and by content in full-text mode,
given it's a text-based file like txt, doc or pdf.

Setting up a meeting, deadline, reminder etc.
Any kind of event relevant to the Project or WGs’ life

can easily be added through the Calendar's advanced
interface. Many different event types can be managed:
recurring events, multi-day events, etc. The events are
time zoned by default, simplifying international users
access. Furthermore, all the users potentially interested to
the event will receive an automated remainder via email
before it's beginning, with customizable advance time.

FIRST ADOPTION
The European IRUVX* collaboration has been the first

real-life adopter of the Portal. IRUVX project perfectly
fits with the target of the Collaboration Portal: it’s an
international collaboration aimed to the development of
an international consortium of FEL facilities; it addresses
different tasks that are managed by working groups in a
coordinated effort.

During the test period members of the collaboration
involved in the evaluation actively helped us by
debugging the Portal services and also suggested minor
tweaks for usability. With this experience we ended up
with a fine-tuned working Portal, confirmed by the good
user satisfaction.

CONCLUSION
The development of a web-based collaboration portal

aimed at supporting the teamwork of an international
scientific collaboration has been completed. The Portal
has been under test for several months by an international
scientific collaboration and results confirmed the
effectiveness of the collaborative services it provides.
Modularity of the framework allows to easily customize
and expand the services to any particular user needs.

REFERENCES
[1] http://www.liferay.com/.
[2] A. Abdelnur and S. Hepper, “JavaTM Portlet

Specification v.1.0”;
 http://jcp.org/aboutJava/communityprocess/final/jsr168/

* The preparatory phase of EuroFEL (IRUVX-PP) is funded by the
European Commission under FP7.

THPL017 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Data Networking and Web Technology

164

Web 2.0 and SOA

DEVELOPMENT OF IMAGE PROCESSING SYSTEM ON EMBEDDED
EPICS FOR BEAM DIAGNOSTICS

J. Odagiri, K. Furukawa, T. Obina, M. Satoh, High Energy Accelerator Research Organization
(KEK), 1-1 Oho, Tsukuba, Ibaraki, Japan

Abstract
A new image processing system was developed based

on EPICS and the FA-M3 PLC made by Yokogawa
Electric Corporation. The hardware of the system
comprises an F3RP61 CPU module running Linux and an
F3UM02 frame grabber module. The CPU functions as an
IOC to analyze the raw image data acquired and
transferred by the frame grabber module on the PCI-bus,
which connects the two modules. A custom record,
graphicsRecord, holds the raw image data and the results
of analysis as well as parameters set by the user over the
network. GUI panels were created by using EDM in order
to display the image and to set relevant control parameters
into the fields of the graphicsRecord being stationed on
the memory of the F3RP61-based IOC. It was confirmed
that the developed system is able to acquire image data,
analyze them appropriately, and send them over the
network to a host computer to display the results of
analysis. The design and results on performance
measurement of the system is also reported.

INTRODUCTION
It had been common practice to use a desktop PC with

frame grabber boards installed in it for beam profile
monitoring. This approach allows us to broaden the range
of choice of the frame grabber boards and the PC for the
purpose. On the other hand, short lifetime of the products
and less reliability of the hardware forces us to replace the
system frequently to increase burden in maintaining the
system in the long run.

In order to solve the problem, we have adopted
embedded technology with Experimental and Industrial
Control System (EPICS) running on a Programmable
Logic Controller (PLC) made by Yokogawa Electric
Corporation [1]. Fig. 1 shows the image processing
system under test. The main specifications of the
F3UM02 frame grabber module are listed in Table 1.

HARDWARE CONFIGURATION
The system comprises an F3RP61 CPU, which runs

Linux as its Operating System (OS), and an F3UM02
frame grabber module. The two modules are connected
with each other by using not only the PLC-bus on the
backplane but also an additional PCI-bus. Both of the
modules have a PCI- connector on the side panel to stack
them for faster data transfer. The image data acquired
with the frame grabber module is transferred to the
F3RP61-based CPU by using DMA. The CPU executes
the Input / Output Controller (IOC) core program of
EPICS on Linux. The IOC analyzes the raw image data

and sends it with analyzed results to a host computer
which functions as an Operator Interface (OPI) of EPICS.

Table 1: Main Specifications of F3UM02

Item Specification

Number of Channels 2ch

Compatible Camera Types Single Tap (8bits/pixel)
Dual Tap (bits/pixel)
RGB Colour (24bits/pixel)

Max. Connections 6 monochrome cameras

Resolution of
Digitizer/Channel

8 bits

A/D Converter Frequency 100 MHz

SOFTWARE DEVELOPMENT
Record Support

An existing spherical record type, graphicsRecord,
which had been created for a seat-gas beam profile
monitor was used with some modifications for the
analysis of raw image data, such as subtraction of
background image, calculation of the projection to both
horizontal and vertical directions, searching the peak
position in the projection, calculation of the total amount
of the light and so forth [2].

Figure 1: Image processing PLC unit under test. The
left most black module (two slots) is the power supply
module. The F3RP61 CPU comes to the right of the
power supply module. The module just right to the
CPU module is the F3UM02 frame grabber module.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL018

Experiment Data Acquisition/ Analysis Software Data analysis

165

Device Support
A new device support module was developed in order

to interface graphicsRecord with the hardware. The
device support makes the instance of graphicsRecord be
processed upon every acquisition of a new image frame
by issuing an “I/O_interrupt” scan request. What the
device support does is just to transfer the raw image data
from the hardware into the buffer of an instance of
graphicsRecord. All the other processing of raw image
data is subject to the graphicsRecord module.

Operator Interface
Extensible Display Manager (EDM) [3] was chosen for

developing the Graphical User Interface (GUI) of the
image processing system since it has a type of object
which can display an array of data in the form of a two
dimensional array of arrays. The feature enables us to
display image on the GUI panel from one dimensional
array of data stored in the buffer of a graphicsRecord
instance as shown in Fig. 2.

TEST OF BASIC FUNCTIONS
To confirm that the device and record support modules

function as expected, we have tested the system with a
simple object. (See, Fig. 2). The result showed that:
• Captured image was successfully transferred from

hardware to the buffer of an snstance of the
graphicsRecord.

• Image analysis, such as, creation of projection to
both horizontal and vertical directions, peak search,
subtraction of background (See, Fig. 3) were
successfully executed with the graphicsRecord
module.

• The raw image and analyzed results were
successfully transferred to the host computer to
display them on the EDM-based panel.

All the monitoring and control operations were done
via Channel Access (CA) of EPICS which connects
F3RP61-based IOC and the host computer over the
network.

PERFORMANCE MEASUREMENT
In such a system like PLC, where hardware resource is

rather limited, a performance can be an issue. The
performance measurement was also done by monitoring
CPU power consumption with running the system with
various different conditions. The CPU loads measured
when no image analysis and no channel access activities
were listed in Table 2. Table 3 and Table 4 list the CPU
loads measured in case only one of the analysis of raw
image or the CA activity between the F3RP61-based IOC
and the host computer was in execution. In this
measurement, the frame grabber module, F3UM02, was
running in external trigger mode and a DC output module
was used as the trigger source. While all the tables are
subject to a case where one channel of image is being

acquired, we have confirmed that the results scale with
the number of channels by using two cameras.

More detailed tests revealed that creating projection
data costs a lot more than other analysis and making it the
most part of the cause of CPU power consumption.

Table 2: CPU Power Consumption
(No Analysis, No Channel Access)

Repetition
Period

CPU Load
(Typical)

CPU Load
(Max.)

1 second 3.00 % 4.00 %

0.5 second 3.70 % 7.30 %

0.2 second 16.0 % 17.0 %

0.1 second 31.0 % 32.6 %

Table 3: CPU Power Consumption

(Only Analysis)

Repetition
Period

CPU Load
(Typical)

CPU Load
(Max.)

1 second 18.6 % 19.0 %

0.5 second 37.0 % 37.3 %

0.2 second 91.3 % 91.9 %

0.1 second N.A. N.A.

Table 4: CPU Power Consumption

(Only Channel Access)

Repetition
Period

CPU Load
(Typical)

CPU Load
(Max.)

1 second 6.70 % 7.30 %

0.5 second 13.7 % 14.0 %

0.2 second 34.0 % 35.0 %

0.1 second 69.0 % 70.0 %

SUMMARY
A new image processing system was developed based

on an embedded EPICS technology by using a PLC’s
CPU which executes Linux as its OS and a frame grabber
module of the PLC. A special record, graphicsRecord,
was ported onto the F3RP61-based IOC and a new device
support was developed to interface the record with the
hardware. The test results of the system showed that the
developed software woks as expected. The result of
performance measurement showed that creating
projection data is the most part of the cause of CPU
power consumption and gives the limit of the repetition
rate of image analysis or the number of channels of image
data which the developed system can handle.

THPL018 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

166

Data analysis

REFERENCES
[1] J. Odagiri et al., “Application of EPICS on F3RP61

to Accelerator Control”, Proc. of the 2009
International Conference on Accelerator and Large
Experimental Physics Control Systems
(ICALEPCS2009), Kobe, Japan, Oct. 12-16, 2009.

[2] Y. Yuasa et al., “A Monitoring System for a Gas-
sheet Beam Profile Monitor on Linux with EPICS”,
Proc. of the 2003 International Conference on
Accelerator and Large Experimental Physics Control
Systems (ICALEPCS2003)), Gyeongiu, Korea, Oct.
13-17, 2003.

[3] http://www.aps.anl.gov/epics/docs/USPAS2007/
lectures/EDM.odp

Figure 2: EDM-based graphical user interface. The numbers and buttons at the right side of the image shows the
results of analysis and control channels respectively. Horizontal and vertical profiles are shown in the lower part of
the GUI.

Figure 3: Subtraction of background from raw image. The left side of the upper image shows the raw data. The right
side of the upper image shows background data. The result of subtraction is shown in the lower image.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL018

Experiment Data Acquisition/ Analysis Software Data analysis

167

CONTROL AND ACQUISITION SOFTWARE COMPLEX FOR TBTS
EXPERIMENTS

A. Dubrovskiy, CERN, Geneva, Switzerland

Abstract
The Two-beam Test-stand (TBTS) is a test area in the

CLIC Test Facility (CTF3) to demonstrate the high power
RF extraction and acceleration at a high accelerating
gradient, which are feasibility issues for the Compact
Linear Collider (CLIC) project. In order to achieve an
efficient data collection, an acquisition and logging
software system was developed. All year round these
systems store the main parameters such as beam position,
beam current, vacuum level, pulse length etc. For
predefined events they also gather and store all
information about the last several pulses and the machine
status. A GUI interface allows from anywhere to plot
many logged characteristics at a maximum of 10 minutes
delay, to go though all events and to extract any logged
data. A control interface configures actions and long-term
control procedures for conditioning accelerating
structures. The flexible configuration of the logging, the
acquisition and the control systems are integrated into the
same GUI. After two years operation the critical
components have shown highly fault-tolerant. Logging
data are used for physic researches.

INTRODUCTION
CTF3 is a test facility which addresses the feasibility

demonstration of the Compact Linear Collider (CLIC)
[1,2]. The CLIC machine will produce electron-positron
collisions at the nominal center of mass energy of 3 TeV
at a luminosity of 2×1034 cm-2 s-1 with a two-beam
acceleration scheme. This scheme is studied in the Two-
beam Test-stand (TBTS), which is a part of CTF3. An
electron beam (the drive beam) of 12 GHz is generated
from a 1.5 GHz electron beam in a Delay Loop and
Combiner Ring and then sent to the TBTS. The drive
beam of an intensity of up to 32 Amps passes through a
Power Extraction Structure (PETS). The extracted
12 GHz RF power from the drive beam is used to
accelerate the second, low-intensity, beam (the probe
beam). In the TBTS set-up the CLIC feasibility, stability
and protection issues are studied, such as the beam
changes during the deceleration, the RF extraction
properties by the PETS, the high-gradient acceleration, as
well as the Two-beam scheme performance and the fault-
tolerance [3].

A control and acquisition high-level software complex
was developed in order to assist all TBTS experiments,
measurements and control routines. From the user point
of view, the acquisition and logging parts of the system
must be extremely reliable and robust; and it must work
round-the-clock. The software system is flexible and
adaptive to failures of hardware or software components
involved in the TBTS set-up. Another issue is that the
development of the software continues during several

years such that it follows the requirements of R&D
experiments and the hardware installation; and it remains
light in support and compatible. The automatic control
part contains a material protection mechanism and an
accelerating structure processing.

FRAMEWORK
The TBTS software design approach is based on a

model-driven architecture. The software developing
process contains two distinct periods of time. During the
first and initial period the developer followed the
waterfall model approach. Specifications for different
software aspects were completed iteratively during an
extended period of time. That is why the first four stages
of the software development consecutively alternated:
requirements analysis → software design → integration
→ testing → requirements analysis → and so on. During
this period the full range testing is very time consuming
and some aspects remain unknown. Hence the testing, the
validation and the performance estimations were made for
some aspects of typical situations. The model merging is
one of the most difficult processes during this phase. In
order to simplify this problem, a core model was
designed, which covers the static part of the set-up and it
remains independent of the software and hardware
realisations. The core software model was developed
based on the instrumentation, controllers and machine
time triggers layouts and general specifications. The
acquisition model defines the generalized device
interfaces for different data access interfaces and different
types of equipments. The control model depends on only
the core model and the acquisition model. At the end of
the first period most of this was defined and realized in
the server part of the software. The remaining part is
gradually put in operation during the second period taking
into account the importance of the blocks. So the second
period of the development relies on the feed-back from
results, goals and tasks of experiments and set-up
changes. During this period the development becomes
lighter and faster, the development tends to be agile.

ACQUISITION
The acquisition part of the software complex is to

obtain all necessary information about the CTF3 machine
status and the experiment. CTF3 can run in several modes
for the TBTS beam lines:
• only the drive beam is on;
• only the probe beam is on; synchronizly;
• probe and drive beams are on, but not synchronized;
• probe and drive beams are on and synchronized.
Moreover all measurement equipments are located on
different front-end crates in the network, and

THPL020 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

168

Data acquisition

measurements are updated non-simultaneously. Thus in
all running modes the acquired data must be synchronized
in a way to get the beam, RF and other measurements
resolved for each pulse in both beam lines. If the read-out
of some of equipments fails, the missing information is
treated as a special case.

Machine status
In CTF3 there are several parameters which relevant to

TBTS beam properties. The status of the electron gun and
the pulse length define the initial beam. Meanwhile the
recombined beam pulse can be cut by a tail clipper, which
is installed after the extraction from the Combiner Ring.
The CTF3 safety interlock system protects the equipment
and the personal from harm. Any TBTS control activity is
stopped on the activation of one of interlocks; and it
resumes when the system is okay. All these parameters
are synchronized with a CTF3 acquisition trigger and they
are synchronously acquired by the TBTS software.

At present the distribution in the waveguide system of
the extracted RF from the PETS is controlled by RF
actuators: two RF attenuators and one RF phase shifter
that can be remotely changed. The actual position of
stepping motors is read using a spring return. The read-
out and the control of RF actuators are also synchronized
with CTF3 triggers.

RF Simulation
Most of the time the TBTS set-up is running in the RF

recirculation mode: a part of the extracted RF feeds back
the PETS with a certain phase shift and the other part of
RF goes to the accelerating structure [4]. Taking into
account the status of RF actuators, the RF propagation in
the RF waveguide system is simulated based on the drive
beam intensity for every pulse. The simulation is
compared to the RF power measured by directional
couplers, which are installed in 5 different places. This
allows detecting anomalies of the RF transportation and
recirculation every pulse. In case of a normal pulse the
comparison between the simulation and the measurement
gives the beam quality: the bunch form factor and the
beam phase along the pulse.

Pulse Summary
Every pulse, the full set of data is summarized into a set

of scalar values. The summarized data is used later in the
control part of the software. For the user it is a possibility
to monitor the evolution and the processing of the system.
The main waveform measurements are summarized into
the data set by the type of measurement:

• forward power – the peak power, the total power
over the pulse duration, and the total period, when

the power exceeds 50%, 75% and 90% of the
peak power;

• reflected power - the peak power and the total
power over the pulse duration;

• BPM – the mean current, vertical and horizontal
positions at the flat top of the intensity waveform;

• Faraday cup – the peak signal.
Based on the predefined conditions the acquisition system
determines anomalies during the high-field travelling in
three sections of the TBTS: in the RF recirculation loop,
in the RF waveguides towards the probe beam and in the
accelerating structure. The typical indications are a high
relative reflection, a missing energy, a high ion emission
and a significant difference between the measured and the
simulated RF.

Event
In order to minimise the amount of logged data and to

provide a “one row data access”, the event system was
implemented. For predefined conditions, such as
breakdowns, interlocks and errors, the event system
gathers all data together about the last and several
preceding pulses and the machine status. In particular data
from about 50 additional signals predefined by the user
and two MTV cameras are acquired and saved, which are
analysed off-line. The user can also raise an event by an
external trigger from the GUI panel or he can activate the
periodical event trigger.

CONTROL
The software system controls relevant TBTS actuators:

the gun mode, the gun interlock, the gun pulse length, the
tail clipper, the RF attenuators and the RF phase shifter.
The user can control actuators in physical units. Control
subsystems were implemented that atomise the control
routine. The most important controllers are the interlock
and the accelerating structure conditioning systems.

Interlocks
The interlock control subsystem is needed to protect the

experiment hardware and to provide the purity of the
experiment. There are two typical actions on an interlock:
to cease the drive beam and to reduce the power
production. These actions avoid problems with high
vacuum, beam losses, klystron instabilities, PETS and
accelerating structure breakdowns. The main indications
for an interlock are a high reflection, a high vacuum level,
beam losses, a missing energy and a breakdown. After
vacuum level sparks the system waits until the vacuum
level is below the normal level. Similarly, the system
waits a predefined time to calm down the experiment set-
up after a breakdown. The operation is automatically
resumed only when all detected problems are solved.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL020

Experiment Data Acquisition/ Analysis Software Data acquisition

169

Figure 1: Illustration of the event chronograph, where a detected RF transmission anomaly in the waveguide is shown.

Conditioning controls
The conditioning strategy is an automatization of the

conditioning, preparation and the long-term measurement
processes. The control software must initialise the
machine with an initial attenuator position and the pulse
length and verify that all interlocks are deactivated. Then
the programme ramps up the pulse length to a target pulse
length by a pulse length step and a delay between
changes. After that it changes the attenuator stepping
motor position towards the target attenuation by steps and
delays. If a breakdown occurs during that procedure, the
control system must follow the interlock specification. If
the number of breakdowns exceeds a threshold over a
period, the programme should increase the target
attenuation by a specified increment. If the procedure
reaches the target positions and it stays for more than a
predefined time, the programme reduces the target
attenuation by a certain decrement. All parameters of the
conditioning strategy are defined by the user.

LOGGING & GUI
The logging system permanently stores most of the

acquisition data and many other parameters, in total
several thousand parameters. All data are available after a
several seconds for CERN internal users and after less
than 10 minutes for external users.

The GUI part is composed of different display
instruments. Quick access panels are an actuator control
panel, an experiment description, the last pulse summary
and the logging status. Remote configurations are an
accelerating structure processing setup, interlock
configurations, connections and signal treating
configurations, RF simulation settings and others. The
logging tools are a logging data plotting and the data
extraction into MAT-format files. Acquisition

visualizations are a last pulse waveform display and an
event chronograph display. An example of the event
chronograph display is shown in Fig.1, where a RF
transmission anomaly was automatically detected.

CONCLUSIONS
An approach to develop dedicated software for the

TBTS research was worked out. It allowed to create a
model based system with rich functionality and
flexibility, which meets the physics requirements. It is
light in support during the operation. The complex of
developed systems has been used in CTF3 for two years.
The software has shown highly fault-tolerant and it is an
efficient instrument within the scope of Two-Beam
studies.

ACKNOWLEDGEMENTS
The author acknowledges F. Tecker for useful

discussions, comments and the careful correction of this
work. Also the author thanks to E. Adli, I. Syratchev, R.
Ruber and S. Doebert for comments and explanations.

REFERENCES
[1] J.P. Delahaye, “Towards CLIC Feasibility”,IPAC’10,

Kyoto (2010), FRXCMH01.
[2] P.K. Skowronski et al., “Progress Towards the CLIC

Feasibility Demonstration in CTF3”, IPAC’10,
Kyoto (2010), WEPE027.

 [3] R.J.M.Y. Ruber et al., “The CTF3 Two-beam Test-
stand Installation and Experimental Program”,
EPAC’08 (2008), WEPP139.

[4] E. Adli et al., “First Beam Tests of the CLIC Power
Extraction Structure with the Two-Beam Test Stand”,
DIPAC'09, Basel (2009), MOPD29.

THPL020 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

170

Data acquisition

“ ”
“ ”
“ ”

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL021

System Engineering Deployment and Commissioning

171

∗ ∗
∗

∗
∗

∗

∗
∗

•

•

•

∈

∗

•

•

“ ”

THPL021 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

System Engineering

172

Deployment and Commissioning

∗

“ ”

“
”

“
”

“
”

“
”

“
”

“

”

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL021

System Engineering Deployment and Commissioning

173

PLANS FOR MONITORING TPS CONTROL SYSTEM INFRASTRUCTURE
USING SNMP AND EPICS

Y. T. Chang, Y. K. Chen, Y. S. Cheng, C. Y. Wu, C. H. Kuo, Jenny Chen, C. J. Wang, K. H. Hu,
K. T. Hsu

National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan

Abstract
The Taiwan Photon Source (TPS) control system is one

of the crucial systems for the accelerators and beamlines.
It is necessary to monitor the status of the control system
components such as housekeeping parameters of cPCI
EPICS IOC crates, network traffic, connections between
computers, etc. The equipment room environment
including electric power, temperature, fire alarm, and
water leak will also need to be watched. Using Simple
Network Management Protocol (SNMP), the behaviour of
network-attached devices can be monitored for
administrative attention. Since the TPS control system is
based upon the EPICS framework, the monitoring system
is planned to adopt the EPICS support with SNMP. This
paper will describe the system architecture of this
monitoring system.

INTRODUCTION
Taiwan Photon Source (TPS) [1] will be the new 3

GeV synchrotron radiation facility to be built at National
Synchrotron Radiation Research Center, featuring ultra-
high photon brightness with extremely low emittance.
The construction began in February 2010, and the
commissioning is scheduled in 2013.

TPS control system will be implemented by using the
Experimental Physics and Industrial Control System
(EPICS) [2] framework. The various devices are
integrated with EPICS based Input Output Controller
(IOC) via control network connection. Figure 1 shows the
architecture of TPS control system.

Miscellaneous
EPICS IOCs

Intranet

TPS Control System Network

EPICS/OPI Consoles

Router

Network Switches

Uninterruptible
Power Supplies

File Servers,
Database Servers,

Storage Servers, etc.

cPCI EPICS IOCs

Figure 1: Possible SNMP-compatible devices in the TPS

control system network

There are 24 Control Instrumentation Areas (CIA)
which distributed along the inner zone just outside of the
machine tunnel. Each CIA serves for one cell of the
machine control and beamline interface. EPICS IOCs and
major control devices connected to the control system are
installed inside CIAs.

The TPS control system is designed for high
availability. Its infrastructure must be reliable. Due to the
long distance between control room and CIAs, an
infrastructure monitoring system is planned to be
implemented for gathering status of control system
components such as CompactPCI (cPCI) IOC crates,
network switches, servers, Uninterruptible Power
Supplies (UPSs), etc. A dedicated EPICS IOC is planned
to be used for housekeeping to monitor the health
condition of these devices. When abnormal situations
occur, e.g. crate temperature overheat, power supply
breakdown, fan failure, or network disconnection, the
monitoring system will automatically display the warning
messages on the operator interface (OPI) screen and send
out the alarm notification by voice call and E-mail. We
can receive the early notification before a problem turns
into a disaster. In addition to the warning messages, the
monitoring system will also generate the warning reports
or charts which can indicate the problems at the same
time. Software tools such as MATLAB will be used to
create these warning reports or charts automatically.

SYSTEM ARCHITECTURE
Simple Network Management Protocol (SNMP) is an

industry standard protocol for managing statistical data of
the network-attached devices. It is based on the client-
server architecture and consists of three components:
managed device, agent, and Network Management
System (NMS). A managed device is a network node that
implements an SNMP interface that allows access to
specific information. An agent is a software module that
resides on a managed device which reports information
via SNMP to the NMS. The NMS is an application which
runs on the manager and regularly polls data from agents.

SNMP mechanism associates with the Management
Information Bases (MIBs) which describe the structure of
the management data of a device. MIB uses a hierarchical
namespace containing object identifiers (OID). Each OID
identifies a variable that can be read or set via SNMP.

