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ii Preface



  The 8th International Workshop on Personal Computers and Particle Accelerators (PCaPAC) was 
held from October 5th - 8th , 2010 in the City of Saskatoon, Saskatchewan, Canada.  The workshop, 
organized by the Canadian Light Source, attracted 115 participants from 14 countries.  A total of 30 
talks and 48 posters were presented at the workshop.  LabView training sessions were sponsored 
and held by National Instruments while workshops were presented covering Control System Studio, 
RTEMS and Matlab.  A scientific excursion brought the participants to the Canadian Light Source 
where five areas of the facility were visited. 
 
  A banquet was held at the Western Development Museum where participants toured Boomtown , a 
representation of a typical Saskatchewan town in 1910.  Over 30 buildings portray community life – 
from the general store to the working blacksmith shop to the train station and the sod house.  During 
the banquet, the Isamu Abe Prize was presented to two winners, Marcin Trycz of INFN and Ziga 
Kroflic of the University of Ljubljana.  Best Poster Prizes were presented to Jutta Fitzek (GSI, 
Darmstadt) and Michel Fodje (CLS, Saskatoon)  
 
  Special thanks go to the International Program Committee led by Elder Matias.  Valuable 
suggestions were made to assure the scientific success and to cover a broad spectrum of topics: 
Accelerator Controls, Control Hardware and Low-level Software, Data Networking and Web 
Technology, Experiment Data Acquisition and Analysis Software, Facility and System Engineering. 
 
  On behalf of the International Program Committee and the Local Organizing Committee we 
express our sincere thanks for the generous financial support received from our two main sponsors, 
Cosylab and National Instruments.  The workshop also benefitted from the financial support of six 
industrial exhibitors; Cosylab, Hytec, Instrumentation Technologies, Pro-Dex, National Instruments 
and W-ie-ne-r 
 
  We are pleased to provide the proceedings from the workshop that contain not only the 78 paper 
contributions received but also pdf copies of the talks and posters presented at the workshop.  These 
proceedings were edited and prepared for publication on the Web by the local JACoW team led by 
Carl Finlay. 
 
  Last but not least:  The highly qualified talks, posters and numerous discussions made PCaPAC 
2010 a very successful and inspiring week – a warm thank you to all participants!   
Sincerely 
 
Elder Matias 
Chairman - PCaPAC 2010 
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USE OF THE CELL ACCELERATOR PLATFORM FOR SYNCHROTRON 
DATA ANALYSIS 

J. Qin, M. A. Bauer, N. S. McIntryre 
The University of Western Ontario, WSC-143, UWO, London, ON. N6A 5B7, Canada.

Abstract 
The analysis of synchrotron-based Polychromatic X-ray 

Microdiffraction (PXM) data has been used by scientists 
and engineers to understand elastic and plastic strains in 
materials on a micro or nano scale. Such experiments 
generate hundreds or thousands of images where the 
analysis of each image often entails intensive 
computations- a challenging task. As well, in the past, the 
speed of such computations has made it difficult to obtain 
feedback on the experimental results in near real time. 
This has constrained researchers from making critical 
decisions on direction subsequent experiments should 
take based on the results in hand. In order to improve the 
analysis performance of PXM images, we have 
investigated the use of parallel analysis schemes. This 
paper reports on the design and implementation of 
accelerated PXM analysis software. It has been developed 
on IBM PowerXCell 8i processors and Intel quad-core 
Xeon processors. A substantial improvement in 
processing speed has been obtained to the extent that it 
should be possible to obtain results at the same rate as 
they are produced on the VESPERS beamline at the 
Canadian Light Source (CLS) Synchrotron (~1 Hz). 

INTRODUCTION 
The development of high-energy PXM as a non-

destructive method to determine elastic and plastic strains 
has been ongoing for the past decade [1-5]. The data 
generated in PXM experiments can consist of a large 
number of 2D digital images. Once these images have 
been generated from an experiment, ideally, it is expected 
that data can be processed at a same speed level as data is 
collected.  

There are three major procedures involved in PXM data 
analysis, including peak searching, indexing and strain 
calculation. Briefly, peak searching attempts to extract 
useful information about intensity points (peaks) from an 
image to be used as input for the next two procedures.  
The indexing procedure takes the output from the peak 
searching procedure and generates the structural 
information about the sample material, e.g. the orientation 
of a crystalline lattice plane from which a diffraction spot 
is generated.  Based on the indexing results and peak 
information, the strain analysis procedure then produces 
strain tensors in the sample. Based on the indexing results 
and strain tensor information, an orientation map and a 
strain map can be generated for the entire scanned area 
from which all PXM data were collected. 

There are some existing software packages for PXM 

data analysis, such as the 3D X-ray Micro-diffraction 
Analysis Software Package at APS in Chicago which was 
developed at ORNL[6], and X-ray Micro-diffraction 
Analysis Software (XMAS) at ALS in Berkeley[7]. The 
common feature of these two packages is that they both 
are Windows-based software with a frontend interface 
implemented in Interactive Data Language (IDL) [8] and 
some backend procedures implemented in Fortran. Both 
can process a large amount of PXM data sequentially, i.e., 
step by step and one by one in sequence. This is a very 
time consuming process, and it usually takes days to 
finish processing a set of data collected from one PXM 
experiment. However, synchrotron time is valuable and it 
is often difficult to get a scheduled beam time. Data 
analysis using existing software means that researchers 
must complete the analysis following their time on the 
synchrotron.  Faster analysis could help researchers make 
decisions on subsequent experiments during their 
synchrotron session and gain significant insight into the 
materials that they are studying.    

In this paper, we introduce the development of an 
accelerated software for PXM data analysis, so called Fast 
Online X-ray Micro-diffraction Analysis Software 
(FOXMAS). It has been developed on a Cell accelerator 
platform comprised of Intel and IBM Cell processors. The 
software developed and the system it runs on makes it 
possible for PXM data to be processed in “near-real 
time”, that is, nearly as fast as it is being produced. A 
description of the platform, the development approach, 
some performance evaluations, conclusions and future 
work are reported. 

CELL ACCELERATOR PLATFORM  
The target Cell accelerator platform, called Prickly, is 

one of the clusters in SHARCNET [9]. It is a 
heterogeneous High Performance Computing (HPC) 
system consisting of one head node for hosting user 
logins and a chassis with 12 Linux cluster blades 
providing total 160 computing cores.  Among the 12 
blades, four blades are Intel blades and the other eight are 
IBM Cell blades.  On each of the Intel blades, there are 
two quad-core Xeon E5420 processors running at 2.5GHz 
with 