The devSNMP [3] is the EPICS device support with
SNMP that allows us to access management data from
any network device in the same manner as we are used to
for the EPICS PVs. Current devSNMP supports only

THPL022 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Data Networking and Web Technology

174

Network Design

snmp-read commands and works with SNMPv2c.
A dedicated EPICS IOC will be used to retrieve

information from the SNMP-compatible devices. The
system structure is shown in Figure 2. The IOC can query
the management data from managed devices via SNMP
protocol. Then the data will be stored in the EPICS
database for PVs channel access. The Extensible Display
Manager (EDM) will be used as the operator interface
(OPI) to show the monitored information via the Channel
Access (CA) protocol.

Private Ethernet

SNMP Agent

MIB

Managed Device

Device Support
(devSNMP)

Device Driver

Database

CA Server

EPICS
Soft-IOC

OPI Application
(EDM)

CA Client

Monitoring Alarm Notification

SNMP
Protocol

Channel
Access

Protocol

Alarm Application
(Voice Call, E-mail, ...)

CA Client

SNMP Agent

MIB

Managed Device

SNMP Agent

MIB

Managed Device

Control Network

Figure 2: System block diagram of building EPICS
support for SNMP-compatible devices

MONITORING OF SNMP-COMPATIBLE
DEVICES

 In the future, the TPS control system is expected to
setup more than 100 IOC crates, more than 50 network
switches, and more than 50 UPSs. Due to these large
amounts of devices, it is hard to pinpoint which device
has a breakdown. Fault-finding and troubleshooting
become a critical issue we have to face. So, it is necessary
to build a warning mechanism using the SNMP-
compatible devices that can show the status of device
information on the Graphical User Interface (GUI).
Besides the monitoring screen, it can also send the
warning message by voice call and E-mail. In order to
speed up the troubleshooting, the warning message should
indicate the location and status of the fault devices. The
detail will be described in the following paragraphs.

cPCI Crates
The cPCI crate is chosen as the standard EPICS IOC

platform for the TPS control system. Monitoring the
health of the crate is essential. Each cPCI crate has an
alarm board with SNMP support. The alarm board can
provide the parameters of the crate status. These
parameters stand for the status of the following entries,
including voltage, temperature, fan speed, and status of
power supply unit.

The monitoring system will poll the data from the cPCI
crates located at 24 CIAs every 10 seconds. A prototype

has been developed to collect the real parameters from
cPCI crates for testing. Figure 3 shows the EDM display
page for monitoring the cPCI IOC crate status. Each
column represents one cPCI IOC crate which will be
installed in certain CIA. If the parameters exceed normal
range, the display value will turn into red for warning the
operator.

Figure 3: EDM display page for monitoring cPCI IOC
crate status

The original devSNMP module should be extended the

"Regular Expression" for non-standard output data string.
There are two ways to solve the problem: One is to
rewrite the device support of devSNMP module, the other
is to insert the a new definition field of module support.
However the second method could solve the problem
much more directly so that the definition "scalcout" from
CALC [4] module is inserted to main database definition
file. Afterwards, it only need to add the "scalcout" field in
the DB file which would translate the output string from
the device.

Network Switches
Network Switches only support SNMP, however, they

do not support with EPICS framework. We can use off-
the-shelf network management tools or dedicated EPICS
IOC to obtain the SNMP data of switches.

The application tools for network management (e.g.
MRTG, RRDTools, Ganglia, etc) usually have many
complicated functions for certain purposes. These tools
are suitable for webmaster or network manager who
needs to monitor the detail information of network
equipments.

In general, most of the users or maintainers only wants
to know some ordinary entries such as heartbeat,
bandwidth and hot-spot warning. Thus assembling the
housekeeping parameters is also needed to make into
consideration for monitoring these switches.

In contrast with switching among different kinds of
graphical user interfaces, it is more convenient and
efficient to centralize variety of data into EPICS IOC so
that we can manage and present the received data via a
customized control interface which could integrate into
the TPS control system.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL022

Data Networking and Web Technology Network Design

175

In Figure 4, it shows that both EPICS IOC with
devSNMP module and network management tools are
used to monitor the status of switches.

…………

SNMP ProtocolEthernet

EPICS IOC Network Management Tools

• Heartbeat

• Bandwidth

• Speed

• System Up Time

• … etc

• MRTG

• RRDTools

• Wireshark

• Ganglia

• … etc

OPI (EDM)

Switch #1 Switch #2 Switch #N

OPI (Web Browser)

Figure 4: EPICS IOC vs. Network Management Tools

Servers
There are two strategies to monitor the servers, one is

used for the servers without running EPICS IOC but
support SNMP, the other is for the servers with running
EPICS IOC. Figure 5 shows the difference between them.

SNMP IOC

Server #1 Server #N

...

Servers without running EPICS IOC

• Heartbeat

• CPU Loading

• Disk Utilization

• Process Count

• … etc

Servers with running EPICS IOC

Server #2

...

Accessed by
EPICS package

I/O Controller Monitoring Utility

OPI (EDM) OPI (EDM)

Server #1 Server #NServer #2

Figure 5: Monitoring schema for servers

For servers without running EPICS IOC, such as file
servers and database servers, we can start the SNMP
daemon to allow the dedicated EPICS IOC to gather host
information. The host information includes heartbeat,
CPU load, disk usage, number of processes, network
traffic, etc. The housekeeping information such as status
of power supply, fan, and temperature can also be
obtained via the MIBs provided by vendors.

For servers with running EPICS IOC, there is the IOC
monitoring utility similar to IOCMON [5] that can run at
IOC and monitor the available resources. The OPI can get
data directly through the utility without involving SNMP

and other dedicated EPICS IOC. It can reports the IOC
resources information including CPU heart beat, CPU
usage, number of file descriptors used, memory allocated,
boot parameters, number of CA clients, number of CA
database links, and network interface statistics, etc.

Others
Other SNMP-compatible devices such as UPSs are

planned to be added into the monitoring system. The UPS
status information such as current, load rate and battery
will be monitored.

The equipment room environment parameters including
electric power, temperature, fire alarm, and water leak are
also our concerns. Instead of using the inefficient SNMP,
detection devices supported by EPICS will be used to
collect the environment parameters which can be
integrated to the control system.

In order to maintain and classify each device in
effective way, EPICS framework supports the template
file for management. In particular, "dbLoadTemplate"
loads the definition file which contains macros and other
substitutions. It is not only reducing the line numbers of
the script but also flexible to extend the parameters for
each device.

SUMMARY
Maintaining high reliability of the TPS control system

is important to the operations of accelerators and
beamlines. Since there are many control system
components distributed at numerous locations in the TPS
buildings, it is necessary to have an infrastructure
monitoring system to supervise the status of these
components. Most of these components such as IOC
crates, network switches, and servers support SNMP
which is the industry standard protocol for managing
statistical data of the network-attached devices. To be
consistent with TPS control system which is based on
EPICS framework, the monitoring system is developed by
using the EPICS device support with SNMP. This system
not only can display warning messages on the OPIs but
also send alarm notifications to responsible personnel by
voice call and E-mail. The alarm message should contain
the location and status information for easily targeting the
failed device. A prototype has been developed to gather
the real status information from cPCI crates.
Implementation for other SNMP-compatible devices is
still in progress.

REFERENCES
[1]. TPS Design Book, v16, September 30, 2009.
[2]. Experimental Physics and Industrial Control

System, http://www.aps.anl.gov/epics/
[3]. EPICS SNMP, http://www-mks2.desy.de/content/

e4/e40/e41/e12212/index_ger.html
[4]. EPICS calc module, http://www.aps.anl.gov/bcda/

synApps/calc/calc.html
[5]. IOCMON : I/O Controller Monitoring Utility,

http://epics.web.psi.ch/software/iocmon/

THPL022 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Data Networking and Web Technology

176

Network Design

DATA ACQUISITION AND STUDIES OF VIBRATION MOTION IN TLS
BEAMLINES

P.C. Chiu, C.H. Kuo, K. H. Hu, Jenny Chen, Y. S. Cheng, Y. K. Chen, K.T. Hsu

NSRRC, Hsinchu 30076, Taiwan

Abstract
TPS (Taiwan Photon Source) is being under

construction while TLS (Taiwan Light Source) is still on
operation at the same NSRRC site. It was observed that
the stability of photon beam intensity (Io) of TLS seemed
a little deteriorated at daytime, when civil work is busy,
compared to the nighttime. The intensity changes at
different beamlines, however, aren’t consistent with each
other in each time, furthermore not so agreeing with the
electron beam. Therefore, to correlate how the ground
vibration due to civil construction effected on beam
behaviour, the vibration measurement system is
integrated into the existing TLS control system. The
system will support waveform acquisition which could be
acquired on demand. Meanwhile, realtime 10 Hz rms
detector which could be archived continuously is also
considered to be built in the future.

INTRODUCTION
 The TPS is a 3 GeV energy electron ring with 512
meter circumference and planned to be delivered to users’
end stations in 2014. During the periods of its
constructions, the TLS at the same site will continuous be
on operations. The quakes caused by excavators or pile
drivers as Fig. 1 seem to have deteriorated the stability of
beamline intensity (ΔIo/Io) from 0.1% up to 10% or
more. On the other hand, these stability indicatorsΔIo/Io
between different beamlines have been not always
concordant. Furthermore, it has been confused us over a
long period that the indicators sometimes became worsen
while the related subsystem remained normal even before
TPS construction. It is suspected that different
characteristics of vibration of different girders quite
would be one of possible causes. Therefore, to clarify
these inconsistent and not-yet-explained phenomena, the
data acquisition system of vibration is planned to be built
and continual expanded. In this report, the infrastructure
of vibration data acquisition system will be presented as
well as correlations of electron orbit, photon beam and
vibrations of several spots will be shown.

INFRASTRUCTURE OF DATA
ACQUISITION FOR VIBRATION

The DT8837 manufactured by Data Translation Inc. is
employed as data acquisition tools for the accelerometers
and photon intensity of beamlines distributed around the
rings. The device supports functionality of bias current
enable for ICP input. The equipped Ethernet interface is
convenient for cabling and UDP trigger packet also

provides sufficient synchronization mechanism for the
distributed modules. Fig. 2 shows the infrastructure of the
related system. All of the data from electron beam, photon
beam, and vibrations could be synchronous acquired by
software trigger within 100 msec. As Fig. 2 shown,
besides the 10 Hz data from IOC/ILC could be acquired
in real-time and archived, the fast transient motion could
be also observed in adjustable higher time resolution and
sampling rate up to 10 kHz.

Figure 1: TPS construction site in Sep 2010.

Control Ethernet

Switch/HubData ACQ. Device #1 Data ACQ. Device #N

…….

DVM 400 Hz for I_0

ILC

…
…

.

Libra Brilliance Libra Photon

DVM 10 Hz for I_0

Accerelerometers

Console #1 Console #2

IOC

Picoampermeter

Figure 2: Infrastructure of data acquisition for vibration
and the other related subsystem.

STATUS OF NORMAL OPERATION
Fig. 2 shows the normal status of the beam stability in

quiet: the stability of beamline intensity (Δ Io/Io) is
usually under 0.1%, the spectrum amplitude of electron
beam stability is also less than 0.5 um below 50 Hz. The
overall RMS stability of electron beam can achieve
submicron level from DC to 50 Hz in normal operation
[1][2]. The mechanic design of BL11 looks better than
BL10’s where the vibrations of three-axis at BL11 are all

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL023

Experiment Data Acquisition/ Analysis Software Data acquisition

177

less than 0.01 mg and are less 0.1 mg at BL10 as Fig. 3. It
is required further studied to seek for causes of these
differences. It is clear from Fig. 3 that the spectrums of
two electron BPM are very similar while they are not
consistent with the spectrum of photon intensity Io
between BL10 and BL11. Furthermore, even these two Io
cannot agree with each other. The vibration characteristics
of two beamlines are not consistent so much. The fact that
47.5Hz noise is observed in both of the electron beam and
accelerometers but is invisible in photon beam. It seems
very necessary with more sensors for detection and
analysis.

5 10 15 20 25 30 35 40 45 50 55
0

0.05

0.1

(n
A
)

20-Jul-2010 13:01:29

5 10 15 20 25 30 35 40 45 50 55
0

0.05

0.1

(m
g)

5 10 15 20 25 30 35 40 45 50 55
0

0.05

0.1

(m
g)

5 10 15 20 25 30 35 40 45 50 55
0

0.05

0.1

(m
g)

5 10 15 20 25 30 35 40 45 50 55
0

0.2

0.4

μm
/(
H
z)

1/
2

Frequency (Hz)

BL10Io

BL10 x-axis vibration

BL10 y-axis vibration

BL10 z-axis vibration

R2BPM4Y

(a)

5 10 15 20 25 30 35 40 45 50 55
0

0.02

0.04

(n
A
)

20-Jul-2010 13:01:29

5 10 15 20 25 30 35 40 45 50 55
0

0.005

0.01

(m
g)

5 10 15 20 25 30 35 40 45 50 55
0

0.005

0.01

(m
g)

5 10 15 20 25 30 35 40 45 50 55
0

0.005

0.01

(m
g)

5 10 15 20 25 30 35 40 45 50 55
0

0.5

1

μm
/(
H
z)

1/
2

Frequency (Hz)

BL11Io

BL11 x-axis vibration

BL11 y-axis vibration

BL11 z-axis vibration

R2BPM1Y

(b)

Figure 3: (a) Spectrum of BL 10 Io, three-axis vibration
and electron BPM: R2BPM4Y. (a) Spectrum of BL 11
Io, three-axis vibration and electron BPM: R2BPM1Y.

LARGE VIBRATION CONDITION
 The inconsistence of the above section is also presented
when large vibration occurs. Although the scales of the
instabilities of photon intensity and vibration became
larger when excavators or pile drivers were operated, but
the characteristic of the behavior is still quite differed. Fig.
4 shows one of the examples. It can be observed that in

the time domain, the transient motions (spikes) occurred
simultaneously but the spectrums of these signals aren’t
so correlated much as Fig. 5.

25 30 35 40 45 50 55 60 65
-46
-44
-42
-40
-38

(n
A
)

10-Aug-2010 10:36:07

25 30 35 40 45 50 55 60 65

-1

0

1

(m
g)

25 30 35 40 45 50 55 60 65

-1

0

1

(m
g)

25 30 35 40 45 50 55 60 65

-1

0

1

(m
g)

25 30 35 40 45 50 55 60 65
-65

-60

-55

-50

(μ
m

)

Time (sec)

BL10 Io

BL10 x-axis vibration

BL10 y-axis vibration

BL10 z-axis vibration

R2BPM4Y

(a)

25 30 35 40 45 50 55 60 65

-60
-58
-56
-54
-52

(n
A
)

10-Aug-2010 10:36:07

25 30 35 40 45 50 55 60 65

-0.5

0

0.5

(m
g)

25 30 35 40 45 50 55 60 65

-0.5

0

0.5

(m
g)

25 30 35 40 45 50 55 60 65

-0.5

0

0.5

(m
g)

25 30 35 40 45 50 55 60 65
450

460

470

480

(μ
m
)

Time (sec)

BL11Io

BL11 x-axis vibration

BL11 y-axis vibration

BL11 z-axis vibration

R2BPM1Y

(b)

Figure 4: (a) Time series of BL 10 Io and three-axis
vibration and electron BPM R2BPM4Y. (a) Time series
of BL 11 Io and three-axis vibration and electron BPM
R2BPM1Y when large vibration occurs.

5 10 15 20 25 30 35 40 45 50 55
0

0.05

0.1

(n
A

)

10-Aug-2010 10:36:07

5 10 15 20 25 30 35 40 45 50 55
0

0.05

0.1

(m
g)

5 10 15 20 25 30 35 40 45 50 55
0

0.05

0.1

(m
g)

5 10 15 20 25 30 35 40 45 50 55
0

0.05

0.1

(m
g)

5 10 15 20 25 30 35 40 45 50 55
0

0.2

0.4

μm
/(
H

z)
1/

2

Frequency (Hz)

BL10Io

BL10 x-axis vibration

BL10 y-axis vibration

BL10 z-axis vibration

R2BPM4Y

(a)

THPL023 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

178

Data acquisition

5 10 15 20 25 30 35 40 45 50 55
0

0.05
(n

A
)

10-Aug-2010 10:36:07

5 10 15 20 25 30 35 40 45 50 55
0

0.005

0.01

(m
g)

5 10 15 20 25 30 35 40 45 50 55
0

0.005

0.01

(m
g)

5 10 15 20 25 30 35 40 45 50 55
0

0.005

0.01

(m
g)

5 10 15 20 25 30 35 40 45 50 55
0

0.5

μm
/(
H

z)
1/

2

Frequency (Hz)

BL11Io

BL11 x-axis vibration

BL11 y-axis vibration

BL11 z-axis vibration

R2BPM1Y

(b)

Figure 5: (a) Spectrum of BL 10 Io and three-axis
vibration and electron BPM R2BPM4Y. (a) Spectrum of
BL 11 Io and three-axis vibration and electron BPM
R2BPM1Y when large vibration occurs.

ΔIo/Io change study

As Fig. 6 (a) shown, the stability indicatorsΔIo/Io of
one beamline (in this examples, BL10) became worsen
sometimes. In the meanwhile, the other (BL11) still
remained normal and the electron beam orbit was also
steady. We check the vibrations of these two beamlines at
that moment as Fig. 4 (a) & (b). Transparently, an
individual vibration event nearby this beamline caused
the BL10 quake. The vibration was local not global. If not
all of the indicators Δ Io/Io become worsen
simultaneously, the indicators are meaningless. However,
even if the global vibration result in instabilities, the
change of photon beam motion is not majorly from
electron beam but itself vibration contributed more. In
fact, the electron beam is more stable than photon beam
when large vibration occurs. The stability of photon beam
deteriorated over twice while the electron beam almost
not changed comparing Fig. 3 and Fig. 5.

25 30 35 40 45 50 55 60 65
0

10

20

(%
)

20-Aug-2010 09:56:03

25 30 35 40 45 50 55 60 65
0

0.1

0.2

(%
)

25 30 35 40 45 50 55 60 65
-1

0

1

(μ
m

)

25 30 35 40 45 50 55 60 65
-1

0

1

(μ
m

)

25 30 35 40 45 50 55 60 65
-1

0

1

(μ
m

)

25 30 35 40 45 50 55 60 65
-2

0

2

(μ
m

)

Time (sec)

BL10 δ io/io

BL11 δ io/io

r2bpm2y

r2bpm3y

fe10pbpmy

fe15pbpm1y

(a)

25 30 35 40 45 50 55 60 65
-60
-58
-56
-54
-52

(n
A
)

20-Aug-2010 09:56:03

25 30 35 40 45 50 55 60 65

-0.5

0

0.5

(m
g)

25 30 35 40 45 50 55 60 65

-0.5

0

0.5

(m
g)

25 30 35 40 45 50 55 60 65

-0.5

0

0.5

(m
g)

25 30 35 40 45 50 55 60 65
540

550

560

(μ
m

)

Time (sec)

BL11Io

BL11 x-axis vibration

BL11 y-axis vibration

BL11 z-axis vibration

R2BPM1Y

(b)

25 30 35 40 45 50 55 60 65

-44
-42
-40
-38
-36

(n
A

)

20-Aug-2010 09:56:03

25 30 35 40 45 50 55 60 65

-1
0
1

(m
g)

25 30 35 40 45 50 55 60 65

-1
0
1

(m
g)

25 30 35 40 45 50 55 60 65

-1
0
1

(m
g)

25 30 35 40 45 50 55 60 65
-70

-65

-60

(μ
m

)

Time (sec)

BL10 Io

BL10 x-axis vibration

BL10 y-axis vibration

BL10 z-axis vibration

R2BPM4Y

(c)

Figure 6: (a) 10Hz data of Δ Io/Io and electron and
photon BPM (b) Time series of BL 10 Io and three-axis
vibration and electron R2BPM4Y. (c) Time series of BL
11 Io and three-axis vibration and BPM R2BPM1Y when
large vibration occurs.

SUMMARY

The installation of the accelerometers and its data
acquisition are presented. The vibration acquisition
system provides information about ground vibration so
that it could be correlated with electron and photon beam.
It helps to clarify some unclear events and contradictions
in the TLS operation. For examples, the inconsistency of
ΔIo/Io between different beamlines was possibly resulted
from local ground motion. The characteristic of the
different girders quite differed. The firmness of storage
ring girder is better than beamlines and the electron beam
are more immune from vibration than photon beam.

REFERENCES
[1] C. H. Kuo, et al., “Fast Orbit Feedback System

Upgrade in the TLS”, Proceedings of ICALEPCS
2007.

[2] P. C. Chiu, et al., “Orbit Stability Observation of the
Taiwan Light Source” , 2009 OCPA, January, 2009

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL023

Experiment Data Acquisition/ Analysis Software Data acquisition

179

COMPUTATIONAL STRATEGIES IN OPTIMIZING A REAL-TIME
GRAD-SHAFRANOV PDE SOLVER USING HIGH-LEVEL GRAPHICAL

PROGRAMMING AND COTS TECHNOLOGY

L. Giannone∗, R. Fischer, K. Lackner and ASDEX Upgrade Team
Max-Planck Institut für Plasmaphysik, EURATOM-IPP Association, D-85748 Garching, Germany

P.J. McCarthy
Department of Physics, University College Cork, Cork, Ireland

Q. Ruan, A. Veeramani, M. Cerna, J. Nagle, M. Ravindran, D. Schmidt, A. Vrancic, L. Wenzel
National Instruments, Austin, TX 78759-3504, Texas, USA

Abstract

Big physics control experiments require enormous com-
putational power to solve large problems with demanding
real-time constraints. Sensors are acquired in real-time to
feed mathematical routines, which then generate control
outputs to real-world processes. For tokamak control, a
non-linear PDE needs to be solved in real-time with a cy-
cle time of less than 1 ms.

We report on an alternative approach based on LabVIEW
that solves the critical plasma shape and position control
problems in tokamaks. Input signals from magnetic probes
and flux loops are the constraints for a non-linear Grad-
Shafranov PDE solver to calculate the magnetic equilib-
rium. An architecture based on off-the-shelf multi-core
hardware and graphical software is described with an em-
phasis on seamless deployment from development system
to real-time target. A number of mathematical challenges
were addressed and several generally applicable numerical
and mathematical strategies were developed to achieve the
timing goals. Several benchmarks illustrate what can be
achieved with such an approach.

INTRODUCTION

The magnetic equilibrium for a tokamak is described by
the Grad-Shafranov equation :

R
∂

∂R

(
1

R

∂ψ

∂R

)
+
∂2ψ

∂Z2
= −µ0Rj(R,Z), (1)

whereψ is the poloidal flux function,j is the current den-
sity, R is the radial component andZ is the axial compo-
nent (see figure 1). This problem is commonly solved by
a cyclic reduction algorithm [1, 2, 3]. A magnetic equi-
librium for discharges with plasma current is reconstructed
on a 33 x 65 grid using 40 magnetic probes and 18 flux
loop difference signals. The right hand side current den-
sity term is calculated by a weighted least squares fit to the
measurements which yields coefficients for the basis cur-
rent density profiles [2, 3, 4]. Three basis current density
profiles were chosen in the first round of development and
found to adequately fit the experimental magnetic probe

∗Louis.Giannone@ipp.mpg.de

and flux loop measurements [5]. The currents from the
poloidal field coils are also needed to compute the value
of ψ on the spatial grid.

Figure 1: The cross section of the ASDEX Upgrade toka-
mak showing the flux surfaces of the magnetic equilibrium
(red dotted lines) and plasma separatrix (red solid line).

REAL TIME GRAD-SHAFRANOV
SOLVER

We report on a new spectral-based algorithm to solve the
Grad-Shafranov equation in an unbounded domain. The
new algorithm adapts a method commonly used to solve
the Poisson equation in cylindrical coordinates. The use
of discrete sine transforms (DST) along the Z-axis and a

THPL024 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

180

Data analysis

tridiagonal solver [6, 7] is an alternative to the cyclic re-
duction algorithm to solve the Grad-Shafranov equation for
poloidal flux,ψ.

Spectral Method

A uniform mesh with constant spacingdR anddZ in the
R and Z directions is assumed. The grid points are labeled
from 0 toNZ−1 and 0 toNR−1, whereNZ is the number
of grid points in the Z direction, andNR is the number of
points in the R direction. The five point difference equation
with indexi in the R direction and indexj in the Z direction
can be written as :

ψi+1,j − 2ψi,j + ψi−1,j

dR2
− 1

Ri

ψi+1,j − ψi−1,j

2dR

+
ψi,j+1 − 2ψi,j + ψi,j−1

dZ2
= −µoRiji,j (2)

Introducing the discrete sine transform ofψ andj :

φi,k =

NZ−2∑

j=1

ψi,jsin

(
πjk

NZ − 1

)
(3)

Ji,k =

NZ−2∑

j=1

ji,jsin
(

πjk

NZ − 1

)
(4)

leads to the tridiagonal matrix equations :

βiφi+1,k − αkφi,k + γiφi−1,k = −µ0RidR
2Ji,k (5)

whereαk = 2 + 4S2sin2

(
πk

2(NZ − 1)

)
, βi = 1 −

dR/(2Ri) , γi = 1 + dR/(2Ri) andS = dR/dZ.

Tridiagonal Solver

The tridiagonal matrix equation is solved with a tridi-
agonal solver using an LU decomposition algorithm. The
LU decomposition generates two bidiagonal matrices sub-
sequently used in the iterative procedure to solve the tridi-
agonal equations. By using LU decomposition, operations
are reduced by a factor of 2 compared to the direct solver
algorithm [8].

Unbounded Domain

The solver for the Grad-Shafranov equation in an un-
bounded domain is composed of two fast solver steps [1].
The new algorithm reduces the computing time dramati-
cally by utilizing a spectral method at each step.

The first step of the solver uses zero as the condition for
all grid boundaries with a right hand side current distribu-
tion on the flux surfaces from the previous iteration given
by the weighted least squares fit to the magnetic probe and
flux loop measurements. In this step, it is only necessary
to computeψ at points neighboring the grid boundary and

a reduced inverse DST can be performed to calculate these
values. The columns ofψ inside the boundary edge are :

ψi,k =
2

NZ − 1

NZ−2∑

j=1

φi,jsin

(
πjk

NZ − 1

)
(6)

wherei = 1 andNR − 2, and the rows inside the bound-
ary edge can be calculated in a similar fashion withk = 1
andNZ − 2. All these four edges can be computed using
matrix-vector multiplication. This avoids the unnecessary
computations performed by a traditional inverse DST op-
eration applied to the entire grid. The gradients inψ nor-
mal to the grid boundary,(∂ψ/∂n)boundary, are the inputs
required for the next solver step. These are the shielding
currents that are necessary to force the zero boundary con-
dition of the first solver step. They are used to calculate the
Green’s functions forψ generated by a current hoop of ra-
dius,a, carrying current,I, for each grid point with radial
coordinate,R, and a vertical distance,Z, on the boundary
[1, 9, 10] :

ψ = µoI
√
(a+R)2 + Z2)((1− k2/2)K(k2)− E(k2))

(7)
wherek2 = 4aR/((a+R)2+Z2)),K(k2) is the complete
elliptic integral of the first kind andE(k2) is the complete
elliptic integral of the second kind [11, 12]. The actual
calculation of the resultingψ on the boundary is performed
as a matrix multiplication with pre-calculated coefficients
times the vector of shielding currents.

The second step of the solver is carried out with bound-
ary conditions from the first solver step but without current
source terms on the right hand side of the Grad-Shafranov
equation. Because only the first and last elements are
nonzero, it is possible to use an optimized DST to reduce
the computation effort. The faster DST is carried out by the
BLAS functiondger producing :

Dij = −
ψi,1sin

(
πj

NZ−1

)
+ ψi,NZ−2sin

(
πj(NZ−2)

NZ−1

)

dZ2

= −ψi,1 − (−1)jψi,NZ−2

dZ2
sin

(
πj

NZ − 1

)
(8)

The DST of the boundary conditions at the inner and
outer radial positions are added to the first and last
columns. The tridiagonal solver is applied to this result
and is added to the result from the first solver step. The
solution of the Grad-Shafranov equation is then calculated
by an inverse DST.

Under equivalent boundary conditions, an implemen-
tation based on the cyclic reduction algorithm computes
all elements on the grid in both solver steps. The Grad-
Shafranov solver algorithm described here achieves a sig-
nificant performance improvement in comparison to cyclic
reduction by employing two optimized DST implementa-
tions. The first implementation exploits the ability to avoid
unnecessary calculations. The second implementation ex-
ploits the fact that the right hand side term is zero except at
the boundary to greatly reduce the number of operations.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL024

Experiment Data Acquisition/ Analysis Software Data analysis

181

Theψ generated by the external poloidal field coils and
passive stabilizing loop on the grid is also realized as a
matrix-vector multiplication using factors calculated with
Equation 7. The poloidal field coils and passive stabiliz-
ing loop are simulated as a finite number of filaments, with
each filament carrying an applicable number of turns. Vac-
uum field shots with current pulses successively in each of
the poloidal field coils are carried out to ensure that the best
possible estimates of the magnetic probe and flux loop po-
sitions and calibration factors of the integrators are usedto
reconstruct the tokamak magnetic equilibrium with plasma
current [5].

BENCHMARKS

A Dell T5500 with two PCI-e x16 slots wired as x8 (half
length), two PCI-e x16 Gen 2 graphics slots up to 150 watts
each, a PCI-X 64bit/100MHz slot with support for 3.3V or
universal cards (half length) and a PCI 32bit/33MHz 5V
slot (half length in desktop orientation) has been delivered
with LabVIEW RT 2009 installed. A dual port Gigabit Eth-
ernet card, a x4 PCIe VMIC 5565 PIORC reflective mem-
ory card and a NI PCIe 8362 interface card for connection
of 2 PXI 1045 chassis for data acquisition of up to 256
channels were installed. Floating point benchmarks indi-
cate a factor of up to 2.7 increase in performance in com-
parison to the current dual quad-core 3 GHz Xeon 5365
computer currently used for data acquisition and real-time
calculations of magnetic equilibrium using only function
parameterization [13]. The reflective memory card trans-
mits the 33x65 poloidal flux matrix value to the control
system with less than 1 ms delay. A third party PCI card
delivers 64 bit time stamps using a 100 MHz clock and gen-
erates the 10 MHz TTL pulses for clock synchronization of
the data acquisition boards in a number of data acquisition
systems.

The following cycle time benchmarks were achieved for
the real time Grad-Shafranov solver (GS) :

Table 1: Benchmarks for a single iteration of the real-time
Grad-Shafranov solver (GS) using 8 CPU cores and Lab-
VIEW RT 2009.

Platform GS
(ms)

Xeon X5365 @ 3.0 GHz 1.13
Xeon X5677 @ 3.46 GHz 0.63

The achieved cycle time for the Grad-Shafranov solver is
therefore satisfactory for the real-time processing require-
ments of neoclassical tearing mode stabilization experi-
ments where the cycle time of the discharge control system
is 1.3 ms [14]. It should be noted that these benchmarks are
for a single cycle iteration for the PDE solution. A detailed
comparison of real-time magnetic equilibrium reconstruc-
tion with well converged solutions from offline calculations
show that the small differences that are found for relatively

steady state conditions are not relevant for practical dis-
charge control [2].

CONCLUSION

A real-time Grad-Shafranov solver based on a discrete
sine transformation of the difference equation rather than
cyclic reduction has been realized. The resulting tridiago-
nal equations are solved with a specially developed subrou-
tine based on LU factorization. This tridiagonal solver re-
duces the number of operations with respect to the iterative
direct solver by pre-calculating the reciprocal of the diag-
onal elements. A reduced inverse DST is required in the
first solver step as only the relevant terms for those neigh-
bors of the grid boundary need be calculated. A simplified
DST can used for the second solver step where only the first
and last elements are non-zero. In this way the full inverse
DST of the first solver step is omitted and the DST of the
second solver step without current source terms can be cal-
culated with a smaller number of operations. The real-time
Grad-Shafranov solver cycle time of 0.63 ms on the de-
livered Dell T5500 platform satisfies the ASDEX Upgrade
real-time processing requirements.

REFERENCES

[1] K.Lackner, Comp. Phys. Comm.,12, 33 (1976)

[2] J.R.Ferron, M.L.Walker, L.L.Lao et. al, Nuc. Fusion36,
1055 (1998)

[3] P.J. McCarthy, Physics of Plasmas,6, 3554 (1999)

[4] W.Zwingmann et. al, Plasma Phys. Control. Fusion,43,
1441 (2001)

[5] L.Giannone, R.Fischer, J.C.Fuchs et. al,http://ocs.
ciemat.es/EPS2010PAP/pdf/P4.122.pdf

[6] R.W.Hockney and J.W.Eastwood, ”Computer simulation us-
ing particles”, p208, Taylor and Francis (1988)

[7] M.H.Hughes, Comp. Phys. Comm.,2, 157 (1971)

[8] W.H.Press, S.A.Teukolsky, W.T.Vetterling and
B.P.Flannery, ”Numerical Recipes in C”, p50, Cambridge
University Press, (1999)

[9] J.D.Jackson, ”Classical Electrodynamics”, p142, Wiley,
(1999)

[10] J.Simpson, J.Lane, C.Immer and R. Youngquist, Simple
analytic expressions for the magnetic field of a circular
current loop http://ntrs.nasa.gov/archive/nasa/

casi.ntrs.nasa.gov/20010038492001057024.pdf

[11] M.Abramowitz and I.A.Stegun, ”Handbook of Mathemati-
cal Functions”, p591, National Bureau of Standards (1972)

[12] M.Abramowitz and I.A.Stegun, ”Handbook of Mathemati-
cal Functions”, p588, National Bureau of Standards (1972)

[13] L.Giannone, W.Schneider, P.J.McCarthy et. al, Fusion
Eng. Des. (2008), http://dx.doi.org/10.1016/j.
fusengdes.2008.12.059

[14] W.Treutterer, L.Giannone, K.Lüddecke et. al, Fusion
Eng. Des. (2008) http://dx.doi.org/10.1016/j.
fusengdes.2008.12.026

THPL024 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

182

Data analysis

ESS CONTROLS STRATEGY AND THE CONTROL BOX CONCEPT*

T. Satogata#, Jefferson Lab, Newport News, Virginia, U.S.A.
I. Verstovsek, K. Zagar, and J. Bobnar, Cosylab, Ljubljana, Slovenia

S. Peggs and C.G. Trahern, ESS, Lund, Sweden

Abstract
The European Spallation Source (ESS) will be

constructed by a number of geographically
dispersed partner institutions in an international
collaboration [1]. This increases organizational
risk, as control system integration will be
performed by a large number of quasi-
independent teams. Significant effort will be put
into standardization of hardware, software, and
development procedures early in the project.
The ESS will use EPICS, and will build on the
positive distributed development experiences of
SNS [2] and ITER [3-5]. The basic unit of
standardization is called the Control Box. This
consists of one or more input/output controller
(IOC) computers, zero or more I/O modules,
PLC subsystems, and intelligent special-purpose
controllers, and includes software and integrated
development environment support. We present
the challenges faced by Control Box plans for
ESS, and expected benefits.

INTRODUCTION
Lund was chosen as the ESS site in May 2009.

The Design Update phase (Jan 2011 to Dec
2012) will be completed with delivery of a
Technical Design Report (TDR). ESS will
deliver proton beam through a ~420m
superconducting linac, and is expected to begin
delivering beam to users in 2019. ESS will
eventually deliver a nominal average proton
current of ~50 mA at ~2.5 GeV in ~2 ms long
pulses with a repetition rate of ~20 Hz to a
single neutron target station, for a nominal
average beam power of 5 MW.

There are several base assumptions for ESS
control system planning:
• ESS will use the EPICS control system.
• ESS will use the Linux operating system in

the controls service tier.
• ESS will use the Oracle relational database

system as a project-wide RDBMS.

After approval of the CDR in late 2012, the
ESS project will proceed with R&D and
construction, installation, and commissioning.
ESS partner institutions doing development and
R&D work over many geographical locations
will be supplied with Control Boxes and given
tools to enforce standards for common data
management issues such as naming conventions,
source code control, and controls development
environment.

THE CONTROL BOX CONCEPT
The SNS project faced similar distributed

controls and integration development challenges
[2]. Several later projects, particularly ESS and
ITER, are following the SNS distributed
collaborative accelerator construction model and
also require early broad controls coordination.

The Control Box concept is similar to the
Plant System Host (PSH) concept used in ITER
controls development [3]. In ITER terminology,
the Control Box philosophy is realized with the
concepts PSH, mini-CODAC [4], and Plant
System I&C (instrumentation and control). The
main purposes of the Control Box are to:
• allow independent and yet standardized

subsystem controls development,
• enforce consistency between subsystems

(possibly including target and experimental
stations),

• facilitate testing of new components (e.g.
EPICS drivers),

• allow centralized acceptance testing of
subsystems through the control system,

• validate technology decisions,
• reduce risks early to lower projection

integration uncertainty and effort,
• force early documentation of standards,
• and minimize throw-away hardware and

software development.
An example structure of an ESS Control Box

is shown in Fig. 1. The ITER Plant System I&C
document [5] discusses the different available
approaches to Control Box design.

__

*Authored by Jefferson Science Associates, LLC under U.S. DOE
Contract No. DE-AC05-06OR23177.
#satogata@jlab.org

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL026

Facility Facility Control System Designs

183

CONTROL BOX COMPONENTS
A generic ESS Control Box will consist of

several software and hardware components:
• One or more EPICS input/output controller

(IOC) computers.
• Zero or more I/O modules (analog-digital

converters and digitizers, digital-analog
converters, serial interfaces, etc.) attached to
the IOC computer’s hardware bus.

• A real-time or non-real-time operating
system, depending on the requirements on
IOC processing.

• A subset of the ESS EPICS real-time
database to maintain values of all process
variables under responsibility of the IOC.

• EPICS device support, which implements
drivers for communication with equipment.

• EPICS Channel Access, which allows the
process variables on the Control Box to be
accessed from other computers in the
network, and can retrieve values of process

variables from other IOCs.
• PLC subsystems for slow industrial controls

(e.g., water cooling; HVAC, etc), connected
to the IOC with one of several standard
communication mechanisms, such as
PROFINET or Modbus TCP/IP.

• Intelligent special-purpose controllers (e.g.
LLRF controllers).

A standard set of supported PLCs will be
established during the ESS Design Update,
similar to SNS and ITER. Intelligent controller
development will occur as part of R&D and
construction, and controller drivers will be
shared with the EPICS collaboration.

The ESS Control Box distribution will
package an EPICS distribution, Linux
distribution, middleware, development
environment, and documentation. This approach
is similar to existing approaches by the NSLS-II
and ITER projects. We are investigating IRMIS
for project-wide PV management. Application-

Figure 1: A schematic of Control Box components for ESS.

THPL026 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Facility

184

Facility Control System Designs

level development will use Control System
Studio (CSS) [6] and XAL [7], and ESS and
CosyLab are participating in a growing XAL
collaboration [8]. A prototype of this Control
Box package is a planned deliverable at the end
of the ESS Design Update.

DATA MANAGEMENT
Data management among disparate R&D

projects becomes another challenge that has
control integration implications. In this area, one
strength of EPICS (ease of adding and removing
control points and IOCs) can also produce
integration, maintenance, and diagnosis
problems.

Central inventories will help manage this data
and provide an infrastructure for consistency
between distributed development and
centralized machine design efforts. With limited
resources, the ESS will focus on leveraging
existing solutions such as the EPICS Channel
Archiver [9] for historical values of process
variables, CERN EDMS [10] for technical
documentation and installation management,
and IRMIS [11] for EPICS control inventory.

Project data integration during the design
phase will be largely driven by the machine
model in top-down design approach. A
schematic of this approach is shown in Fig. 2.
This also provides an infrastructure for naturally
coordinating machine design through control
system details such as lattice and control point
names, such as in XAL.

DEVELOPMENT
Defining standards before R&D development

may lower integration risk, but it raises
technical risk. Controls development projections
are quite uncertain nearly a decade from first
delivered beam. Control Box development and
support must therefore iterate through the R&D
phase to react to changes in the technical
landscape, incorporate new developments in
EPICS, and distribute best use cases through the
project. We plan to develop the ESS Control
Box in annual cycles.

Early implementation costs are another
challenge. The Controls Box concept requires
enough maturity and management support at the

outset that ESS development partners “buy in”,
and do not hide fragmentation beneath a layer of
conformity. Early definition of naming
standards is a priority of development, and
agreement to adherence to these standards will
be a requirement for ESS partners.

REFERENCES
[1] M. Eshraqi et al., “Conceptual Design of the

ESS Linac”, IPAC’10, Kyoto, Japan, June
2010, pp. 804-6.

[2] D.P. Gurd, “Management of a Large
Distributed Control System Project”,
ICALEPCS’01, San Jose, California, Nov
2001, pp. 58-63.

[3] A. Wallander et al., “ITER Instrumentation
and Control – Status and Plans”, Fusion
Engineering and Design 85, July 2010, pp.
529-534.

[4] J.B. Lister et al., “The Status of the ITER
CODAC Conceptual Design”, ibid 83, April
2008, pp. 164-9.

[5] A. Wallander, L. Scibile, Plant System I&C
Architecture, http://tinyurl.com/2g4rhuy

[6] http://ics-web.sns.ornl.gov/css/
[7] http://www.ornl.gov/~t6p/Main/XAL.html
[8] J. Bobnar et al., “Applicability of XAL for

ESS”, these proceedings.
[9] http://ics-web.sns.ornl.gov/kasemir/archiver/
[10] http://edms.cern.ch/
[11] http://irmis.sourceforge.net/

Figure 2: Flow of model data for top-down ESS
control system design.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL026

Facility Facility Control System Designs

185

CONTROL SYSTEMS FOR NEW LARGE EXPERIMENTS
J. Dedic, M. Plesko, R.Sabjan*, I. Verstovsek, K. Zagar, Cosylab, Ljubljana, Slovenia

Abstract

We discuss control systems of accelerators and similar
projects that are presently still in design and early
construction phases, such as FAIR [1], ESS [2],
MedAustron [3], NSLS II [4], ITER [5], etc, and
comparing them against the approaches of the last two
decades and explain the new trends that are emerging:
• From the organizational perspective, control system

architectures are established earlier in the project,
allowing them to adapt to the machine physics
requirements better as well as allow for modeling and
simulations.

• In software, there is much less emphasis on custom
codes than there was in the past. Instead, standard and
off-the-shelf components and frameworks already used
at existing accelerators are becoming the preferred
choice, not only reducing risks, but also allowing for
reuse and sharing.

• In hardware and networks for real-time control and data
acquisition, there is a strong trend from custom
electronics development to standard and off-the-shelf
solutions. This in particular applies to systems like
timing, machine protection, BPMs and LL RF. When
custom solutions are needed, flexible hardware
technologies (e.g., FPGA) are chosen to allow for
future extensibility.

INTRODUCTION
Building a control system for a large experiment has

always been a difficult task which required dedicated
effort from a big group of people. And we have to thank
controls groups in accelerator and the rest of big physics
communities for their great achievements.

Control systems evolved in the recent decades, together
with information technology, computer science and
electrical engineering. In the starting days, little
equipment, be it either software or hardware, was
available off-the-shelf. A handful of physics labs with
difficult requirements, for which solutions have never
been implemented, were just not commercially
interesting. This led to lots of custom work in the labs.
From custom IO board development to advances in
computer networking and developing whole software
frameworks, nothing was taken for granted. Engineers
were also scientists.

During the years, big number of experimental projects
and the advance of computing allowed widespread
standardization of components. Standard technologies are
applied in every aspect of a modern control system, some
systems can even be bought completely and some, which

are only based on standard technology, but still require a
lot of work before installed and commissioned. We shall
look at some examples from the current experiments on
which we collaborate.

At the end we shall try to summarize and find trends
and consequences of progress. The main question is
whether the everyday work of controls groups has
changed and what does this mean for the main priorities
that need to be set at the beginning of every project.

STANDARDIZATION IN LIGHT
SOURCES

Plenty of light sources were built in the last decades
and they have a lot common with respect to the control
system. Control system packages (e.g. EPICS [6] or
TANGO [7]) have matured through collaboration and can
be easily deployed. They are supported on multiple
standard hardware platforms (PC, VME, PXI etc.) and
operating systems (Linux, Windows, Unix, Macintosh
etc.). They provide solutions for most of your needs.
Infrastructure applications like archiving, alarm handling
or error logging are provided together with GUI builders
and interfaces to many programming languages. Usually,
even more than one implementation exists.

Increasing market has attracted industry as well. High
performance electronics, made specifically for
experiments’ requirements is available off-the-shelf. Not
only chips, but complete systems like digital BPM
electronic [8] or timing systems [9] can be bought. Many
equipment or subsystem vendors provide control system
drivers with their products and they offer to implement
them for the control system package of your choice.

Project leaders and funding agencies know this as well
– control system budget has typically fallen from 10% to
5% of the machine’s budget (not counting the building
and beamlines). The challenge today is to implement a
control system with state-of-the-art technology, but with a
smaller budget and/or on a shorter time-frame, not
sacrificing quality, of course. This prioritizes
organizational aspects of the project which will be
discussed in later sections.

 PUSHING THE LIMITS OF CONTROL
SYSTEM COMPONENTS

Other experiments (we have recently worked with
ITER, FAIR, ESS and MedAustron) are still hiding more
technical challenges and questions. Some examples are
explained below.

Machine Protection System
One such example may be a complicated timing system

or very flexible, but still safe machine protection system.

*rok.sabjan@cosylab.com

FRIOA01 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Facility

186

Facility Control System Designs

Reference (or just similar) implementations do not exist
yet and these components are key to success of the whole
project.

We have collected requirements from several projects
and apart from the traditional role of the machine
protection system (MPS) just statically reacting to digital
inputs, new features are required. One such is a
reconfigurable IO matrix, where responses to interlock
inputs would be based on the current mode of the
machine. This enables bypassing certain faults or
threshold levels. Integration with the timing and control
system is highly desired, allowing for quick
reconfiguration of the system.

High-Level Interlock

Middleware

Sum interlock for this VA

Sum interlock for next VA

Interlock inputs

 instrument instrument

Immediate
actions

Interlock outputs

 instrument

Interlock concentrator

FESA

FEC; CS required functionality

st
at

us
 re

ad
ou

t

m
as

k
se

tti
ng

in
te

rlo
ck

 ti
m

e-
st

am
pi

ng
 re

ad
ou

t

Mask for Virtual Accelerator 2

Mask for Virtual Accelerator 3

Mask for Virtual Accelerator 4

Mask for Virtual Accelerator 1

Timing events

Masking

FPGA; hard
real-time
response

a
b

c

Figure 1: Possible implementation of a fast machine
protection system

Integration with the timing system is important for the
post-mortem analysis as well. Input signals can be
accurately time-stamped and the proper timeline of a
problematic event can be reconstructed even if there are a
lot of interlocks firing.

Most of today’s MPS implementations make use of
PLC technology, which has a response rate in the range of
several milliseconds. The new design allows response in
the range of microseconds even with fibre lengths of over
1 km, making the speed of light the biggest constraint.

Such a standard solution does not yet exist, but the
collaboration with a number of labs and their interest
makes it worthwhile to start the development. It is our
view that the solution to MPS can be a good mix of
common general system with specific.

Hard Real-Time Feedback System
Another interesting control system component is a hard

real-time feedback system, which brings distributed
dimension to the real-time control. Implementations of
this already exist and work well (e.g. fast orbit correction
for storage rings).

However, current implementations are largely based on
proprietary technologies like reflective memory (RM), or
are implemented in-house using specialized solutions
such as dedicated fiber network and custom hardware. We
believe, in order to really standardize on open standards
and to lower the cost and the risks for the future, (ten-)
Gigabit Ethernet should also be considered.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 10000 20000 30000 40000 50000

La
te

n
cy

 [
m

s]

Data Size [B]

Crossover S1 S2 S1B1S2 S1B1B2S2

Figure 2: Measurement of latency using RTnet [10] and Gigabit Ethernet as a function of data size. Different lines
represent different network topologies, from using a crossover cable only, to complicated topology, where four network
switches are used.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan FRIOA01

Facility Facility Control System Designs

187

We have measured the deterministic performance of
Gigabit Ethernet as a task for ITER. We were interested
in achieving 1 KHz feedback cycle (2 network hops per
cycle) with very low jitter (less than 10 usec) with total
traffic of 40kB per cycle. For this, we did not just look at
standard UDP packets with multicasting over the
network, but we also tested our setup with Xenomai [11]
real-time Linux kernel and RT net, a real-time network
stack implementation.

Our results showed (Figure 2) [12] that we can already
achieve today a very good latency of 0.5ms for data rates
that are typical for accelerators. Although we cannot use
Gigabit Ethernet technology for ITER requirements
today, we are very close. With 10-Gigabit Ethernet just

years away, we are confident that Ethernet will be a very
good choice for development efforts [13]. Commercially,
no other technology can come close – consumer switches,
network adapters and cables could be used. It seems very
unlikely that this will change in the coming years.

Timing system
New complex machine require a timing system which

is more complicated than just a simple event system that
is usually used at light sources. New features like virtual
accelerators, timing super-cycles (Figure 3) and event
acknowledgements are introduced.

Figure 3: Example timing sequence for FAIR

The existing (off-the-shelf) timing solution like the one

produced by Micro Research Finland, which is the most
widespread among new machines, cannot provide all the
needed functionality, but they can be used as the basic
component, the transmission layer.

We see that despite having a commercially available
standard solution a lot of customization work is
necessary. You can purchase the transport layer, whereas
the application layer is machine specific and needs to be
implemented for every project individually.

COMPLEX COMPONENTS AND
INTEGRATION

We have established that there are definitely trends
towards standardization of control system components,
which could mean that work is reducing for the controls
team. But unfortunately, not everything is that simple.

Components are getting more complex and they require
more time and effort to be integrated into your control
system. Choices need to be made early in the project
which is risky if not all aspects are considered.

Basic control system package
Traditionally the first choice is about the control system

package itself (EPICS, TANGO, FESA, TINE, COACK,
DOOCS, ACS etc). But this choice is not the most

important one. In fact, we believe that people decide for a
control system package in a similar way as when they are
buying a car: we decide based on emotions and later we
rationalize this discussion with architecture description
and features. Luckily, most of control system packages
are mature and modern technology will enable you to
finish your project whatever your choice might be. That
is why we recommend choosing the package that you like
the most, either due to your personal experience, your
people background or because a similar project already
used it and those people can help you when you get in
trouble.

Integrating other packages
Many facilities use more than just one control system,

either they are dealing with a legacy system from a
previous experiment, with a component developed by
another group or buy machine components with existing
commercial control system (e.g. NI LabView [14] or any
other SCADA system). Typically, facility control (e.g. air
condition) is already automated and needs to be integrated
in the main system.

Usage of many different packages is to be avoided, if
possible. For the remaining case, I believe that the main
control system group must clearly define responsibilities
and approve requirements for the interface, especially if
other groups are involved. Documentation and

FRIOA01 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Facility

188

Facility Control System Designs

maintenance of the systems must be considered.
Technical problems come second to interpersonal
relationships in this case.

Another set of examples come from the machine
physics world. There different packages are used, MatLab
[15] and XAL [16] are the most popular recently. Issues
here are all the interfaces to other control system
components (process variables with all the attributes like
alarms, relational database, event handling etc.).

Determining the level of integration is the most
important issue to resolve. We need to realize that we are
not just “pushing” the data from one system to another,
but we must also think about configuration management
and maintenance. For example, usually people have

different views about which system will check values for
alarm levels and how where these thresholds be defined.

In such cases it is usually best to adopt best practices
developed and lessons learned by a previous similar
experiment.

Distributed development and ‘in-kind’ projects
New large experiments, such as ITER, FAIR or ESS,

are very costly and are often started as international
projects with in-kind contributions. The extreme example
of this is ITER, where more than 150 plant systems will
be provided by the 7 collaborating countries together with
the local control system that will be integrated into the
main control system.

Figure 4: ITER Core System [17] is a software product helping to standardize and ease the development of the control
system. To ensure the quality, the software is heavily covered with automatic unit tests which are run at every build.
Continuous build system notifies the developers of build problems and test failings within a few minutes.

ITER is tackling this issue with very rigid

standardization. Every year, the ITER controls group
publishes the Plant Control Design Handbook (PCDH),
which describes all the standards, and releases the Core
System software (Figure 4), the set of all standard, ITER
approved, community tools and software drivers.

The standardization does not stop with the main
architecture, hardware platform and IO boards, operating
system and software packages. Project life-cycle, naming
convention and test plans are also specified.

In addition to this, the Core System software package is
prepared. It is the practical aspect of the PCDH and will
be used by all ITER collaborators, making it easier to
develop the control system properly and easily.

We have recommended this approach to ESS as well
and they have adopted the Control Box concept [18]. ESS
will also be built by many partners, albeit not as many as
ITER.

FOCUS ON DEVELOPMENT PROCESS
Building a complex system from more or less standard

components is an engineering task (much more than a
scientific experiment) with all the steps that are common
to all engineering disciplines. In fact, control system
development has an even more complicated cycle:

• Write specifications
• Architecture
• Design

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan FRIOA01

Facility Facility Control System Designs

189

• Prototyping – probably the only fun part
• Define test procedures
• Implementation (coding) – the only software part
• Writing documentation
• Testing (follow ISO procedures)
• Debugging
• Acceptance at customer

Projects are increasingly aware of the development
processes. Especially, the international efforts recognize
this and focus heavily on the following things. One such
is the signal list. It is a golden list that represents the
contract between different subsystems and different
developers. This is very obvious and should be made in
the initial stages, but many projects do not have it until
very late in the project.

Signal list also requires a good naming convention,
which is unique and still people-friendly. Different people
need to access process variables in the control system and
naming convention should help not hinder that.

Control groups are putting procedures in place that deal
with changing signal list, hardware and software in
manner that all interdependencies are taken care of and
changes will be applied in all the appropriate places. This
avoids project inconsistencies.

There are two more important procedures that are
considered: logistics of installation and error handling
(i.e. bug fixing). How one handles control system
installation and testing needs to be defined well before
integration time, even before any outsourcing contracts
are written. It should define what are the necessary testing
steps before integration starts, who is responsible for what
part and what are the interfaces between different groups
of people (control system people, device experts,
subcontractors, electrical support team).

We all accept that some bugs are inevitable and
sufficient time needs to be planned for testing and
debugging. The procedure should also define how bugs
are reported and how changes (fixes) are introduced and
re-tested. Last by not least, good development practices
minimize the number of bugs in the first place.

Big projects realize that man-power is a problem and it
is difficult to cover the wide range of required
competences. That is why they decide for outsourcing for
a big part of control system, whereas they retain the
overall system responsibility in-house.

CONCLUSIONS
Standardization is the key trend emerging with

development of new and complex projects. Labs are not
required to develop all parts of a control system
themselves, but can rely on re-using development from

other people or even buy off-the-shelf components and
solutions. Technical risks are reducing.

Today, integration is the biggest aspect of a controls
project. How will all the components fall into the main
architecture, what will be the interfaces and how any of
the requirements will be addressed, are the main
questions. Integration starts with day one and is an every-
day companion throughout the project.

Organizational risks in big and complex project with
many partners are increasing. Focus needs to be shifted to
stricter definition and implementation of development
processes and rigorous standardization with clearly
defined interfaces.

In short, control system development is becoming more
and more an engineering discipline and less like a
science.

REFERENCES
[1] FAIR; http://www.gsi.de/fair
[2] European Spallation Source; http://www.ess-

scandinavia.eu
[3] MedAustron; http://www.ebgmedaustron.at
[4] NSLS-2, National Synchrotron Light Source 2; http://
[5] ITER, ; http://www.iter.org
[6] EPICS collaboration; http://www.aps.anl.gov/epics
[7] TANGO collaboration; http://www.tango-

controls.org
[8] Instrumentation Technologies; http://www.i-tech.si.
[9] Micro Research Finland; http://www.mrf.fi
[10] RTnet: Hard Real-Time Networking for Real-Time

Linux; http://www.rtnet.org
[11] Xenomai: Realtime Framework for Linux;

http://www.xenomai.org
[12] K. Zagar et al, “Evaluation of High-Performance

Network Technologies for ITER”, 7th Technical
Meeting on Control, Data Acquisition and Remote
Participation for Fusion Research, Aix-en-Provence,
June 2009

[13] K. Zagar, “Ethernet-based Real-time Networks for
Distributed Cloosed-loop Control”, PhD Thesis, to be
published

[14] National Instruments; http://www.ni.com
[15] MatLab CA; http://ics-web.sns.ornl.gov/kasemir/mca
[16] XAL; http://www.ornl.gov/~t6p/Main/XAL.html
[17] K. Zagar et al, “ITER control system development

environment”, this conference proceedings.
[18] T. Satogata et al, “ESS Controls Strategy and Control

Box Concept”, this conference proceedings.

FRIOA01 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Facility

190

Facility Control System Designs

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan FRRA01

PRESENTATION ONLY

Facility Low-cost control systems (i.e. PC control)

191

WHITERABBIT - A NOVEL, HIGH PRECISION TIMING SYSTEM

M. Kreider, R. Baer, T. Fleck, C. Prados (GSI, Darmstadt)
E. Garcia Cota, J. Serrano, T. Wlostowski (CERN, Geneva)

Abstract

The WhiteRabbit timing network is a deterministic field
bus, based on synchronous GBit Ethernet and the Preci-
sion Time Protocol (PTP). The WR protocol was designed
to provide precise timing and event distribution for high
end real-time systems and was therefore chosen as the tim-
ing basis for the new GSI FAIR accelerator facility. With
precise phase measurement to compensate for signal prop-
agation delay, a timing accuracy down to sub-nanosecond
range is feasible. To achieve necessary determinism and ro-
bustness (packet loss of 10−12), an OSI layer two Forward
Error Correction and Quality of Service protocol have been
introduced to the concept. Special switches wield the WR
protocol, while being transparent to normal Ethernet traffic.
Switch hardware is currently under development at CERN
and will be a mixed FPGA/CPU solution. Working proto-
type cards have been introduced at the 3rd WR Workshop
at CERN in 2009, demonstrating phase measurement and
PTP capabilities. The presentation will contain detail on
technical concepts, current project status, as well as future
areas of application will be part of the discussion.

INTRODUCTION

Purpose

WhiteRabbit was designed to provide very accurate
clock synchronisation to a facility and control its machines
with equal precision. Any event sent to a physical machine
causes a certain action to be executed at a given absolute
time.

The goal here is to the know the exact link delay to des-
tination in advance, so each outgoing event can be sent out
early enough to arrive on time.

In order to achieve that, certain unpredictable factors to
the response time have to be addressed. One is packet loss
due to data corruption on the physical medium, the other
factor is collisions resulting from packet switching in the
network.

NETWORK LAYOUT

WR utilises GigaBit Ethernet on fiber or copper links.
Fiber links have an advantage here, because copper tran-
ceivers and their channel encoding logic are more complex
and often show a non-determinstic behavior. Optical links
enable a higher measurement accuracy on link delay.

The topology of WR system may take any non-meshed
form, since time synchronisation must be unidirectional. If
the network is indeed meshed, a Spanning-Tree algorithm
must be used to avoid loops in time distribution.

GSI/FAIR is planning to employ a Tree Topology with a
GPS receiver as UTC timing reference at the source. Be-
low come several layers of switches, fanning timing out to
endpoints throughout the facility.

WR uses special switches and endpoints to wield its pro-
tocol. Current design of the WR switch has one uplink and
sixteen downlinks, each has a second physical port for re-
dundancy. GSI/FAIR is planning a system with roughly
two thousand timing receivers

Making extensive use of commercially available ether-
net basic components lowers costs for WR switches and
endpoints. It will be possible to integrate non-White rabbit
nodes into the network. WR is compatible with PTP de-
vices and can time sync these nodes. However, PTP nodes
can only be synchronized with reduced accuracy, since they
lack the special hardware for high precision phase measure-
ment.

General purpose ethernet nodes could also be connected
to the network. While being compatible with basic func-
tions, WhiteRabbit design does not support full Ethernet
standard at the time.

TECHNOLOGY

Synchronous Ethernet - SyncE

SyncE describes the special case of IEEE 802.3 ethernet
standard where the recovered RX clock from its master is
used as its own TX clock, making the whole system syn-
chronous. 8b/10b channel encoding is used to make RX
clock recovery from the incoming RX data signal possible.
This adjustment is done in hardware and is the basis for the
PTP fine measurements.

Phase Measurement - Aliasing and DPLL

Figure 1: Aliasing and Phasemeasurement

After SyncE has adjusted the PTP clients frequency to
the masters, the PTP can now measure the time difference

FRCOMA01 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Control hardware and low-level software

192

Control solutions with FPGAs

and lag between nodes. With WR, this is aided by hard-
ware doing the precise measurement on the clocks phase
difference, bringing timing accuracy from 8ns to a theoret-
ical value of 32ps. In order to get highest precision, the
clocks frequency would have to be in optimal range of the
PLL.

The endpoint achieves this by undersampling both
clocks with a frequency very close to their own. Assum-
ing mid term stability of the oscillator, this produces low
alias frequencies which lie in the optimum measuring range
and still possess the proportional phase shift of the original
while jitter is greatly reduced .

Time synchronisation - PTP

PTP addresses the basic problem of clock synchronisa-
tion when message lag and local time difference are un-
known. A handshake between master and client is ini-
tialised, all incoming and outgoing messages are times-
tamped. After two messages and four time values, it is pos-
sible for the master to calculate link delay and difference of
localtime. The master then communicates the correctional
value down to the client which adjusts its own clock.

WhiteRabbit uses an extended version of the IEEE 1588
Precision Time Protocol. Here, synchronisation direction
is fixed, hardware phase measurement increases accuracy
and assymetry in link delay is taken into account.

This assymmetry is a result of chromatic dispersion com-
ing from wavelength multiplexing in the medium. A single
fiber is used for both RX and TX, employing two different
wavelengths to differ between incoming and outgoing mes-
sages. Light propagation in a an optical fiber is a function
of its wavelength, so RX and TX will differ in propagation
delay. [1]
Choosing fiber type with a nearly equal dampening for each
wavelength helps balancing signal strength and therefore
maximum range.

Time is adjusted sequentially down the layers of
switches and nodes. Further consideration for the link de-
lay model are slowly changing characteristics of the phys-
ical medium, caused by temperature, moisture and aging
effects.

Encoding - Forward Error Correction

The goal for WR is an event loss of 10−12. Normal TCP
protocol for example handles the problem of data loss by
re-requesting the damaged packet. In WR, there is no time
for this backup mechanism. Forward Error Correction al-
gorithms are a class of encoding that can introduce enough
redundancy to the data that chances of a packet being ir-
recontructably lost are minimimal. An event stream always
consists of several packets, and the packet header is ad-
ditionally secured with a CRC check. Individual packets
themselves may be lost or corrupted, the event must reach
its destination nevertheless. A detailed description and
analysis of suitable algorithms and effectiveness is avail-
able here [5].

Figure 2: Simplified PTP Delay Calculations

Packet Switching - QoS

In order to guarantee absolute maximum lag time, it is
necessary to prefer time critical packets to others. When
a switch has more than one output packet for a port at a
time, a second arriving packet must be treated differently
depending on priority. Standard Priority packets , SP, can
be queued if buffer space allows, else they are dropped. SP
packets are not time critical and therefore re-requesting a
dropped packet is possible.

Any arrival of an HP packet will cause a currently sent
SP packet to be fragmented and resumed when HP traffic
is over. This makes the 64 cycles maximum delay when
crossing a switch possible.

Figure 3: HP packet preempting SP packet

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan FRCOMA01

Control hardware and low-level software Control solutions with FPGAs

193

OPEN HARDWARE PROJECT

When thinking about the implementation of WhiteRab-
bit, care has been taken from the beginning not to use com-
mercial components that come with royalty fees. At the
same time, WR needed protection against possible lawsuits
for suggested patent infringements or similar.

WhiteRabbit Hardware and Software is completely
open and documentation and sources are available at
http://www.ohwr.org/

CONCLUSION

Working Point-To-Point time synchronisation has first
been shown at the WR workshop in 2009. Since then,
switch hardware was under continous development and a
first WR switch prototype with switching capabilities will
be ready by the end of 2010.

Running side by side with hardware development, WR
protocol specs were expanded and improved. Timing Re-
ceiver boards are also currently under development and will
be made in various form factors. First planned are PCIe and
VME boards to accomodate a timing receiver in many ex-
isting systems, first prototypes are expected early 2011.

WhiteRabbit is a timing system for the future. GSI is
planning to control all its current and new FAIR machines
over WhiteRabbit, with the only exception of the HF gen-
erators.

A fully deployed system at the FAIR facility is to be ex-
pected by 2016.

REFERENCES

[1] P.P.M. Jansweijer, H.Z. Peek, “Measuring propagation delay
over a 1.25 Gbps bidirectional data link”, ETR 2010-01, Am-
sterdam, Netherlands, May 2010

[2] P. Moreira et al., “White Rabbit: Sub-Nanosecond Timing
Distribution over Ethernet”, ISPCS 2009, Brescia, Italy, Oct
2009

[3] J. Serrano et al., “THE WHITE RABBIT PROJECT”, TUC4
ICALEPS2009, Kobe, Japan, Oct 2009

[4] WR Switch Specifications http://www.ohwr.org/

[5] C. Prados Boda, T. Fleck, “ FEC in Deterministic Control
Systems over Gigabit Ethernet”, THPL011 PCaPAC2010,
Saskatoon, Canada, Oct 2010

FRCOMA01 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Control hardware and low-level software

194

Control solutions with FPGAs

FLASH DAQ DATA MANAGEMENT AND ACCESS TOOLS
* V.Rybnikov, V.Kocharyan, K.Rehlich, E.Sombrowski, T.Wilksen

Abstract
The Free Electron Laser in Hamburg (FLASH)[1] at

DESY is a user facility for the photon science
community. It produces laser light of short wavelengths
from the extreme ultraviolet down to soft X-rays. To
study, monitor and document the machine performance
and parameters and also to collect the results of the
experiment measurements, a fast data acquisition (DAQ)
system is being used. Having above 1000 linear
accelerator diagnostics channels collected by the DAQ
currently results in a data rate of ~100 Mb/s. The large
amount of data requires corresponding data storage and
management to enable efficient data retrieval. This paper
will focus on the data paths, storage and bookkeeping. A
number of tools provided for the users to work with DAQ
data will be described. The current status of the achieved
performance in the data storage and retrieval will be
covered as well.

INTRODUCTION
The FLASH DAQ [2] system was launched in summer

2004. Its main tasks are: collecting LINAC beam
relevant data in real time, providing the data to feed-back
and monitoring tools as well as storing it for an offline
analysis. The DAQ system is also used by FLASH user
experiments to store their data together with information
coming from LINAC. This allows easy correlations
between the experiment measurements and the LINAC
state. A set of tools is provided for data visualization and
analysis.

DATAFLOW
The dataflow in the FLASH DAQ and all involved

components are shown in Fig. 1. There are two types of
data collected by the DAQ. Fast data include channels
with beam related information (beam position monitors,
etc.) and currently collected with the shot repetition rate
of 10 Hz. All other channels considered as slow (magnet
currents, etc) and collected with the maximum rate of 1
Hz. The data is collected by fast (FC) and slow collectors
(SC) correspondingly via Ethernet. The collectors put data
to the Buffer Manager (BM) [3] for online access.
Distributors (DS) read data from the BM according to the
stream descriptions provided by the Run Control during
the DAQ configuration procedure. The data streams are
pushed to the Event Builder (EVB) and further to the
Writers (WR). The latter writes data to files on a local
disk. The files from the local disk are copied to a huge
RAID array and accessible via NFS for the public. The

experiments data is usually copied to tape for the
permanent storage.

DATA MANAGEMENT
The DAQ data management components control the

data flow and guarantee all required data is written to data
files and to the tape if required. The components keep
track of the written data in order to assure fast data
access. The rest of the paper will be devoted to the
description of those components.

Figure 1: FLASH DAQ dataflow and access tools

Fast Channel Data
The fast channels (~ 700 channels) provide the most

part of the data volume (~99.5%). It means that the
reduction of the total data amount strongly depends on the
configuration of the front-end DAQ senders. The front-
end configuration is performed by the Run Control
process during the DAQ configuration. The RC is capable
to set every parameter for the spectra that are usually sent
by the front-end (e.g. start, increment, length). For that
the RC has a group of run parameters when changing one
of them changes a spectrum parameter in a group of
channels (e.g. the same device types). The different sets
of run parameters are stored in the Run Modes of the Run
Control data base [4]. Every Run Mode corresponds to a

*Deutsches Elektronen-Synchrotron, DESY, Hamburg, Germany

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan FRCOMA02

Experiment Data Acquisition/ Analysis Software Data acquisition

195

FLASH operations mode. In this way one can control the
total amount of written data.

Data produced by Middle Servers (MS) belongs to the
fast data. Their configuration is performed by the RC too,
and therefore defined by the Run Modes.

Slow Channel Data
The amount of slow channel data is controlled by

assigning the channels to two types of slow events: update
event and/or environment event. The data for update
events is put to the BM periodically (currently every 15
seconds). The channel data for environment events is put
to the BM only on its value change. Writing the
environment channels can be also controlled by filters
(absolute or relative limits for the value difference).

Data Streams

The FLASH DAQ is currently writing 7 data streams
simultaneously. Every data stream consists of a set of
collected channels. The list of channels for a stream is
defined by the experiment using the stream. The largest
LINAC stream contains all data collected by the DAQ.
The LINAC data can be used by other experiments in
case some additional channels are required for their
analysis. The stream separation is done by the DS. It
receives stream descriptions from the RC during the
configuration.

Writers, Run Catalogue and Index Files
Currently EVB is acting as a gateway between

distributors and writers. In future one could use it as filter
for data streams to reduce the data volume, to generate
statistics, etc.

Writer processes are responsible for dumping the data
streams into files. The writers keep track of created files
by means of a Run Catalogue (RCTL). For every run and
stream a set of index files (INXF) is created by the
writers. The RCTL is a binary file that contains the start
and the stop time for every run and the number of written
files. The index files contain the information about every
written file. It includes time stamp and event IDs of the
first and the last event in the file and the number of events
for every event type. The RCTL and INXF allow to find
the list of file names for a certain time period and
experiment.

Permanent Data Storage
The files written by WRs are shipped from the local

disk to the tape storage by the dCache [5] copy process
(DCCP). DCCP keeps track of all taped files in a DCCP
catalogue.

FLASH DAQ Data Files
We are using a custom designed file format for the data

storage. The format is highly optimized for fast data
access. The fast access is achieved by writing the data for
one channel in a continuous data block (basket). Three
steps are usually required to read a channel data:

• Read reference tables and find out the data basket
offset

• Read the data basket
• Decompress data if required
Depending on the data type the channel data can be

written into the file with or without compression. Two
algorithms for compression are supported: ZLIB [6] and
LZO [7]. The second one is used in case of CPU power
limitations.

DAQ data files are self describing. One can get
information about the list of stored channels with their
descriptions as well as the number of entries for every
channel without accessing the data itself.

DATA ACCESS TOOLS
To be able to work with the DAQ files one needs tools

to extract the required data. A set of tools has been
developed, providing two different access methods:
directly from files (local access) and by means of DAQ
data servers (remote access, see Fig.1). In the second case
the user software receives the required data from the
DAQ data servers running on dedicated computers. The
requirements to the data access tools are strongly
dependent on the user’s task. We have concentrated on the
general purpose visualization tools and the libraries that
could be used by the experts to make their own
processing programs corresponding to their wishes. We
have developed libraries and tools for thee environments
used at FLASH: C++, Java, MATLAB [8]. Platform
supported are Solaris (SPARC), Linux (Debian and
Ubuntu) as well as Mac OS X.

 C++ BASED TOOLS
A set of classes has been developed to access DAQ

data from files. In order to start the data extraction one
needs to provide a “data request” containing the time
period (start, stop, or a run number), list of channels to
extract and the experiment name. One can set all those
parameters either by means of the corresponding methods
of classes or by providing the name of a XML file
containing all required information. Once the request is
defined, a method to start the data extraction is to be
invoked. Due to multithreading design one can get the
required data simultaneously with ongoing data
extraction.

Based on the described libraries a data processing
framework has been developed. It takes care of the data
extraction. The user is provided with 4 routines:
user_help(), user_init(), user_loop() and user_end(). The
routines can be rewritten by the user, recompiled and re-
linked with the framework. The loop routine is called to
provide the user code with the channels data in the
sequence as it was collected by the DAQ. The init and end
routines are called once for user code initialization and
finalization correspondingly. The FLASH accelerator and
photon experiment groups are using this framework since
quite some time to their satisfaction.

FRCOMA02 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

196

Data acquisition

JAVA BASED TOOLS
A library (JDAQ) has been developed in Java to

provide DAQ data access for Java based applications. The
library offers both local and remote DAQ data access. The
library contains the same classes as the C++ ones. The
same XML configurations can be used for both
environments. A few Java GUIs exploding JDAQ have
been developed: FLASH DAQ data GUI, FLASH DAQ
data Converter, JDDD [9] expert panels.

Figure 2: FLASH DAQ data GUI

The FLASH DAQ data GUI (see Fig. 2) is a general
visualization tool. It makes use of JFreeChart [10] to draw
waveform, histories and histogram plots. The GUI allows
watching a set of channels signals as they were during
every shot in the linac. One can create histograms and
histories for every selected channel as well as the
correlation plot for any pair of channels. The GUI can be
used for local and remote data access.

The FLASH DAQ data converter dumps the DAQ data
to ASCII files. The GUI has a convenient interface to
plug-in other converters for producing other data formats.
 JDDD is becoming the new display tool for FLASH
operators and experts. A few additional components based
on JDAQ have been written. They allow drawing stored
DAQ data along with online data read from the FLASH
control system. Because of that new capability of JDDD
one can easily build panels for the experts to analyze the
behaviour of their setups in the past.

The LLRF expert coupler interlock panel is a good
example of that approach. The expert selects an interlock
event shown in the DOOCS [11] history of the beam
interlock system. On selection an event a request to DAQ
data servers to extract data for a set of channels is sent for
5 seconds period before and after the event. On
receiving the requested data the wave forms are plotted in
the same plots where the current online waveforms are
drawn. The expert can shot by shot go through 10 second
period of DAQ data and compare the channels with the

online ones. In this way it makes it easy to find out the
source of the interlock for the selected interlock event.

MATLAB TOOLS
Based on the C++ classes external MEX functions have

been developed to provide access to the DAQ data from
within MATLAB. The DAQ data request can be set either
by setting an array of strings inside of the MATLAB
script or via an XML file with the same format as for C++
and JDAQ libraries. The MEX functions extract the
requested data and convert it into MATLAB structures
that can be read by MATLAB scripts and analysis code.

 PERFORMANCE
The FLASH DAQ currently collects all required beam

related channels with the rate of 8000 bunch/s (800
bunches at 10 Hz repetition rate).

The measurement of the data extraction time shows that
for modern workstations exploiting fast multi-core
processors it mostly depends on disks performance and
network bandwidth. In our environment we measure 0.1-
0.2 ms/event for reading one spectra channel (2000
floats).

PLANS
We continue to improve our data access tools trying to

satisfy our users’ requirements. E.g. implementing pre-
processing of data by the DAQ data servers could
drastically reduce the amount of raw data currently used
by the clients and speed up the final data processing.

REFERENCES
[1] http://flash.desy.de/

[2] A. Agababyan et al., “Multi-Processor Based Fast
Data Acquisition for a Free Electron Laser and
Experiments”, IEEE Transactions on Nuclear
Science, Vol. 55, No. 1, February 2008.

[3] V. Rybnikov et al., “A Buffer Manager
Implementation for the FLASH Data Acquisition
System”, PCaPAC 2008, Ljubljana, Slovenia,
October 2008

[4] G.Dimitrov, “Application of Oracle Database for TTF
DAQ System”, PCaPAC 2005, Hayama, Japan,
March 2005

[5] http://www.dcache.org/

[6] http://www.zlib.net/

[7] http://www.oberhumer.com/opensource/lzo/

[8] http://www.mathworks.com/products/matlab/

[9] http://jddd.desy.de

[10] http://www.jfree.org/jfreechart/

[11] http://doocs.desy.de

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan FRCOMA02

Experiment Data Acquisition/ Analysis Software Data acquisition

197

BEAM PROFILE MO ITORI G SYSTEM FOR XFEL/SPRI G-8

T. Matsumoto#, A. Yamashita, JASRI/SPring-8, 1-1-1, Kouto, Sayo, Hyogo 679-5198, Japan
S. Inoue, SPring-8 Service Co, Ltd., 2-23-1, Koto, Kamigori, Ako, Hyogo 678-1205, Japan

Y. Otake, RIKEN/SPring-8, 1-1-1, Kouto, Sayo, Hyogo 679-5148, Japan

Abstract
A beam profile monitoring system was developed for

XFEL/SPring-8. In this paper, we focus on an image
processing system. The image data can be recorded with
the synchronized data acquisition system of
XFEL/SPring-8. The system is composed of 46 screen
monitors (SCMs) and the transverse size and shape of the
electron beam are measured down to a resolution of 10
μm. The SCMs provide a valuable tool for beam
commissioning in terms of optimization of beam transport
and measurement of beam emittance. The imaging system
uses CCD cameras that are connected by Camera Link.
An image data is selected using the Camera Link selectors
and is then processed by an image server. A diagnostic
tool for the beam profile monitoring system requires
many functions: real-time image monitoring, image
analysis, camera control, screen control, etc. We
developed a GUI (Graphical User Interface) using Python
as a tool to flexibly implement the functions required for
the image data. The system was successfully implemented
on the SCSS prototype accelerator and it operated as
intended. The system can thus be applied to the beam
commissioning of XFEL/SPring-8, which is planned for
March 2011.

I TRODUCTIO
The Japanese X-ray free electron laser (XFEL/SPring-

8) is under construction at the SPring-8 site, and its beam
commissioning will begin in March 2011 [1].
XFEL/SPring-8 will generate an X-ray laser with a
wavelength that is less than 0.1 nm via the SASE (Self-
Amplified Spontaneous Emission) process. To achieve
this goal, high-precision beam characteristics (a low
emittance electron beam less than 1 π mm mrad, etc.) are
required, and various types of beam diagnostic tools must
be positioned at each stage of the accelerator [2]. In total,
57 RF cavity beam position monitors (RF-BPMs), 49
screen monitors (SCMs) for beam profile measurement,
and 35 current transformer (CTs) for beam charge
measurement will be installed.

In this paper, we describe an image processing system
equipped with 46 SCMs that is used for transverse beam
profile measurement with an accuracy of about 10 μm.
The remaining 3 SCMs are used for longitudinal beam
profile measurement, which will not be addressed here.

The beam profile monitoring system plays the
important role of tuning the beam during the beam
commissioning. The system is used for optimization of
the beam transport and the measurement of beam

parameters (emittance, twiss parameters, etc.). In order
for the beam commissioning of XFEL/SPring-8 to
proceed smoothly, a prototype of the system has been
developed and was implemented in the SCSS prototype
accelerator to confirm its performance.

SCREE MO ITOR (SCM)
The configuration of an SCM is shown in Figure 1. The

SCM system is composed of a screen, a screen actuator,
an optical system, and a data acquisition system with a
CCD camera. Since the beam is destructed by the screen,
the screen actuator moves the screen outside of the beam
orbit when it is not used. The material of the screen
components was selected depending on the beam energy.
For higher energy (>30 MeV), metal foil was used for the
optical transition radiation (OTR) while for lower energy
(<300 MeV), Ce:YAG was used for fluorescence. In order
to achieve a high position resolution, the optical system is
equipped with a custom-made lens. The zoom range can
be adjusted through the operation of a motor. The position
resolution is about 3 μm at a magnification of four times
and satisfies a required resolution (10 μm). For equipment
controls such as stepper motor controller of the zoom
adjustment, Programmable Logic Controllers (PLCs) are
used [3]. Two types of CCD cameras are used: a JAI
CV-A10 CL (monochrome, 0.46 M pixel, 60 fps) and a
JAI CV- M4+CL (monochrome, 1.45 M pixel, 24 fps).
For each SCM, the proper CCD camera was selected
according to its needs.

Figure 1: Screen monitor for XFEL/SPring-8.

IMAGE PROCESSI G SYSTEM FOR SCM
An overview of the image processing system for SCM is

shown in Figure 2. Communication with CCD cameras

#matumot@spring8.or.jp

FRCOMA03 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

198

Diagnostics

is performed by Camera Link, which makes it possible to
transmit image data, provide trigger signals, and control
the cameras. Measurement can only be performed with a
camera because the SCM destructs the beam. Therefore,
Camera Link selectors (Stack: CLS-900A) are used to
select a camera, and the selection signals are inputted into
an image server. In total, 11 Camera Link selectors are
used to select a signal from among 46 CCD cameras.
Cameras are positioned along the accelerator tunnel and
the signal cables need to extend into a control room. For
this reason, Camera Link signals are converted into
optical signals for long-distance transmission.

Figure 2: Overview of image processing system.

The image server has two trigger inputs for
synchronization of the data acquisition system. One is for
a trigger signal that activates the timing of the RF control
equipment (60 Hz at maximum, called the RF trigger),
and the other one is for a trigger signal for the beam
arrival timing (called the beam trigger) [4]. The beam
trigger is a sub-divided signal of the RF trigger. The beam
trigger is used for data acquisition by the CCD cameras.
The RF trigger is used to count identification numbers
(called tag numbers) for the synchronization of the data
acquisition.
In the image server, an image processing board

(AVALDATA APX-3312/1) and a counter board
(Interface PEX-632102) are implemented. These are PCI
express boards, and Linux drivers are available. Cent OS
5.4 is used as the operating system of the image server.
Most of the operations (camera control, image processing,
etc.) are performed by the image server, though remote
controls can also be applied with a MADOCA framework
[5]. Sometimes the image data needs to be taken under
changed conditions (the magnetic field values for beam
transport, etc.). In such cases, it is useful to be able to
operate the data recording remotely.
The data is stored in data storage and can be utilized for
analyses. Web interface is available via the data viewer.
Due to the large size of the image data, the file names of
the image data are saved in the DB (database) and the
image data themselves are saved in files.

Software configuration

As shown in Figure 3, the software used for image
processing has a multi-layer configuration to intermediate
shared memory. Higher level applications (image
monitoring GUI, image recorder) send the control
commands and receive data (image data, tag numbers,
etc.) via shared memory, and a program for image
processing and counter boards is operated via the shared
memory. Such a system with shared memory has several
distinct merits:

• Past image data can be obtained by preparing a
buffer area for the image data in the shared memory.

• Multiple processes can utilize image data in the
shared memory asynchronously. When the GUI
monitors an image, the data can be recorded at the
same time.

• Image data other than Camera Link can be easily
processed through modification of the program for
image processing and counter boards. For example, it
was possible to test the system using pseudo data. In

future, it will also be possible to process image data
for a GbE camera.

Figure 3: Configuration of software for image processing.

Using Python for GUI construction
Because many functions are implemented in our GUI, its

efficient construction is a priority. For this purpose, we
implemented Python and WxPython for use in the GUI
toolkit. With Python, current existing modules can be

easily applied. PIL (Python Imaging Library) and numpy
(scientific computing with Python) are especially useful.
Several modules (MADOCA control, image analysis, etc.)
were prepared for possible use and were utilized to
construct the GUI efficiently. In the construction of the
GUI, the GUI frame was built using WxFormbuilder and

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan FRCOMA03

Accelerator Controls Diagnostics

199

the layout of the GUI frame was saved in an XRC file
(XML format). With the XRC file, the development of the

GUI frame and GUI algorithm were kept separate, which
simplified the construction process.

GUI FOR BEAM PROFILE MO TIOR
The GUI for the beam profile monitor is used for

camera tuning and data recording, and for the image
viewer. The image data is recorded with synchronization
of the data acquisition system in order to compare the
image data with other beam diagnostic data (BPM, CT)
from a beam shot. For this purpose, a prototype GUI was
developed and implemented in the SCSS prototype
accelerator, as shown in Figure 4. The test results, which
are described below, confirmed that the system can be
applied to XFEL/SPring-8.

Camera tuning
The parameters for the CCD cameras were tuned for

exposure time and gain setting before measurements were
taken. Tuning can be performed for each camera by
selecting a camera using the Camera Link selectors.
Screens can be operated in order to see the beam profile
image. The tuned values for each camera are stored in the
DB and can be loaded at a later time as needed.
Background image data can be taken with internal trigger
events and utilized for the subtraction. The threshold
value for the image data can be also adjusted. After tuning,
it is possible to put a lock on the tune values to prevent
them from being modified.

Image viewer
Real-time beam profile images can be monitored on the

GUI. Beam statistics (center, width, and intensity) and
projection histograms can be obtained at the same time, as
shown in Figure 4. The monitor rate of 5 Hz is sufficient
to enable the beam condition to be evaluated by eye.
Beam statistics can be extracted using several slice
method options. In the experiment, we initially had
trouble seeing the beam shape due to its small size, and
therefore developed the GUI to provide expanded image
data if necessary. In addition to real-time images, image
data stored in the shared memory and image files can also
be selected for the monitor in the same manner as above.

 Data recording
Image data can be recorded on the GUI. The recording

number can be set in advance. To implement the image
data in the synchronized data acquisition system, the
image data are stored with tag numbers. Since the image
server only counts the RF trigger, we need to estimate the
offset value in order to extract the tag numbers. To do this,
we saved the count number of the RF trigger with a
timestamp and compared the data in terms of the
relationship between a tag number and the timestamp
stored in the DB. We confirmed this procedure with SCS
and a reasonable correlation was observed between the

BPM data and the beam position obtained from the beam
profile image.

Figure 4: GUI for beam profile monitor
implemented in SCSS prototype accelerator.

SUMMARY
A beam profile monitoring system was developed for

XFEL/SPring-8. In the system, CCD cameras are
connected by Camera Link and the beam profile image is
processed by an image server. The image data is recorded
with a synchronized data acquisition system in order to be
able to see the correlation with other beam diagnostic data
obtained from a beam shot. A prototype of the system was
tested with the SCSS prototype accelerator, and we
confirmed that the system can be applied to
XFEL/SPring-8. We are now in the process of
constructing the system for XFEL/SPring-8 in preparation
for the beam commissioning planned for March 2011.

REFERE CES
[1] T. Shintake et al., “Status report on Japanese XFEL

construction status at SPring-8”, Proc. of IPAC’10
(2010).

[2] H. Maesaka et al., “Beam diagnostic system of
XFEL/SPring-8”, Proc. of DIPAC’09 (2009).

[3] S. Inoue et al., “Beam monitor system controller for
XFEL-SPring-8”, Proc. of ICALEPCS’09 (2009).

[4] M. Yamaga, et al., “Event-Synchronized Acquisition
System for SPring-8 XFEL”, Proc. of ICALEPS’09
(2009).

[5] R. Tanaka et al., “The first operation of control
system at the SPring-8 storage ring”, Proc. of
ICALEPCS’97 (1997).

FRCOMA03 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

200

Diagnostics

EMBEDDED CONTROLLER FOR INDUSTRIAL CT TRIGGER MODULE
G. Gong, T.Xue, J.Li, Dept. of Engineering Physics, Tsinghua University, Beijing, China, 100084

Abstract
The industrial CT is used to generate a 3D image of

the inside of an object; it consists of an accelerator x-ray
source, detector array, readout electronics and control
system. A trigger module collects the position
information from three decoders installed all the 3
moving axis and generates trigger signal to the x-ray
source and readout electronics. The trigger module is
remotely accessed by the SCS (system control station) via
a fast Ethernet connection. The trigger module utilizes an
embedded controller board which consists of a PowerPC
controller running the Linux operation system, and a
FPGA connected to the PowerPC local bus as a
customized peripheral to carry out the trigger logic. With
different interface mezzanines and online firmware
upgrade, the trigger module has great flexibility to work
with different decoders readout electronics.

INTRODUCTION
Originally developed as a medical diagnostic tool, the

Computed Tomography (CT) can provide detailed internal
information of human body. This technology has also
been applied to non-destructive inspect objects that have
the indispensable requirement for safety and reliability
like high-speed railway train wheels or the air plane
turbine engineers. Without the constraints of patient
movements or dose restrictions that exist in the medical
CT, the industrial CT can achieve better resolution by
applying much stronger x-ray source and a much longer
exposal time [1].

The industrial CT consists of an x-rays tube, a rotary
table, the detector array, the readout electronics, the
trigger module and the data analyse and image
reconstruction computer.

A typical schematic block diagram of industrial CT is
given in figure 1.

 The object to be inspected is located on the rotary table
between the x-ray tube and the detector; the X-ray source
and the detector are relatively stationary and can move
together in the vertical direction along the object; the
rotary table can move in two directions and rotate. By
setting the relative motion between object and the x-
ray/detectors, the industrial CT can be configured to work
in direct radiography (DR) mode, second generation CT
mode or third-generation CT mode. The x-ray source is
working in pulse mode to reduce radiation dose and
prolong the life, the readout electronics are also work in
gated integration mode to suppress the detector dark noise.

TRIGGER MODULE STRUCTURE
As seen from Figure 1, the trigger module is one of the

key components in the industrial CT; it connects with all
the other control blocks and manipulates the working
flow of the equipment. The functional block structure of
the trigger module is shown in figure 2; a picture of the
module is given in figure 3.

Its main function blocks are provided by the embedded
control mezzanine which will be described later. A
description of all the other elements is given below:

Encoder input
In each axle of the drive motor, there is an absolute

rotary encoder installed. They have 16 resolution bits and
8 turns bits to cover the whole scan range. The position
and angle the object under inspection can be achieved
from the output of these encoders, which are normally in
gray code that has only one bit difference between any
two consecutive values.

The output of those encoders are converted into the
local electrical domain by isolation transistors, a 3 out of
3 low-pass filter removes the noise glitch signals that
couple into the cable, then the original Gray code are

Figure 1: typical schematic block diagram of industrial CT.

Figure 2: Functional block of trigger module.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan FRCOMA04

Control hardware and low-level software Embedded device control

201

converted into binary code for following process.
Two types of encoders are foreseen to be used: the

parallel type has a separate signal for each bit; the serial
type multiplexes all bits to be sent via a single signal
using the SSI protocol. A multi-channel low speed photo-
coupler mezzanine is used for parallel type while a single
channel high speed magnetic coupler mezzanine is used
for serial type. Both mezzanines have the same connector
definition thus can be easily replaced.

Trigger output
Depending on the working mode, when the specific

encoder outputs indicates that the object has reached a
pre-defined position, the trigger module sends a trigger to
activate the x-ray source, also sends a trigger to the
readout electronics to start integration and conversion
after a certain delay caused by the x-ray source latency
and detector response time.

The internal trigger logic is working in pipeline mode
that can deliver consecutive trigger pulses. Due the
limitation of motion system and the minimum trigger
width requirement from both x-ray source and readout
electronics, the internal trigger pulses are first modulated
and pre-scaled before send out. The time delay can be
adjusted independently in the step of 10ns for both the x-
ray source and readout electronics.

External input
In some product types there are special requirements

which need external inputs to the trigger module. For
example, in order to inspect the gap of air plane turbine
blades, the turbine must be in operation during the

inspection. In this case, the motion system is steady but
the object itself is rotating, thus the trigger module can be
synchronized by the signal from turbine gear control
system.

The external input can also used for the safety interlock
to avoid unexpected radiation.

DAQ interface
The image reconstruction algorithm needs to know the

geometrical position and angel for each acquired
tomography slice. Thus the trigger module provides a
DAQ interface and transfers the encoders’ data to the
readout electronics for each trigger. The DAQ electronics
packs this information together with detector data to from
a complete slice data frame.

The DAQ interface is based on a generally defined
high-speed differential serial links. If different DAQ
electronics are used in certain product types, an adapter
card is needed to convert the serial link to whatever the
DAQ electronics asked for.

SCS connection
To configure the parameters and to monitor the status

of the trigger module, like to set the work mode or to
check the trigger rate etc, the trigger module is connected
to the SCS (System Control Station) via the fast Ethernet
link provided by the embedded controller.

Switch
Few switches are used to set the encoder types, the

DAQ electronics types and other configurations.

Figure 3: The front panel of the trigger module for industrial CT

EMBEDDED CONTROL MEZZANINE
All the logic and control functions are carried out in

the embedded control mezzanine which consists of a
processor running the Linux operation system and a
FPGA device for the user specific firmware logic [2]. A
description of the major items of the mezzanine is given
below.

MPC5200 processor
The PowerPC processor from Freescale, MPC5200,

with the necessary peripheral, memories and interface
devices is the kernel of the embedded controller
mezzanine, it has the following features:

• Running at 400MHz
• with 256MB DDR-266 SDRAM

• 16MB NOR flash memory for Linux kernel, file
system and user application

• 100Mbps fast Ethernet connection
• Plenty of slow control interfaces like USB, CAN,

IIC, SPI.
• Support Linux 2.4 or 2.6 operation system
• boot loader supported

The Linux operation system provides complete support
for network protocol stack, file system, device drivers,
multi thread communication and many other useful
functional packages.

The process FPGA
The fast and real-time trigger process is implemented in

a FPGA device, the EP2C35 from Altera. It provides

FRCOMA04 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Control hardware and low-level software

202

Embedded device control

enough logic elements and distributed memory for the
industrial CT trigger logic.

The FPGA is configured in passive serial mode, the raw
binary configuration file is stored in the NOR flash. After
power up or reboot, the processor executes the u-boot
code to read the rbf file and configure the FPGA
accordingly. In this way, it is very easy to update the
FPGA logic by downloading a new rbf file to the Linux
file system via the Ethernet link.

Utilizing the local bus interface logic, The FPGA can
be accessed by the PowerPC processor to change the
configuration and check the internal information.

SCS client daemon program
A daemon service for the SCS communication is

automatically latched after the Linux operation system is
booted up. Two Ethernet sockets are created for sending
commands and reading information. The daemon program
has a simple command line interface that can be easily
accessed from any computer via telent, ssh or even simple
serial connection.
Self test and diagnostic feature

The embedded control mezzanine has several self test
features to check the system integrality and interface
connections.

• Each encoder signal is checked for the possible
break or short connection. This is very useful for
encoder cable and connection diagnostic.

• Self test of the trigger output and external input
circuit with a loop back cable.

• A pseudo random counter can be sent through the
DAQ interface to check the connection and the
transition error rate.

SUMMARY
We have built a universal trigger module for the

industrial CT product. The module collects the position
and angle information from encoders and performs a
trigger algorithm to deliver trigger signal back to the x-
ray source and readout electronics. An embedded control
mezzanine is utilized in the trigger module, which
consists of a FPGA device to perform the trigger logic
and a PowerPC processor running Linux operation system
to provide Ethernet connection, FPGA configuration, and
slow control. The design has shown great adaptability and
flexibility for the industrial CT application.

REFERENCES
[1] Hsieh, J., 2003, computed tomography: principles,

design, artifacts, and recent advances, SPIE Press
monograph, PM114.

[2] XUE Tao，GONG Guanghua，etc, The Design and
Realization of General High--Speed RAINl00B DAQ
Module Based on PowerPC MPC5200B Processor.
NUCLEAR ELECTRONICS & DETECTION
TECHNOLOGY, p186, 2010, 30(2)

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan FRCOMA04

Control hardware and low-level software Embedded device control

203

FRCOAA01 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

PRESENTATION ONLY

Accelerator Controls

204

Development and application frameworks

DATABASE-DRIVEN STATUS ANALYSIS IN BEAM OPERATION AT THE
HEIDELBERG ION THERAPY CENTER

K. Höppner∗, R. Cee, M. Galonska, T. Haberer, J. M. Mosthaf, A. Peters, S. Scheloske
Heidelberg Ionenstrahl-Therapie Centrum (HIT)

HIT Betriebs GmbH am Universitätsklinikum Heidelberg, Germany

Abstract

The HIT (Heidelberg Ion Therapy) center is the first ded-
icated European accelerator facility for cancer therapy us-
ing both carbon ions and protons, located at the university
hospital in Heidelberg. It provides three treatment rooms,
two with fixed beam exit (operational since Nov. 2009 and
Sept. 2010, respectively), and the first gantry worldwide
where the beam exit can be rotated by 360 degrees, cur-
rently under commissioning.

HIT uses a PC-based proprietary software system for ac-
celerator controls with an Oracle database for storing de-
vice parameters, beam history, error logging etc. Since
medical treatment of humans requires a high level of qual-
ity assurance, a detailed analysis of beam quality and er-
ror logs is needed. We wrote a series of database applica-
tions using Python to perform these tasks automatically and
create daily reports on beam statistics and parameters, ma-
chine status and errors occurred. Additionally, some graph-
ical applications on top of the commercial control system
help the scientists and operators in the beam commission-
ing of the new therapy treatment rooms and the gantry. We
will present these applications and show how they are used
at HIT.

INTRODUCTION

The HIT accelerator setup as shown in Fig. 1 consists of

• two ion sources, currently used for producing carbon
and proton ions (a third ion source is to be installed
soon)

• a linac accelerating the ions to 7 MeV/u,
• a synchrotron used to accelerate the ions to their fi-

nal energy as defined by the patient-specific treatment
plan, and

• four high energy beam transport lines providing the
beam to the horizontal treatment rooms, the rotatable
gantry or the additional station dedicated to quality as-
surance (QA), research and development.

Cancer treatment with different ion types and of different
patients in parallel requires a multiplexed beam operation
with the possibility to switch the ion source and beam des-
tination from pulse to pulse, every source/destination com-
bination identified by a virtual accelerator number. Beam
parameters can be chosen from a matrix of 255 energy val-
ues, up to 6 focus sizes and up to 15 different intensity val-

∗ klaus.hoeppner@med.uni-heidelberg.de

Figure 1: Overview of the HIT accelerator complex. (The
QA station is not shown.)

ues, denoted as MEFI parameters. For commissioning and
quality assurance, the beam is requested by the Accelerator
Control System (ACS) directly, while in therapy mode the
Therapy Control System (TCS) requests the beam charac-
teristics determined by the treatment plan via a communi-
cation interface to the ACS.

HIT uses an accelerator control system built by a Ger-
man company for automation and process control hard- and
software [1]. It runs on Windows servers, using Oracle 9i as
database backend. An upgrade to Oracle 11g is planned for
the end of this year. While changes to the GUIs of the con-
trol system require invention by the supplier, we can easily
access the tablespace used for accelerator controls in the
Oracle database. Thus, we were able to develop database
applications for various tasks in beam analysis and machine
commissioning.

APPLICATION ENVIRONMENT

For a fast development of database applications that
may easily be deployed on different systems (Windows
for client PCs in the accelerator control room, Linux for
a server that is mainly used for the web based electronic
logbook [2]), we decided for Python 2.6 [3] as a cross plat-
form OO scripting language. Python provides a variety of
builtin and 3rd party modules, including an Oracle mod-
ule [4] compliant to the Python Database API 2.0. Table 1

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan FRCOAA02

Accelerator Controls Development and application frameworks

205

Table 1: List of used Python modules

Module Purpose

cx_Oracle DB-API 2.0 compliant Python
wrapper for Oracle client
libraries

csv reading and writing comma
separated values

struct binary I/O
Datetime providing date/time funtions
wxPython 2.8 cross platform GUI library

lists the most important Python modules used for our ap-
plications.

Since the creation of many data plots is needed both in
beam analysis and commissioning, we use Gnuplot 4.4 as
graphical utility that can be used in batch mode to produce
plots from a list of plot commands automatically created by
a script.

While the applications used for commisioning are real-
ized as graphical applications on Windows client PCs using
the wxPython wrapper for the C++ wxWidgets library [5],
the apps for beam analysis exist either as Windows GUI
for interactive analysis tasks or as command line scripts
that are run by the cron demon on the Linux elog server to
create automatic reports on beam performance.

DATABASE TABLES

The accelerator control system stores any beam cycle
with its attributes in a database table:

• Unique cycle id as primary key,
• start and end time of cycle, and
• foreign keys to other tables, like beam mode, cycle

status and MEFI combination.

Cycle Data

cycle_id INT

start time TIMESTAMP

end time TIMESTAMP

mefi_id INT

mode_id INT

status_id INT

Indexes

MEFI List

id INT

energy INT

focus INT

intensity INT

gantry idx INT

source INT

destination INT

ion INT

Indexes

System Modes

id INT

name VARCHAR(10)

Indexes

Ion Types

id INT

name VARCHAR(10)

Indexes

Device List

id INT

name VARCHAR(45)

type_id INT

Indexes

Standard Measure Archiv

cycle_id INT

device_id INT

measurement_1_2 INT

Tech MVal A DECIMAL(8)

Tech MVal B DECIMAL(8)

Indexes

Device Types

id INT

name VARCHAR(8)

Indexes

Cycle Status

id INT

name VARCHAR(20)

Indexes

Figure 2: Simplified ER diagram of database tables.

Table 2: Analysis example: used beam request modes
Cycles: Beam Modes

All Carbon Protons

Cycles Cycles Particles Cycles Particles

Total 3744 3094 1.36×1011 650 1.53×1012

TCS 2369 1778 3.43×1010 591 1.47×1012

ACS/Exp 1257 1257 1.01×1011 0 0.00×1000

ACS/QS 118 59 1.47×1009 59 5.87×1010

Measured values—like beam position and size on grids
or currents of power supplies—are stored in a different ta-
ble using the combination of cycle id, device id and mea-
surement index (since some devices are measured twice per
cycle) as primary key.

A simplified of the database tables used for storing cycle
parameters and measured values is shown in Fig. 2.

BEAM ANALYSIS TOOLS

As mentioned before, reports on beam performance are
created by a Linux cron job, both on daily and weekly in-
tervall. The cycle data for the time intervall of interest are
read from the database and are analyzed by the following
criteria:

• Number of failed cycles with analysis of error mes-
sages,

• origin of beam request: Therapy Control System
(therapy) or Accelerator Control System (technical),

• ion types and destinations of beams,
• distribution of MEFI parameters in therapy mode: en-

ergy, focus and intensity.

We use HTML and LATEX as output formats, the former
for a quick overview on beam performance within the elec-
tronic logbook, the latter for printed reports. Additionally,
all beam parameters are archived as comma separated val-
ues since the maximum storage time in database is about
six weeks. Thus, a long term analysis (e. g., the number of
particles per year has to be checked against the limit in the
permission for operation) is possible. Table 2 gives an ex-
ample for the automatic analysis of the system modes that
requested the beam during a 24 h period, while Fig. 3 shows
the chronological distribution of virtual accelerators (i. e.
combinations of source and destination) during the same
period.

TOOLS FOR COMMSSIONING

While patient treatment at a horizontal station started in
2009, the rotatable gantry is still under commissioning [6].
The raster scan technology used at the treatment stations
requires a fixed beam position and focus size for all combi-
nations of beam parameters: energy (E), focus (F), inten-
sity (I) and in the case of the gantry also the rotation angle
(G).

During commissioning, the beam is optimized for a sub-
set of E, F , I and G combinations that are used as nodes

FRCOAA02 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

206

Development and application frameworks

Figure 3: Chronological analysis of cycles. Virtual Accel-
erators (VAcc) denote a unique pair of ion source and beam
destination.

for an interpolation of the full E ×F × I ×G MEFI space.
The quality of interpolation is checked by running various
beam sequences and measuring beam position and size on
a fluorescent target. In the past, these checks involved a
lot of manual work by the operator, i. e. exporting the data
sets as CSV file and importing them into a spreadsheet to
get a comparison to the reference values. With our new
database applications, we read both the measured values
for beam center and FWHM of the beam size and the refer-
ence values from the database and directly show the result
in a graphical window as table (see Fig. 4) or plot. The
GUI supports plotting slices from the E ×G data set, i. e. E
on x-axis for a chosen gantry angle G or vice versa. (For-
tunately, the set values for the magnets in the gantry don’t
depend on I.)

The GUI was developed with the aim of supporting the
usual tasks performed by the accelerator scientist during

Figure 4: Measured data set: Table view, colors denoting
the quality of beam center and focus size, respectively.

Figure 5: Relative deviation of horizontal beam size from
reference value as a function of gantry angle, where a slice
of the data set with energy index 120 is plotted.

commissioning. He can load the data sets from the se-
quence that was run most recently by a single click and eas-
ily chose the device of interest from a list of beam instru-
mentation devices like the fluorescent target or grids and
ionization chambers within the beamlines that were active
during the sequence. The standard limits for categorizing
the beam quality by colors are read from a configuration
file, but these limits may also be changed within the GUI.
Plots may be exported as PNG files what is heavily used
for adding plot to reports on the outcome of commission-
ing shifts. For further analysis, data sets can be exported as
CSV files.

Figure 5 shows the relative deviation of horizontal beam
size from the reference value as a function of gantry angle
for a fixed E index.

REFERENCES

[1] T. Fleck, R. Bär, J. Mosthaf, “Status of the Control Sys-
tem for the Therapy Facility HIT”, PCaPAC 2008, Ljubljana,
WEP021, p. 215, http://www.JACoW.org.

[2] J. Mosthaf, S. Hanke, S. Stumpf, A. Peters, “Using Word-
press as a Simple and Reliable Electronic Logbook for the
Heidelberg Ion-Beam Therapy”, ICALEPCS 2009, Kobe,
THP 111, p. 892, http://www.JACoW.org.

[3] Python Programming Language, http://www.python.org

[4] cx_Oracle Python extension, http://cx-oracle.
sourceforge.net/

[5] wxPython, a blending of the wxWidgets C++ class library,
http://www.wxpython.org

[6] M. Galonska, S. Scheloske, R. Cee, A. Gaffron, K. Höppner,
C.M. Kleffner, A. Peters, T. Haberer. “Commissioning of the
carbon beam gantry at the Heidelberg Ion Therapy (HIT) ac-
celerator”, 7th Workshop on Accelerator Operations (WAO),
Daejon, Korea, 2010.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan FRCOAA02

Accelerator Controls Development and application frameworks

207

QUARK: A DYNAMIC SDLC METHODOLOGY*
V. Vuppala, J. Vincent, NSCL, East Lansing, MI 48824, USA. #

Abstract
No single Software Development Life-cycle (SDLC)

methodology works well for all types of software
projects. The project may require a methodology that can
be very predictive to very adaptive based on
characteristics such as requirements volatility,
requirements clarity, project criticality, complexity, and
size. We describe a new iterative approach that can vary
from being more adaptive to being more predictive during
its iterations. The project characteristics change with
iterations, and the SDLC adjusts accordingly by changing
its parameters. We also discuss the results of using this
methodology for projects at National Superconducting
Cyclotron Laboratory (NSCL).

INTRODUCTION
Last few decades have seen an evolution of SDLC

models to address the software-crisis. Some of these are
Waterfall, Spiral, V-Process, RUP, and Agile among
others. Each model has its advantages and drawbacks, and
not all of them work for all types of software projects [1].
Some of them are predictable in terms of cost and
schedule but rigid in terms of requirements, whereas
others are adaptive to changes but less predictive.

In our organization there was a need to implement
processes to instil engineering rigor into software
development. The following were the requirements for the
process model:
• Provide transparency and predictability
• Work with limited customer availability
• Not overly bureaucratic, low overhead
• Support project management
• Support critical and non-critical systems
We evaluated various models but found them to be

inadequate for our needs. Many organizations, especially
in the software industry, choose from a set of SDLC
models based on the project characteristics. This was not
an option for us, as it required the project team to be
proficient in multiple software development
methodologies. As a result, we developed a set of
processes for software development and project
management, which resulted in the Quark Model (QM). It
is based on CMMI-Dev 1.2, PMBOK 4, and ISO 9000-3
standards.

Iterations
QM uses an iterative approach to software

development. QM iterations are parameterized, and
governed by the following parameters (QMPs):

• Duration: The duration, in terms of calendar time,
of the iteration

• Change Control: Specification of Major and Minor
scope changes

• Documentation: The detail and amount of
documentation

• Communication: Meeting intervals and duration
within project team, and with Customer

• Planning: Level of detail in planning
• Quality Controls: Frequency of Design and Code

reviews, and test methodology.
By adjusting the QMPs, for each iteration, the process

can be adjusted from being more adaptive to being more
predictive, and anywhere in-between.

Projects
Projects are central to the QM model. A software

project is a temporary endeavour undertaken to create a
unique software product [2]. It is characterized by certain
attributed (PCTs). Some of the PCTs that vary during the
execution of a project are:
• Project Team Requirement Clarity: Project team’s

understanding of the requirements
• Customer Requirement Clarity: Customer’s

understanding of the requirements
• Size: Size of the project in terms of cost, code

base, team size, etc
• Estimate Confidence Level: Accuracy of cost and

schedule estimates
• Technology Expertise: Familiarity with the

solution technology
Some of the PCTs remain relatively constant during the

course of the project, such as criticality of the project,
safety and security requirements, quality requirements,
timeline constraints, customer Availability, bespoke or
custom software, contract type, and team location.

QUARK MODEL
Figure 1 illustrates the Quark Process Model. The PCTs

Figure 1: Quark Process Model.

Email Addresses: {vuppala,vincent}@nscl.msu.edu
* This work is funded by National Science Foundation and Michigan
State University

FRCOAA03 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

System Engineering

208

Project management

and performance (of previous iteration) are used to
generate QMPs. The QMPs drive the next iteration, which
may result in the modification of the PCTs. Iterations are
useful to garner feedback but incur the overhead of test
and release management. Hence the number of iterations
should be optimized. The idea is to start with shorter
duration iterations, and move to longer iterations as the
clarity of requirements improves.

Development Process
Figure 2 depicts QM’s software development process.

It consists of the following major activities:
• Refine Requirements and Architecture
• Plan for iteration or release (PFI)
• Refine design and test plans
• Code, Refactor, Unit Test (CRUT)
• Release
• Deploy and Test
• Review
• Perform User Acceptance Test (UAT)
At the end of each iteration, modifications to the scope,

if any, are evaluated. If the change is minor, the next
iteration is initiated. However, if the change is major, a
Change Request is generated, and the Perform Change
Control (PCC) process is initiated. PCC is a Project
Management level process, and can result in iteration
through the Plan process (see below).

In QM, software product goes through release process
even for integration tests. This helps with testing of the
installation process. Not all releases are sent to the
Customer for UAT, and UAT can be proceed in parallel
with the execution of next iteration i.e. the next iteration
need not wait for feedback from UAT. Configuration
management is performed only for production releases.

Project Management
Project Management (PM) is an integral part of QM.

Figure 3 shows the QM project management processes

with their inputs and outputs. These processes are based
on PMBOK-4 [2] but are different especially the Initiate
process. Goals of the Initiate process are to define the
scope, develop the solution strategy, and estimate the cost.
The results of these activities are documented in
Preliminary Project Plan (PPP). PPP is refined in the
subsequent process, resulting in the Project Plan (PP). PP
also includes the schedule, budget, and plans for quality,
risk, communication, and procurement. The level of detail
in PP is dictated by the QPMs. The Execute process
consists of the following activities:
• Acquire and manage the project team
• Conduct procurements, if any
• Perform quality audits (design and code reviews)
• Develop Software using QM Development Process
The Monitor and Control process runs in parallel to

other activities. It periodically evaluates project
performance, procurement status, risks, and quality. It
reports project status to stakeholders. The last step in the
PM processes is to close the project. Some of the
activities here are:
• Obtain Customer feedback and acceptance
• Close procurement activities, if any
• Summarize Lessons Learned, project performance,

and customer feedback in Project Closure Report
(PCR)

• Archive project related files, and release the team

Project Performance
 QM uses Earned Value Management (EVM) [3] to

report project performance. EVM is part of the Project
Status Report and is measured periodically, generally
every week. A Cost Performance Index (CPI) of less than
1.0 indicates that the effort was underestimated, and the
project will be over budget if continued at the same pace.
A Schedule Performance Index (SPI = EV/PV) below 1.0
indicates that resources were under-allocated, and the
project will be delayed. Similarly a CPI of more than 1.0

Figure 2: Quark Software Development Processes.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan FRCOAA03

System Engineering Project management

209

indicates overestimation of effort, and an SPI of more
than 1.0 indicates over-allocation of resources. The CPI
and SPI values are used to adjust the QPMs for the next
iteration.

Documentation
The documents are refined iteratively. QPMs dictate the

level of documentation detail. The requirement
specifications and the design documents are modified to
be in sync with the CRUT activities of the last iteration.
This is essential for software maintenance. Some of the
required QM documents are Project Plan, Requirement
Specifications, Architecture Design, Installation Manual,
User Manual, Project Status Report (includes EVM) and
Project Closure Report.

IMPLEMENTATION
Based on QM, we have developed the process

infrastructure --policies, procedures, guidelines,
templates, tools, etc-- for the Electronics Department at
NSCL. The process infrastructure is hosted on a website.
The project management processes of QM have been
generalized, and are being used by non-software groups
within the Electronics Department. Currently there are
about 5 software development and 15 hardware
development projects using the QM processes. All new
projects in the department must adhere to the QM
processes.

We find that, for software projects, about 8-10% of
effort is spent on project management, and a similar
amount is spent on documentation. The Customers were
very satisfied (9 out of 9) with the ability to make
changes, the amount of resources they had to invest, and
project management. These results are preliminary; we

have not completed enough projects to give a definitive
result.

SHORTCOMINGS
QM is not the silver bullet, and has the following

drawbacks:
• Currently, measurement of QPMs and the

evaluation of PCTs, are subjective. This leaves
many decisions to project manager’s judgement.

• EVM requires projects to be base-lined, and may
not work well for very short iterations.

• It is a slightly heavy-weight model due to the
project management processes.

CONCLUSION
Even though QM was developed for our specific needs,

it is generic enough to be used by other organizations.
Most of the processes, roles, and policies have been
designed to be generic; only the guidelines and templates
are specific to our environment.

We are currently working on formulating objective
measurements of PCTs and QPMs. We are also looking
into modifying EVM to suit the Quark Model.

REFERENCES
[1] I. Sommerville, “Software Engineering”, 8th Edition,

Addison-Wesley, 2007.
[2] ANSI/PMI, “Project Management Book of

Knowledge 4th Edition”, 2008; http://www.pmi.org.
[3] U.S. Department of Energy, “Earned Value

Management”.
http://www.management.energy.gov/policy_guidance
/earned_value_management.htm

Figure 3: Quark Project Management Processes

FRCOAA03 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

System Engineering

210

Project management

EXPERIMENT BASED USER SOFTWARE

D.K. Chevrier, Canadian Light Source Inc., Saskatoon, Canada
M. Boots, Department of Physics and Engineering Physics,

University of Saskatchewan, Saskatoon, Canada

Abstract
The Spherical Grating Monochromator (SGM) and

Resonant Elastic-Inelastic Xray Scattering (REIXS)
beamlines are located at the Canadian Light Source
(CLS). A novel approach to software design has been
undertaken to simplify user interactions with these
beamlines. While the SGM and REIXS beamlines are
structurally different, the techniques available are quite
similar. The software is developed to provide seamless
acquisition of data, strong data management tools, and
easy transition between beamlines for end users. The end
result is software focussed on experiments rather than
software focussed on beamlines.

INTRODUCTION
One reality of modern science is that 90% of

“conducting an experiment” involves sitting at a computer
and interacting with software. Traditionally, the CLS has
found the resources to develop beamline software for each
new beamline. In principle, this is a good thing. However,
as the facility grows and matures there is a sense that the
software used at the beamlines needs to evolve as well. As
the vision of the CLS – “[t]o be a global leader and a
recognized centre of excellence in synchrotron science
and its applications” [1] – makes clear, the purpose of the
facility is to support science. As such, evolving our
software from beamline software to experiment software
seems like a way to better support science. It is important
to note that having beamline software is a natural part of
the software progression. When a beamline is under
development and commissioning, the essential first
requirement for software is to provide direct and detailed
control over all the separate components that make up the
beamline. The importance of this existing software should
not be questioned: there would be no way do any science,
nor to evolve user software to the next level, had this
critical work not been done.

With this background in mind, there are clear ways to
address long-standing user issues and improve the
experience and efficiency of conducting research at the
CLS. The evolution from beamline-centered software to
experiment-centered software is accompanied by an
evolution from engineering software to designing a user
experience. That is, there is a shift from the relatively
straight-forward task of stating that “software requires the
ability to do functions A, B, and C using widgets X, Y, and
Z” to a more holistic need for software that “makes it
quick and intuitive for users to do tasks A and B”. Because
of this change from concrete to descriptive requirements,
there are competing types of requirements to keep in
mind. In principle the requirements of functionality,
appearance, and connectivity will compete with each
other as each component is designed and developed. Thus,

every component within the software needs to work
properly, look appeasing to the user, and be able to
connect with other related tasks the user wishes to do.

In addition to a discussion about the concepts and ideas
of making an experiment centered software package for
users, some time must be devoted to exploring how this
can be best achieved from a programming standpoint.
While important, the examination of the programming
principles will take a backseat to the fundamental vision.

From the inception of this project, we sought to cast as
wide a net as possible to determine what users needed out
of experiment based software. A summer student was
given the task of shadowing users on a number of
different beamlines looking for features that were
exceptional, tasks that could be simplified, and common
irritations that users experienced. Additionally, a
workshop was conducted at the CLS Annual Users’
Meeting to act as a focus group for new software
concepts. A number of outstanding ideas were generated
and have been incorporated into the current design.

USER CONCEPTS
Would it not be wonderful if users could sit down and

just start doing experiments when they first get to the
beamline? Could it be made so software would help users
with their experiments – giving them guidance when
needed and remaining unobtrusive when not? Would it be
so bad if users only needed one software tool from the
beginning of their experiment until the end? The vision of
experiment based user software is to offer all of these
opportunities to users, regardless of their experience level
or background, in a way to allows them to concentrate on
the science they know. At the same time, the user
experience needs to be as pleasant and efficient as
possible. The question we must pose is whether it is
possible to achieve this and, if it is, how best can that be
done? Presuming it is possible, the software evolves from
controlling individual acquisitions and beamline actions
to managing the acquisition, the data, the beamline, and
the experimental process as a whole.

Acquisition Management
Currently, many users experience a steep learning curve

when they arrive at the CLS, the steepest part of which is
becoming familiar with the unique controls of the
beamline they are working on. A common experience
might be that of an expert user doing simple x-ray
absorption spectroscopy (XAS) at the SGM beamline.
Although this user likely knows as much as, if not more
than, the beamline staff about the scientific technique
itself they are still forced to learn how to conduct XAS on
the SGM beamline – which controls to set, how to setup a
scan, which detectors to look at, and so forth. Any time a

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan FRCOAA04

Experiment Data Acquisition/ Analysis Software Data acquisition

211

user changes to a new beamline, the learning curve is
repeated. On the other hand, if the technique was
explicitly supported in software, two general
consequences are expected. First, the lag time stemming
from that learning curve could be eliminated as the details
of how to coordinate an XAS scan could be programmed
for each beamline with no need for the user to get
involved if they do not wish to. Second, there would be a
seamless transition between the two beamlines; and, not
only would the user be able to start immediately, but they
would already be familiar with the software. Because of
these advantages, technique-based acquisition was one of
the first features implemented.

Just as the concept of focusing on the technique rather
than the beamline puts the science and the experiment
first, the controls for a scan can also be put in scientific
terms. Many beamlines will have a chart or a graph posted
allowing users to look up the correct set of beamline
parameters to achieve, for example, a desired flux and
resolution. After choosing the curve they wish to emulate,
it is up to the user to move the beamline components to
the correct positions. However, since the user was
principally concerned with balancing flux and resolution
in the first place, could the software not have allowed the
user to set these values directly? Furthermore, with
appropriate feedback, the user can vary the flux and
resolution settings to see what beamline configuration
best suits their needs, also giving them a means to learn
about the beamline details if they desire. Because of the
importance of placing science first, this particular feature
has already been implemented.

There are a great number of other concepts that would
place science at the forefront as well. Routine users at the
CLS are familiar with using a table or similar method to
manually define the range of an XAS scan. However, they
are primarily interested in scanning their samples for
particular elemental edges. While the notion of entirely
removing manual entry of a scan range would likely
disrupt users, the idea of featuring an interactive periodic
table is another way to allow the users to focus science.
Since many users need to consult a handbook for the edge
energy of the element they are interested in, our goal is to
remove the middle-man and allow users to do this direclty
in software. Furthermore, such features make it easier for
scientists outside of physics and chemistry to use the
CLS. This feature, while both important and achievable, is
still currently under development.

A key priority for the project as a whole, but with
particular focus on acquisition, has been to make the
common tasks a user does easy and intuitive. If a
beamline has a particular technique that is used more
often than the others, or a task that has to be repeated for
every technique, then these features have to be designed
solidly with great attention to detail and usability.

Finally, while the prior concepts have put emphasis on
single acquisitions, it is important to note that all users do
many scans while they are at a beamline. Sometimes these
scans are done individually with users making decisions
between each acquisition; in other circumstances users
wish to arrange to do one scan many times, or even to do
several different scans in sequence. The concept of a
workflow manager is provided to allow users to automate

tasks – whether scanning samples, moving between
samples, or changing the beamline configuration in some
other arbitrary manner. This feature has also been
implemented in the initial version.

Data Management
The users of the CLS are accustomed to a process of

collecting data; visualizing it in a cursory manner with a
limited set of analysis tools; and, finally, transferring all
of the raw data to their own computers and re-starting the
analysis procedure from scratch. Most beamlines at the
CLS offer no tools to assist them in either organizing or
logging their experiments before, during, or after
acquisition. Common experience shows that almost all
groups will record most of the same data by hand into
either a logbook or a word processing document. Since
this is the case, there is an obvious advantage to having
this information automatically collected for the user and
stored with their data. Furthermore, since there are no
existing tools to help organize data, the addition of a
database for scans has been implemented to make it easy
for users to sort their data how ever they see fit.

To make the database easy and intuitive to use, many
features have been implemented already. Chronological
sorting by experiment date and “run” – visit to the facility
– is automatic, but users can also create their own
experiments and sort their scans how ever they wish. This
supports users in long-term research conducted across
multiple visits to the facility, or across multiple beamlines.
A single scan can belong to multiple experiments, if the
user wishes, and scans from any run can be placed in any
experiment.

A number of familiar user interface paradigms have
been adapted to the database so that users can easily
identify, select, and organize their large data sets. List
views and detailed thumbnail views will soon be
implemented to provide additional context and
information -- such as beamline configuration -- for each
scan. A “logbook” view is also under development:
providing a convenient supplement or alternative to
paper-based logbooks, and reducing mistakes that users
can easily make when recording their experimental
process. Finally, drag-and-drop features give users the
opportunity to move scans to experiments as well as open
scans in the visualization window. Simple features, like
selecting multiple scans and collapsible sections, make it
even easier to view and move large sets of data.

Along with a database for managing the data users have
collected at the beamline, there is also the capability to
import data – whether from the CLS or else where. A
general structure exists for implementing a new import
plugin and, while some coding is required, existing
importers for older SGM data and data from Beamline 8
at the Advanced Light Source (ALS) will act as templates.
Finally, the importers are optimized to handle large data
sets so common users with normal amounts of
synchrotron data – the normal amount being “a lot” – can
easily see all their historical synchrotron data at once. Of
course, if data can be imported in a given format, the
software should be capable of exporting as well. One of
the short-term goals is to create a framework to do this

FRCOAA04 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

212

Data acquisition

efficiently. Not only will it allow users to export the data
they have collected at the CLS, it will also allow them to
combine data from many facilities and export it all in a
common format of their choosing.

Finally, since a user’s data should be accessible whether
or not they are at the beamline, the data management
segment of the software has been designed to be easily
separated from the rest of the acquisition tools so users
can take it home with them.

Beamline Management
While tools to manage acquisition and user data go a

long way to putting science first in the software, there is
still the issue that a number of tasks that need to be done
regularly on the beamline do not fit into either category. If
the aforementioned management systems work as
designed, then one of the few remaining barriers to
allowing the users to focus almost exclusively on science
will be these beamline-specific tasks.

A perfect example of such a task is dealing with
samples. Between transferring samples into or out of the
chamber, labeling them on the sample plate, and aligning
them in the beamline, managing samples can be a
substantial undertaking for new, and even experienced,
users. Because of these factors, sample management has
been given a prominent spot in the initial software design.
A central location has been designed to view the sample
plate in the beamline; move to and label samples of
interest; and, recall sample positions or reload old sample
plates. The added benefit of specifying the location of and
labeling samples is that the software can automatically
associate scans with samples. This association propagates
to the database, allowing the user to easily browse by the
sample names they have chosen.

In addition to managing samples for acquisition, there
is still the matter of transferring samples into and out of
the chamber. Like many other beamlines at the CLS, the
SGM beamline has a number of manual steps that must be
performed to do a sample transfer. Normally, users follow
a transfer manual but often have trouble flipping between
segments. We are currently testing a software guided
manual that allows users to select the transfer task they
need to do and gives as much feedback as the beamline
has to offer. Furthermore, additions in the near future will
add optional pictures, or possibly brief videos, to give
additional help as required.

Another beamline task that users often have difficulty
with is troubleshooting – particularly determining if the
beam’s signal strength is appropriate. Normally, users
need to ask the beamline scientist which controls to
monitor as well as what the feedback value should be.
Rather than having users memorize the expected current
for different configurations and since beamline
characterization has already been done for the flux and
resolution settings, another design slated for immediate
completion is visual feedback for the signal strength. This
simple explanation conjures the image of a cellphone’s
signal bar, which is exactly how we intend to implement
the visual interface.

PROGRAMMER CONCEPTS
Developing this software has presented many

challenges: once complexity and interconnectivity reach a
certain level programming, undoubtedly, becomes more
difficult. However, there has been little doubt that these
obstacles could not be overcome – with enough time and
code, almost anything seems possible on a modern
computer. That being said, we have placed a strong focus
on trying to the make the software as easy to code and
expand as possible. Some of the design features are
discussed in the final sections.

Code Design
As the intention has always been to make the software

work across beamlines, the design stresses the use of
decoupling and inheritance. The base concepts have been
to decouple associated ideas – scan configuration from
scan control for instance – and to make “dumb general
classes” which are inherited by “smarter specialized
classes”. Where possible, generalization has taken a
backseat to such decoupling and inheritance based on the
observation that generalized code tends to do everything
in a mediocre fashion while specialized code tends to do
one job very well. Our hope is that having the specialized
implementation classes completed for a set of beamlines
will act as a roadmap for programmers who wish to
extend capabilities to their own beamlines.

Code Management
As of September 24th, the project has grown to over

450 files and over 66000 lines of code. Thankfully, the Git
version control system has been used to manage the
source since the project began. In addition to working
well for the initial development period, Git will allow the
project to be opened up to a larger community for
development – we expect this to happen before the end of
2010. In addition to code management, Doxygen has been
used as the documentation suite. Git and Doxygen have
been integrated so that the online documentation manual
is automatically updated whenever code changes are
committed to the version control system.

CONCLUSION
While there remains substantial work to be done, the

experiment based user software project has come a long
way in a short period of time. By focussing on putting
science first and refining the user experience, we hope to
deliver software that users enjoy using both at the
beamline and when organizing their data at home. With
beta testing underway at the SGM beamline, the time is
ripe to open the project up to a larger community of
contributors, including other CLS staff, CLS users, and
collaborators from the larger synchrotron community.

REFERENCES
[1] Canadian Light Source Inc., Retrieved September

2010; http://www.lightsource.ca.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan FRCOAA04

Experiment Data Acquisition/ Analysis Software Data acquisition

213

DATA ACQUISITION FROM HETEROGENEOUS SENSOR NETWORKS:
 THE CASE OF NEPTUNE CANADA

THE WORLD'S LARGEST CABLED OCEAN OBSERVATORY
B. Pirenne, Ocean Networks Canada, University of Victoria, BC, Canada

Abstract
Ocean Sciences is at the crossroads: it is entering the

brave new world of "Big Science". The first of a new
generation of large facilities, the NEPTUNE Canada
cabled ocean observatory (www.neptunecanada.ca) will
be presented from the point of view of a sensor network
composed of hundreds of diverse instruments. The
challenges we faced will be reviewed, together with the
selected network design, data management and data
distribution approaches. Special emphasis will be placed
on the architecture of the system and on the more recent
developments and concepts used to help scientists in their
exploitation of the data. Finally a number of the early
discoveries made with the new facility will be briefly
described.

CABLED OCEAN OBSERVATORIES
Cabled ocean observatories are remote observing

systems that provide power and communication media to
a host of underwater instruments and sensors.
Consequently, the instruments are (almost) always on-line
and sufficient power is provided to the assets to ensure
uninterrupted data flow covering multiple environmental
parameters at high resolution in a four dimensional space.
Observatory systems considered here also provide a
significant ability to remotely manage their assets (ie,
provide a real-time command ability for specific
instruments). As an example, NEPTUNE Canada is
composed of a fully redundant 800-km cable loop and has
the ability to provide 9kW of power at up to 10 different
locations of scientific interest. Figure 1 shows the layout
of the NEPTUNE Canada observatory as well as its
currently defined 6 main locations, five of which are
instrumented. They reside at depth between 20 and 2700
meters.

Each of the locations is equipped with a “node” that
reduces the line voltage of 10 kVDC down to 400 VDC
and offer data connection points for up to 4 Gbps. In a
area covering up to a few km2, extension cables can be
run from the nodes to sites of interest, where platforms
with actual instruments and sensors are installed. The
platforms are typically composed of a “junction box”
whose role is to be the local “power bar”, providing plugs
for instrument power and communication, converting the
400 V input to 15, 24 or 48 Volts and translating the
instrument serial protocol to IP where necessary.

The instrumentation measures physical and chemical
parameters of the ocean (temperature, salinity, oxygen
content, CO2, currents speed and direction at different
depths, ...), but also has a number of more specific
devices such as underwater video cameras, electro-
magnetic experiments, vertical profilers that move

through the water column, small vehicles on track
(crawler), ... all of which would not be possible without
the availability of ample power and the ability to
command them in real-time. Figure 2 illustrates the
crawler, itself a device equipped with various chemical
and physical sensors, cameras, etc.

The entire system represent the extension of the
Internet under the Ocean, which was the vision put
forward by the proponents of such a system many years
ago.

Figure 1: Map of the area covered by NEPTUNE Canada
west of Vancouver Island. Please note the 800 km cable
loop and the various location of scientific interest, and

their "node".

Figure 2: A small tethered vehicle on track. It can roam
within 50 m from its central position. It is equipped with

various physical and chemical sensors and a camera.

FRCOAA05 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Data Networking and Web Technology

214

Web 2.0 and SOA

NETWORK TOPOLOGY
The network design implements the vision of an

Internet-based system, where every instrument and device
is either a leaf on the tree structure or a junction point
where multiple branches come together. The tree is of
variable and arbitrary depth and does not impose
conditions on its topology other than the fact that
communication to other parts of the network will always
propagate up the tree to the first common junction point
between any two devices.

Network Design Considerations and Choices
To minimise the cost of the system and to re-use

existing off-the-shelf technologies, the use of the Internet
Protocol (IP) is preferred as a transport mechanism for
data packets at the user/application level. Distances and
fibre technology may require another transport
mechanism at the lower level. So in this instance the ISO
layer 1 can be implemented using fibre optics, lasers and
repeaters, on which the SONET protocol will be running.
SONET packets will encapsulate layer 2 Ethernet (802.3)
packets and deliver them to their end-point thanks to this
standard's addressing system. At that level, a traditional
network is available for implementing data
communication, transport, routing, security, etc.

As indicated in figure 3 above, currently available
oceanographic science instruments are of a legacy design,
optimised for power consumption, internal recording and
short stays in the water. Their typical data communication
interface will be of the serial type (e.g., IEA RS-232, IEA
RS-422 or IEA RS-485). To implement the vision of the
observatory representing the extension of the Internet
underwater, it is necessary to convert the communication
protocol of the instrument to IP as close as possible to the
instrument. This can be done with simple devices,
typically called “terminal servers” enclosed either in the
original instrument, in a can on the cable linking it to a
junction box or within the junction box itself, often only
metres away from the instrument.

To be complete, the structure must also accommodate
multiple nodes at the same level, daisy-chained nodes;
many junction boxes per node and daisy-chained junction

boxes; instruments with piggy-back sensors; possibly
multiple shore stations at the root of a network and finally
also possibly several redundant data centres.

With a potential for thousands of individual instruments
and devices attached to the network, as well as for ease of
isolation of the system, it makes sense to select a non-
routable set of addresses, as allowed by the IP protocol. In
this case, given the complexity of the network, the
familiar 10.0.0.0 address space (RFC 1918) was selected.
It allows system managers and security analysts to only
worry about a few selected bridges between the outside
world and the private network, while allowing complete
freedom of address allocation and division into VLANs
etc. within the private domain.

Virtual Local Area Networks (VLAN – IEEE 802.1Q)
offer service segmentation and will be the tool of choice if
special categories of instruments need to be isolated from
one another for security reasons. VLANs are a layer 2
feature. There are multiple examples that can be
considered where VLANs use would make considerable
sense in the set up of an observatory. The example of a
separate management VLAN comes to mind where all
non-user accessible devices will be isolated in a special
management VLAN. Such devices will include all
network devices on the system (on land as well as
underwater) such as switches, routers, media converters,
serial-IP converters; but also the facility control
computers, precision clocks, etc.

Another VLAN that should be considered is one that
will host all instruments that are considered of “national
security concern” and would need to be especially
protected or have a different management policy.

Timing and time signal

There is a requirement that all clocks on the system be
synchronised with a master clock to ensure that all data
have the same time baseline to ensure the ability to cross-
correlate measurements from different sources. This
requirement can be satisfied in a number of ways:

convince instrument manufacturers to create
smart instrument interfaces to periodically re-
synchronise the internal instrument clock to the
observatory's using the NTP or PTP protocol
periodically and programmatically re-
synchronise the instrument clocks through shore-
based software
time-tag all arriving measurements at the shore
station.

Our current approach has been a combination of the first
and third option so far, as most of the instrumentation in
place is of a legacy, low-power, battery-operated type that
is optimised for durability of deployment.

Figure 3: The example of the NEPTUNE Canada network
design from a network topology point of view.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan FRCOAA05

Data Networking and Web Technology Web 2.0 and SOA

215

DATA ACQUISITION
 A part of the complexity of ocean sciences stems from
its plurality: an observatory such as NEPTUNE Canada is
serving many different communities with different goals
and relying on different types of instruments to achieve
their goals: physical oceanographers and chemists will
have sensors measuring directly phenomena of interest
while biologists will usually rely on proxies to derive
populations, species and abundances. This is reflected in
the instrumentation that has to be hosted on the system.

Typical instruments will therefore usually fall into one
of three categories from a data management point of
view:

Table 1: Categories of data streams and instruments

Category Instrument Data Format

Scalar CTDs, chemical
sensors, ...

Return lists of values
at regular intervals

Complex ADCP, still
cameras, ...

Return n-dimensional
matrices on a regular
basis

Stream Video cameras,
hydrophones

Return uninterrupted
streams of bytes

For the purpose of designing a software system to
manage the data flow coming from various devices
connected to the infrastructure, a simple approach can be
considered where all instruments are considered as
sending a stream of data.

At the highest level of abstraction, given the individual
duty cycles of each instrument, all categories will, from
time to time, return their measurements as a string of
bytes. A scalar instrument may be returning the values of
its sensors every second for months on end; a still camera
may be programmed to take a picture every day, a video
camera may be operated periodically and return a rapid
succession of images.

At the same time that each instrument can be
considered as a producer of a more or less continuous
stream of bytes, another way to look at the problem is to
see every new stream of bytes as an event that just
occurred and for which some specific processing is
required.

We assume here a combination of both approaches to
deal with the data flow: each instrument produces data in
an ad hoc, not necessarily predictable fashion. The
(a)synchronous occurrence of a new sequence of data will
trigger the execution of a pre-determined set of
processing stages, the last of which will be the archival of
said stream.

Science Data vs. Engineering Data

Clearly science data collection is the primary goal of
any ocean observatory. However, sensors and instruments
are attached to an infrastructure that allows them to
operate. The infrastructure typically provides power and
communication media to instruments and their hosted

sensors. So, unless the infrastructure is “somebody else's
problem” (such as is the case when all or part of the
infrastructure is contracted out to an external organisation,
e.g., satellite data transmission), and regulated through a
service level agreement (SLA), the organisation operating
the facility has to perform and support a potentially
significant number of activities having to do with the
oversight of the entire system.

The oversight of the system is usually a 24x7 task that
involves the monitoring of a large number of subsystems
dealing with power and power distribution as well as with
data transmission. All of those subsystems will contain
sensors that produce engineering data. The engineering
data has to be acquired, converted, verified and checked
against ceilings and thresholds on a permanent basis. Any
value identified as going beyond pre-set bounds will
generate alerts to be dealt with by observatory personnel.

In the example of NEPTUNE Canada, nodes and
junction boxes, distributing power and communication
facilities to science instruments, are equipped with a large
amount of electrical and environmental sensors. Such
sensors typically return data at the rate of one Hz. It is
estimated that the nodes and junction boxes currently
connected on the NEPTUNE Canada network will alone
produce about 8 TB of raw scalar data per year.

The data are however essential to help predict trends,
offer the ability to conduct forensic analysis to understand
why an element has failed, etc. An example where
trending will help observatory managers extend the
lifetime of the infrastructure and establish a priority list
for maintenance and recovery is the analysis of the
stability of the various ground leak current sensors.
Indeed, in seawater, a complete isolation of any power
conductor from seawater is essential to prevent corrosion.
A slowly increasing leak current (or reduced resistivity to
ground) is an indication that something is amiss
somewhere and could lead to accelerated corrosion of
subsystems. Switching them off early will increase the
lifetime of the rest of the system.

Tools have thus to be provided to engineers and “wet
plant” system managers to access, examine and react to
events happening underwater. The large number of
individual sensors that have to be monitored calls for
systems that will automatically and constantly verify that
all variables remain within their pre-set boundaries. A
network management system (NMS) will collect all alerts
that come from any subsystem (power or communication)
and draw the attention of system operators when they
occur. Automating such tasks is essential to limit the
operating costs of the infrastructure to a minimum and to
avoid the need for a 24x7 coverage of the operation of the
system, limiting the service requirement to having
personnel on call.

DATA ARCHIVE
Big Science infrastructure is typically designed and

built to last between 25 and 50 years: astronomical
observatories, large vessels, nuclear reactors, ... after
which they have to either be decommissioned or to

FRCOAA05 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Data Networking and Web Technology

216

Web 2.0 and SOA

undergo significant refurbishment, upgrades and
modernisation. The case of an ocean observatory is no
exception, but will likely have a life expectancy towards
the lower end of the range, mostly due to the lack of
experience with such system as well as the harsh and
corrosive environmental conditions to which the various
elements of the infrastructure are subjected.

Consequently, with funding hopefully in place to
support operations during the entire period, the software
systems used to acquire and store the data, monitor and
control the infrastructure should be sustained and provide
access to the sum total of data, information and
knowledge accumulated during the complete history of
the facility.

This is one of the fundamental requirements of the
software system in charge of the observatory and the
reason why the underwater infrastructure does not “just”
extend the Internet under the Ocean.

Table 2: Life expectancy of different elements of the
System

Element Longevity

High-level design, topology, external
environment

Lifetime

Hardware Architecture 10-15 years

Programming language 10+ years

Operating Systems 10 years

Storage Technology 8-10 years

Design of the main software elements 7 years

Operational computers 4-5 years

Storage system 3-5 years

The numbers in Table 2 above indicate the expected life
expectancy of the various elements of any large system
and illustrate that throughout its lifetime, constant
changes and update will have to take place to keep it
operating efficiently and economically as, as is often the
case, running an ageing infrastructure is more expensive
than a timely adoption of new technologies:

Old hardware will cost more and more to keep
running (e.g., keeping lots of small disk drives in
operation rather than a few large ones)
Old software implementation (legacy software)
may make it more difficult to find suitable
developers who know about the language, OS,
etc.
Novel instrumentation design or radically
different ways of using the underwater
infrastructure might lead to the impossibility to
continue operating with the assumptions that led
to the elaboration of the system to that date.
(Disruptive technologies).

OPERATION SUPPORT
A large underwater observatory has many physical

components. It also represents a facility that has to have a
long life time and will therefore host several generations
of caretakers. The complexity is so large that it is
impossible for a single person or small group of people to
remember everything about the system. Examples of
essential information abound: installation date and
position, date of recalibration of an instrument and the
formulae that have to be used for each of its sensors;
when the instrument was turned on and off and by
whom, ... This information is absolutely critical to
understand the data that any instrument produces.
Moreover, when dealing with a multiyear archive of data
from instruments with a complicated history,
understanding that history is necessary for data users to
have some trust in the data quality.

The considerations above imply that the amount of
information to be recorded, maintained and presented to
users about any component of the observatory is
tremendous and usually much more considerable than
what casual observers would imagine.

DATA ACCESS
Traditionally, data access consists in providing search

screens and a result download facility to users. A number
of files are downloaded and have to be individually
processed by the user, usually in isolation, with local
resources and locally developed or installed software.
This model no longer works for disciplines where the
amount of data is multiplied by a large number of orders
of magnitude while the amount of users remains constant.
The model that is currently emerging involves a shift
away from the search-download-process approach. The
concept of Web 2.0 with its participatory approach is
calling for something quite different where users use their
web browsers to perform all activities related to the
scientific process. Some of the differences are as follows:

On-line collaborations with remote colleagues
and students are the norm. Data volumes are so
large and so multi-disciplinary that it is often
necessary to seek out the support and advice of
colleagues in different disciplines to support a
particular project execution. The new
collaborators may not be co-located and may
work at different times but a “work space” is
available for all members of a work group to
perform all tasks from data search and
examination all the way to the redaction of the
final paper.
Searching and sifting through data is done using
other criteria and sources of information than
previously available such as annotations
provided by “crowdsourcing” activities and data
from other observatories using interoperability
concepts.
There is little need to download data: data
processing facilities on the Grid or in a computer

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan FRCOAA05

Data Networking and Web Technology Web 2.0 and SOA

217

Cloud are available through privileged links with
the archive. Data processing software libraries
and templates are available to run against the
data. Instead of downloading data, the new
concept encourages the upload of new code to
run on the server. New code can first be tested,
refined and maybe later made available for all to
use.
With compute facilities becoming utilities, with
storage capacity available on the network, there
is no need to spend money and time maintaining
one's own infrastructure. Shared infrastructures
are always available at the other end of the high-
capacity network.

SOME OF THE FIRST RESULTS
There is no space on such a summary paper to list,
explain and illustrate the findings, discoveries and new
knowledge acquired through a novel facility such as
NEPTUNE Canada. So the author will refer the news
posted on the observatory's home page for up-to-date
information. The prospects for new findings are very
important as such a system has never been built before, as
the spacial, time resolution and accuracy of the

measurements are increased by several orders of
magnitude and that NEPTUNE Canada is supporting no
less than five distinct science disciplines (ocean physics,
chemistry, biology, plate tectonics and computer science
and engineering). Moreover, it is opening the prospect of
multi-disciplinary science discoveries.

REFERENCES
[1] C.R. Barnes, M.M.R. Best, and B. Pirenne. NEPTUNE

Canada cabled ocean observatory: Final installation and
initial results. APEGBC Innovation, March/April issue, pp.
30-33, in press.

[2] M.M.R. Best, C.R. Barnes, B.D. Bornhold, F.R. Johnson, P.
Phibbs and B. Pirenne. Live data from the coast to the
deep sea: NEPTUNE Canada. AGU Ocean Sciences
Conference, Portland, February 2010.

[3] C. R. Barnes, M. M. R. Best, F. R. Johnson, P. Phibbs and
B. Pirenne. The NEPTUNE Canada Project: installing the
world’s first regional cabled ocean observatory. Chapter in
book on Ocean observatories, P. Favali et al. (Eds.), Praxis
Publishers, in press.

[4] B. Pirenne. Data Management and Archiving System for
seafloor observatories: acquisition, archival, analysis,
interoperability. Chapter in book on Ocean observatories, P.
Favali et al. (Eds.), Praxis Publishers, in press.

FRCOAA05 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Data Networking and Web Technology

218

Web 2.0 and SOA

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan FRTA01

PRESENTATION ONLY

Accelerator Controls Development and application frameworks

219

FRTA02 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

PRESENTATION ONLY

Accelerator Controls

220

Development and application frameworks

Proceedings PCaPAC 2010 – Saskatoon, Saskatchewan

List of Authors
Italic papercodes indicate primary authors

— A —
Allen, C. K. WEPL029
Andre, C. A. WEPL009
Andrighetto, A. WEPL020
Arruat, M. WECOAA03
Asnicar, F. WEPL018
Ayvazyan, V. WEPL014, THPL012

— B —
Baer, R. FRCOMA01
Bardorfer, A. WEPL032
Bassato, G. WEPL020
Bauer, M. WECOMA01, THCOAA02, THPL007
Beltram, T. WEPL032
Berg, R. THPL005
Bergstrom, J. C. WEPL004
Black, G. THPL005
Bobnar, J. WEPL028, WEPL029
Boots, M. J. FRCOAA04
Bräuning, H. WEPL009, WEPL010
Britton, C. THPL010

— C —
Cao, Y. THPL004
Carter, L. M. THPL008
Carwardine, J. WEPL015
Catani, L. THPL017
Cee, R. FRCOAA02
Cerff, K. THPL014, THPL015
Cerna, M. D. THPL024
Chabot, D. WECOMA02
Chang, Y.-T. THPL022
Chen, J. THPL022, THPL023
Chen, X. B. THPL006, THPL004
Chen, Y. K. THPL022, THPL023
Cheng, Y.-S. THPL022
Chevrier, D. K. FRCOAA04
Chiu, P. C. THPL023
Chu, P. WEPL037
Cobb, T. M. THCOAA04
Conforto, N. WEPL020
Corbett, W. J. WEPL035, THRA01
Costa, L. WEPL020
Cota, E. G. FRCOMA01
Cubbon, G. THPL010
Czuba, K. THPL012

— D —
Dedic, J. FRIOA01
Denis, J. F. WEPL006
Di Maio, F. FRCOAA01
DiCastro, M. THCOMA01

Du, Q. WEPL025
Dubrovskiy, A. THPL020
Duffy, A. M. THCOMA03
Duval, P. WECOAA02, WEPL016, WEPL028,

THCOMA01, THPL013

— F —
Farnsworth, R. I. THCOAA03
Fernandez, L. WECOAA03
Fiedler, S. THCOMA01, THPL013
Finlay, C. THPL010
Fischer, R. THPL024
Fitzek, J. WEPL008
Fleck, T. WEPL011, THPL011, FRCOMA01
Fodje, M. N. THPL005
Fuller, M. THCOAA02, THPL007
Furukawa, K. THPL018
Furukawa, Y. WEPL021

— G —
Gaio, G. WEPL018
Galonska, M. FRCOAA02
Geng, Z. WEPL014, THPL012
Giacchini, M. G. WEPL020
Giannone, L. THPL024
Gillette, P. WEPL006
Gillingham, I. J. THCOAA04
Giovannini, L. WEPL020
Gong, G. H. FRCOMA04
Gong, H. WEPL025
Gougnaud, F. WEPL006
Gournay, J.-F. WEPL006
Graehling, P. G. WEPL006
Grant, A. K. THCOAA03
Grecki, M. K. THPL012
Grochulski, P. THPL005
Grygiel, G. WEPL012
Guan, X. WEPL025

— H —
Haberer, Th. FRCOAA02
Hamadyk, P. THCOAA04
Haquin, C. H. WEPL006
Haseitl, R. WEPL009, WEPL010
Hatje, J. WERA01
Hauser, N. THCOAA03
Hensler, O. WEPL014, THPL012
Herb, S. W. WECOAA02
Heron, M. T. THCOAA04
Höppner, K. FRCOAA02
Hoffmann, M. THPL012
Hoffmann, M. G. THPL012

List of Authors 221

Proceedings PCaPAC 2010 – Saskatoon, Saskatchewan

Hoffmann, T. WEPL009, WEPL010
Hormes, J. WETA01
Hosselet, J. H. WEPL006
Hsu, K. T. THPL022, THPL023
Hu, K. H. THPL022, THPL023
Hu, S. WEPL004

— I —

Igarashi, R. THPL009
Inoue, S. I. FRCOMA03
Iwasaki, Y. WEPL023

— J —

Jackson, G. R. WEPL002
Jansa, G. WEPL010
Janzen, K. THPL005
Jezynski, T. THPL012

— K —

Kammering, R. WEPL015
Kaneyasu, T. WEPL023
Kenda, M. WEPL032
Kline, D. M. WECOAA04
Kocevar, H. WEPL032
Kocharyan, V. FRCOMA02
Koda, S. WEPL023
Koprek, W. WEPL014, THPL012
Kosuge, T. WEPL022
Kreider, M. WEPL011, FRCOMA01
Kriznar, I. WEPL028
Kroflic, Z. WEPL031
Kube, G. WEPL028
Kuo, C. H. THPL022, THPL023
Kusterle, T. WEPL028

— L —

Lackner, K. THPL024
Laird, R. WEPL033
Lay, S. C. THCOAA04
Lecorche, E. WEPL006
Lemaitre, E. WEPL006
Lenkszus, F. WEPL033
Li, J. THPL006
Li, J. M. WEPL025
Liu, D. THCOAA02
Locci, F. WECOAA03
Lonsing, R. WEPL009
Lucas Rodriguez, F. THPL021
Ludwig, F. THPL012
Lussignol, Y. WEPL006

— M —

Maazouzi, C. WEPL006
Malitsky, N. WECOMA03

Matias, E. WETA02, THCOAA02, THPL006,
THPL007, THPL010, FRTA01

Matsumoto, T. FRCOMA03
Mattei, P. WEPL006
Matthies, S. WECOAA03
Maxwell, D. G. THCOAA02, THPL007, THPL008
McCarthy, P. J. THPL024
McIntryre, S. WECOMA01, THCOAA02, THPL007
Medrano, D. THCOAA02, THPL008
Melkumyan, D. WEPL016, WEPL028
Mercado, R. THCOAA04
Mexner, W. THPL014, THPL015
Meyer, J. M. WECOAA01
Mooney, T. THCOMA02
Mosthaf, J. M. FRCOAA02
Mueller, R. WEPL008

— N —

Nagle, J. THPL024
Nigorikawa, K. N. WEPL022

— O —

Obina, T. THPL018
Odagiri, J.-I. THPL018
Ondreka, D. WEPL008
Otake, Y. FRCOMA03
Owen, A. WEPL002

— P —

Payne, C. G. WECOMA02
Pazos, A. THCOMA01, THPL013
Pearson, M. R. THCOAA04
Peggs, S. WEPL029, THPL026
Pelaia, T. A. WEPL029
Peters, A. FRCOAA02
Pfeiffer, D. WECOAA03
Philippe, L. WEPL006
Pirenne, B. FRCOAA05
Pivetta, L. WEPL018
Plesko, M. FRIOA01
Prados, C. THPL011, FRCOMA01

— Q —

Qin, J. WECOMA01, THCOAA02
Quock, D. E.R. THCOAA01

— R —

Ravindran, M. M. THPL024
Rees, N. P. THCOAA04
Rehlich, K. FRCOMA02, THPL012
Rescic, M. WEPL031
Rhyder, A. WEPL002, THCOAA03
Ristau, U. R. THCOMA01
Ross, S. K. WECOAA04

222 List of Authors

Proceedings PCaPAC 2010 – Saskatoon, Saskatchewan

Ruan, Q. THPL024
Rybnikov, V. FRCOMA02

— S —

Saavedra, D. G. WECOAA03
Sabjan, R. FRIOA01
Satogata, T. WEPL029, THPL026
Satoh, M. THPL018
Scalamera, G. WEPL018
Scheloske, S. FRCOAA02
Schlarb, H. WEPL014, THPL012
Schmidt, Ch. WEPL014, THPL012
Schmidt, D. THPL024
Schmitz, R. WECOMA04
Schultz, K. THIOA01
Schwinn, A. WECOAA03
Serrano, J. FRCOMA01
Shang, H. WEPL033
Shao, B. B. WEPL025
Shen, G. B. WEPL037
Simpson, T. W. THPL007
Simrock, S. THPL012
Sombrowski, E. FRCOMA02
Spangenberg, T. THPL014, THPL015

— T —

Takabayashi, Y. WEPL023
Takamiya, K. THCOMA04
Tanigaki, M. THCOMA04
Tanner, R. THPL010
Touchard, D. T. WEPL006
Trahern, C. G. WEPL029, THPL026
Truchard, J. T. THIOA01
Trycz, M. I. THPL017

— V —

Vasquez, J. A. WEPL020
Veeramani, A. THPL024

Verstovsek, I. THPL026, FRIOA01
Vincent, J. J. FRCOAA03
Vogt, J. M. WEPL004
Vrancic, A. THPL024
Vuppala, V. FRCOAA03

— W —
Wallander, A. FRCOAA01
Wang, C. WEPL003
Wang, C. H. FRTA02
Wang, C.-J. THPL022
Wang, Z. WEPL003
Weddig, H. C. THPL012
Wei, J. WEPL025
Weisse, S. WEPL016, WEPL028
Wenzel, L. THPL024
Wilgen, J. WEPL028
Wilksen, T. FRCOMA02
Wlostowski, T. FRCOMA01
Wright, G. THPL009, FRRA01
Wu, C. Y. THPL022
Wu, J. WEPL037

— X —
Xu, S. WEPL033
Xue, T. FRCOMA04

— Y —
Yamashita, A. FRCOMA03
Yan, Y. WEPL003

— Z —
Zagar, K. THPL026, FRIOA01, FRCOAA01
Zhang, H. THPL010
Zhang, W. THPL006
Zhao, L. WEPL003
Zhu, Y. WEPL003

List of Authors 223

Proceedings PCaPAC 2010 – Saskatoon, Saskatchewan

224 List of Authors

Proceedings PCaPAC 2010 – Saskatoon, Saskatchewan

Institutes List

ANL
Argonne
• Carwardine, J.
• Kline, D. M.
• Laird, R.
• Lenkszus, F.
• Mooney, T.
• Quock, D. E.R.
• Ross, S. K.
• Shang, H.
• Xu, S.

ANSTO
Menai
• Hauser, N.

ASCo
Clayton, Victoria
• Farnsworth, R. I.
• Grant, A. K.
• Jackson, G. R.
• Owen, A.
• Rhyder, A.

BNL
Upton, Long Island, New York
• Chabot, D.
• Malitsky, N.
• Satogata, T.
• Shen, G. B.

CEA
Gif-sur-Yvette
• Denis, J. F.
• Gougnaud, F.
• Gournay, J.-F.
• Lussignol, Y.
• Mattei, P.

CERN
Geneva
• Arruat, M.
• Cota, E. G.
• Dubrovskiy, A.
• Fernandez, L.
• Locci, F.
• Lucas Rodriguez, F.
• Saavedra, D. G.
• Serrano, J.
•Wlostowski, T.

CLS
Saskatoon, Saskatchewan
• Berg, R.

• Bergstrom, J. C.
• Black, G.
• Boots, M. J.
• Britton, C.
• Carter, L. M.
• Chen, X. B.
• Chevrier, D. K.
• Cubbon, G.
• Duffy, A. M.
• Finlay, C.
• Fodje, M. N.
• Grochulski, P.
• Hormes, J.
• Hu, S.
• Igarashi, R.
• Janzen, K.
• Li, J.
• Liu, D.
• Matias, E.
• Maxwell, D. G.
• Medrano, D.
• Payne, C. G.
• Tanner, R.
• Vogt, J. M.
•Wright, G.
• Zhang, H.
• Zhang, W.

Concordia University
Montreal
•Wang, C.
•Wang, Z.
• Yan, Y.
• Zhao, L.
• Zhu, Y.

Cosylab
Ljubljana
• Bobnar, J.
• Dedic, J.
• Jansa, G.
• Kriznar, I.
• Kusterle, T.
• Plesko, M.
• Rescic, M.
• Sabjan, R.
• Verstovsek, I.
• Zagar, K.

DESY Zeuthen
Zeuthen
• Melkumyan, D.
•Weisse, S.

DESY
Hamburg

Institutes List 225

Proceedings PCaPAC 2010 – Saskatoon, Saskatchewan

• Ayvazyan, V.
• Duval, P.
• Geng, Z.
• Grecki, M. K.
• Grygiel, G.
• Hatje, J.
• Hensler, O.
• Herb, S. W.
• Hoffmann, M.
• Hoffmann, M. G.
• Jezynski, T.
• Kammering, R.
• Kocharyan, V.
• Koprek, W.
• Kube, G.
• Ludwig, F.
• Rehlich, K.
• Rybnikov, V.
• Schlarb, H.
• Schmidt, Ch.
• Schmitz, R.
• Simrock, S.
• Sombrowski, E.
•Weddig, H. C.
•Wilgen, J.
•Wilksen, T.

Diamond
Oxfordshire
• Cobb, T. M.
• Gillingham, I. J.
• Hamadyk, P.
• Heron, M. T.
• Lay, S. C.
• Mercado, R.
• Pearson, M. R.
• Rees, N. P.

ELETTRA
Basovizza
• Asnicar, F.
• Gaio, G.
• Pivetta, L.
• Scalamera, G.

EMBL
Hamburg
• DiCastro, M.
• Fiedler, S.
• Pazos, A.
• Ristau, U. R.

ESRF
Grenoble
• Meyer, J. M.

ESS-S
Lund

• Peggs, S.
• Trahern, C. G.

GANIL
Caen
• Gillette, P.
• Haquin, C. H.
• Lecorche, E.
• Lemaitre, E.
• Philippe, L.
• Touchard, D. T.

GSI
Darmstadt
• Andre, C. A.
• Baer, R.
• Bräuning, H.
• Fitzek, J.
• Fleck, T.
• Haseitl, R.
• Hoffmann, T.
• Kreider, M.
• Lonsing, R.
• Matthies, S.
• Mueller, R.
• Ondreka, D.
• Pfeiffer, D.
• Prados, C.
• Schwinn, A.

HIT
Heidelberg
• Cee, R.
• Galonska, M.
• Haberer, Th.
• Höppner, K.
• Mosthaf, J. M.
• Peters, A.
• Scheloske, S.

I-Tech
Solkan
• Bardorfer, A.
• Beltram, T.
• Kenda, M.
• Kocevar, H.

IHEP Beijing
Beijing
•Wang, C. H.

INFN-Roma II
Roma
• Catani, L.
• Trycz, M. I.

226 Institutes List

Proceedings PCaPAC 2010 – Saskatoon, Saskatchewan

INFN/LNL
Legnaro (PD)
• Andrighetto, A.
• Bassato, G.
• Conforto, N.
• Costa, L.
• Giacchini, M. G.
• Giovannini, L.
• Vasquez, J. A.

IPHC
Strasbourg Cedex 2
• Graehling, P. G.
• Hosselet, J. H.
• Maazouzi, C.

ITER
St Paul lez Durance
• Di Maio, F.
•Wallander, A.

JASRI/SPring-8
Hyogo-ken
• Furukawa, Y.
• Matsumoto, T.
• Yamashita, A.

KEK
Ibaraki
• Furukawa, K.
• Kosuge, T.
• Nigorikawa, K. N.
• Obina, T.
• Odagiri, J.-I.
• Satoh, M.

KURRI
Osaka
• Takamiya, K.
• Tanigaki, M.

Karlsruhe Institute of Technology (KIT)
Karlsruhe
• Cerff, K.
• Mexner, W.
• Spangenberg, T.

MPI/IPP
Garching
• Fischer, R.
• Giannone, L.
• Lackner, K.

NSCL
East Lansing, Michigan

• Vincent, J. J.
• Vuppala, V.

NSRRC
Hsinchu
• Chang, Y.-T.
• Chen, J.
• Chen, Y. K.
• Cheng, Y.-S.
• Chiu, P. C.
• Hsu, K. T.
• Hu, K. H.
• Kuo, C. H.
•Wang, C.-J.
•Wu, C. Y.

National Instruments
Austin
• Cerna, M. D.
• Nagle, J.
• Ravindran, M. M.
• Ruan, Q.
• Schmidt, D.
• Schultz, K.
• Truchard, J. T.
• Veeramani, A.
• Vrancic, A.
•Wenzel, L.

National University of Ireland
University College Cork
• McCarthy, P. J.

ONC
Victoria
• Pirenne, B.

ORNL
Oak Ridge, Tennessee
• Allen, C. K.
• Pelaia, T. A.

RIKEN/SPring-8
Hyogo
• Otake, Y.

SAGA
Tosu
• Iwasaki, Y.
• Kaneyasu, T.
• Koda, S.
• Takabayashi, Y.

SES
Hyogo-pref.
• Inoue, S. I.

Institutes List 227

Proceedings PCaPAC 2010 – Saskatoon, Saskatchewan

SLAC
Menlo Park, California
• Chu, P.
• Corbett, W. J.
•Wu, J.

TUB
Beijing
• Du, Q.
• Gong, H.
• Guan, X.
• Li, J. M.
•Wei, J.

Tsinghua University
Beijing
• Gong, G. H.
• Shao, B. B.
• Xue, T.

UWO
London, Ontario
• Bauer, M.
• Fuller, M.
• McIntryre, S.
• Qin, J.
• Simpson, T. W.

University of Ljubljana, Faculty of Electrical Engineering
Ljubljana
• Kroflic, Z.

University of Saskatchewan
Saskatoon
• Cao, Y.
• Chen, X. B.

Warsaw University of Technology, Institute of Electronic
Systems
Warsaw
• Czuba, K.

228 Institutes List

Proceedings PCaPAC 2010 – Saskatoon, Saskatchewan

Participants List

Alan, Duffy
Canadian Light Source Inc.
Canada

Ayvazyan, Valeri
DESY
Germany

Baribeau, Laurier
Canadian Light Source Inc.
Canada

Bassato, Giorgio
INFN - LNL
Italy

Beavregard, David
Canadian Light Source Inc.
Canada

Berg, Russ
Canadian Light Source Inc.
Canada

Bertwistle, Drew
Canadian Light Source Inc.
Canada

Bilbrough, Grant
Canadian light Source
Canada

Black, Gillian
Canadian Light Source
Canada

Bolibruch, Nicholas
Canadian Light Source Inc.
Canada

Boots, Mark
U of S Dept. of Physics
Canada

Britton, Carmen
Canadian Light Source Inc.
Canada

Cao, Yu
Mechanical Engineering
Canada

Catani,
Lucian
Italy

Cerff, Karlheinz
ANKA-KIT
Germany

Chen, Weifeng
Canadian Light Source Inc.
Canada

Chevrier, David
Canadian Light Source Inc.
Canada

Corbett, Jeff
SLAC
USA

Dallin, Les
Canadian Light Source Inc.
Canada

Dotton, Wade
Canadian Light Source
Canada

Du, Qiang
CPHS
China

Dubrovskiy, Alexey
CERN
Switzerland

Duffy, Alan
Canadian Light Source Inc.
Canada

Duval, Philip
DESY
Germany

Finlay, Carl
Canadian Light Source Inc.
Canada

Fitzek, Jutta
GSI
Germany

Fodie, Michel
Canadian Light Source Inc.
Canada

Furukawa, Yukito
SPring-8/JASRI
Japan

Gillingham, Ian
Diamond Light Source Ltd
Great Britain

Gong, Guanghua
Nuclear System Control
and Application Lab
China

Grygiel, Gerhard
DESY
Germany

Hagen, Ulrich
Siemens AG
Healthcare Technology and Concepts
Germany

Haseitl, Rainer
GSI
Germany

Hatje, Jan
DESY Hamburg
Germany

Hensler, Olaf
DESY
Germany

Hoffmann, Tobias
GSI
Germany

Participants List 229

Proceedings PCaPAC 2010 – Saskatoon, Saskatchewan

Hu, Song
Canadian Light Source Inc.
Canada

Höppner, Klaus
Heidelberg Ion Therapy Center
Germany

Igarashi, Ru
Canadian Light Source Inc.
Canada

Iwasaki, Yositaka
SAGA Light Source
Japan

Jansen, Carl
Canadian Light Source Inc.
Canada

Janzen, Kathryn
Canadian Light Source Inc.
Canada

Johnson, Terry
Canadian Light Source Inc.
Canada

Kammering, Raimund
DESY
Germany

Kline, David
Argonne National Laboratory
USA

Ko, Yung-Chen
National Synchrotron Radiation
Research Center
Taiwan

Kosuge, Takashi
High Energy Accelerator Research
Organization
Japan

Kreider, Mathias
GSI
Germany

Kroflic, Ziga
Faculty of Electrical Engineering,
University of Ljubljana
Slovenia

Larsson, Krister
MAX-lab
Sweden

Li, Mark
Canadian Light Source Inc.
Canada

Liu, Dong
Canadian Light Source Inc.
Canada

Malitsky, Nikolay
Brookhaun National
USA

Matias, Elder
Canadian Light Source Inc.
Canada

Matsumoto, Takahiro
JASRI/SPring-8
Japan

Maxwell, Dylan
Canadian Light Source Inc.
Canada

McKibben, Mike
Canadian Light Source Inc.
Canada

Medrano, Diony
Canadian Light Source Inc.
Canada

Mercado, Ronaldo
Diamond Light Source Ltd
Great Britain

Mexner, Wolfgang
KIT ISS/ANKA
Germany

Meyer, Jens
ESRF
France

Miller, Denise
Canadian Light Source Inc.
Canada

Mooney, Tim
Argonne National Laboratory
USA

Nussbaumer, Rod
TRIUMF
Canada

O’James, Hea
Diamond Light Source Ltd
Great Britain

Payne, Chris
Canadian Light Source Inc.
Canada

Pazos, Andres
European Molecular Biology Laboratory
Germany

Persson, Andreas
MAX-lab
Sweden

Pirenne, Benoit
NEPTUNE - Canada
Canada

Pivetta, Lorenzo
Elettra
Italy

Portmann, Gregory
Lawrence Berkely National Laboratory
USA

Power, Maria
Argonne National Laboratory
USA

Prados, Cesar
GSI
Germany

Qin, Jinhui
University of Western Ontario
Canada

230 Participants List

Proceedings PCaPAC 2010 – Saskatoon, Saskatchewan

Quock, Deborah
Argonne National Laboratory
USA

Rhyder, Andrew
Australian Synchrotron
Australia

Richards, Jane
TRIUMF
Canada

Ristau, Uwe
European Molecular Biology Laboratory
Germany

Rybnikov, Vladimir
DESY
Germany

Saed, Abu-Ghannam
SESAME
Jordan

Satogata, Todd
Jefferson Lab
USA

Satoh, Masanori
KEK
Japan

Schmitz, Rüdiger
DESY
Germany

Schultz, Kevin
National Instruments
USA

Schwinn, Alexander
GSI
Germany

Shen, Guobao
Brookhaven National Lab
USA

Spangenberg, Thomas
ANKA-ISS-KIT
Germany

Tanigaki, Minoru
RRI, Kyoto University
Japan

Tanner, Robby
Canadian Light Source Inc.
Canada

Touchard, Dominique
GANIL
France

Trycz, Marcin
INFN, sezione Roma TV
Italy

Vogt, Johannes
Canadian Light Source Inc.
Canada

Vuppala, Vasu
NSCL
USA

Wang, Chunhong
2H1P
China

Weisse, Stefan
DESY
Germany

Wilson, Tony
Canadian Light Source Inc.
Canada

Wright, Glen
Canadian Light Source Inc.
Canada

Wurtz, Ward
Canadian Light Source Inc.
Canada

Wysokinski, Tomasz
Canadian Light Source Inc.
Canada

Xu, Shifu
Argonne National Lab
USA

Yan, Yuhong
Concordia University
Canada

Zhang, Hao
Canadian Light Source Inc.
Canada

Zhu, Yongxin
Concordia University
Canada

Participants List 231

Proceedings PCaPAC 2010 – Saskatoon, Saskatchewan

232 Participants List

	Preface
	Foreword
	Contents
	Committees
	Pictures
	WETA01 – Wednesday Welcome by Josef Hormes
	WETA02 – Wednesday Welcome By Elder Matias, PCaPAC 2010 Chair
	WERA01 – Control System Studio Workshop Report
	WECOMA01 – Use of the Cell Accelerator Platform for Synchrotron Data Analysis
	WECOMA02 – Fast Orbit Correction at the Canadian Light Source
	WECOMA03 – High-Level Application Protocols
	WECOMA04 – What's behind an Accelerator-Control-System?
	WECOAA01 – Tango Collaboration News
	WECOAA02 – The TINE Control System Protocol: How to Achieve High Scalability and Performance
	WECOAA03 – FESA3 – The New Front-End Software Framework at CERN and the FAIR Facility
	WECOAA04 – Employing RTEMS and FPGAs for Beamline Applications at the APS
	WEPL002 – A software framework based on Qt for accessing EPICS data using Channel Access
	WEPL003 – The Beamline Experiments Scheduling Software
	WEPL004 – Accurate Measurement of the Beam Energy in the CLS Storage Ring
	WEPL006 – Status of the future SPIRAL2 Control System
	WEPL008 – Settings Management within the FAIR Control System based on the CERN LSA Framework
	WEPL009 – Integration of Programmable Logic Controllers into the FAIR Control System using FESA
	WEPL010 – FESA Based Data Acquisition for Beam Diagnostics at GSI
	WEPL011 – FAIR Timing Master
	WEPL012 – From an Empty PC to a Running Control System: A KNOPPIX Live-CD for DOOCS
	WEPL014 – Consolidating the FLASH LLRF System Using DOOCS Standard Server and the FLASH DAQ
	WEPL015 – An orbit feedback for the Free Electron Laser in Hamburg (FLASH)
	WEPL016 – Status, Applicability and Perspective of TINE-powered Video System, Release 3
	WEPL018 – The FERMI@Elettra CCD image acquisition system
	WEPL020 – EPICS applications in the control of SPES Target Laboratory
	WEPL021 – Soft real-time control with client/server control system
	WEPL022 – STARS on PLC
	WEPL023 – Improvements for Simple Operation at SAGA-LS Accelerator
	WEPL025 – Control and Timing System Design of CPHS Project
	WEPL028 – TINE/ACOP state-of-the-art Video Controls at Petra III
	WEPL029 – Applicability of XAL for ESS
	WEPL031 – CCCP - Cosylab common control platform
	WEPL032 – Programming Interfaces for Reconfigurable Instruments
	WEPL033 – EPICS IOCcore Real-Time Performance Measurements on Coldfire Module*
	WEPL035 – High Level Matlab Applications for SPEAR3
	WEPL037 – A Novel Approach for Beam Commissioning Software using Service Oriented Architecture
	THIOA01 – PC –Based Technologies for Diagnostics, Measurement and Control
	THRA01 – MatLab Workshop Report
	THCOMA01 – Progress status for the Petra3 EMBL Beamlines
	THCOMA02 – synApps: EPICS-Application Software for Synchrotron Beamlines and Laboratories
	THCOMA03 – Using ezcaIDL to connect to EPICS Channel Access from SHADOWVUI for Dynamic X-ray Tracing
	THCOMA04 – A simple DAQ system based on LabVIEW, php and MySQL
	THCOAA01 – Web Services Cyber-Security Issues
	THCOAA02 – Remote Access to the VESPERS Beamline using Science Studio
	THCOAA03 – Research Metadata Management at the Australian Synchrotron and ANSTO
	THCOAA04 – Diamond's transition from VME to fieldbus based distributed control
	THPL004 – A Discrete Hysteresis Model for Piezoelectric Actuator and its Parameter Identification
	THPL005 – Automation of the Macromolecular Crystallography Beamlines at the Canadian Light Source
	THPL006 – Mechanical Vibration Measurement System at the Canadian Light Source
	THPL007 – Remote Access to a Scanning Electron Microscope using Science Studio
	THPL008 – CLS User Services Web Portal
	THPL009 – EPICS Data Acquisition Software at the CLS
	THPL010 – CLS LINAC Safety System Upgrade
	THPL011 – FEC in Deterministic Control Systems over Gigabit Ethernet
	THPL012 – LLRF Control System Upgrade at FLASH
	THPL013 – Scripting tools for beamline commissioning and operation
	THPL014 – The ANKA B-Field Test Facility Control System, based on a SPEC Macro Package Enhanced Setup
	THPL015 – Macro package based Enhancement of SPEC controlled Experimental Setups
	THPL017 – Study case of a collaboration portal for an international scientific project
	THPL018 – Development of Image Processing System on Embedded EPICS for Beam Diagnostics
	THPL020 – Control and Acquisition Software Complex for TBTS Experiments
	THPL021 – Estimation of the Response Time and Data Flows in the TOTEM DCS
	THPL022 – Plans for monitoring TPS control system infrastructure using SNMP and EPICS
	THPL023 – Data Acquisition and Studies of Vibration Motion in TLS Beamlines
	THPL024 – Computational Strategies in Optimizing a Real-Time Grad-Shafranov PDE Solver using High-Level Graphical Programming and COTS Technology
	THPL026 – ESS Controls Strategy and Control Box Concept
	FRIOA01 – Control systems for new large projects
	FRRA01 – RTEMS Workshop Report
	FRCOMA01 – `WhiteRabbit' - A novel, high precision timing system
	FRCOMA02 – FLASH DAQ Data Management and Access Tools
	FRCOMA03 – Beam Profile Monitoring System for XFEL/SPring-8
	FRCOMA04 – Embedded Controller for Industrial CT trigger module
	FRCOAA01 – ITER control system development environment
	FRCOAA02 – Database-driven Status Analysis in Beam Operation at the Heidelberg Ion Therapy Center
	FRCOAA03 – Quark: A Dynamic SDLC Methodology
	FRCOAA04 – Experiment Based User Software
	FRCOAA05 – Data Acquisition from heterogeneous sensor networks: the case of NEPTUNE Canada, the world largest cabled ocean observatory.
	FRTA01 – Friday Closeout Presentation
	FRTA02 – PCaPAC 2012 Announcement

	Appendices
	 List of Authors
	 Institutes List
	 Participants List

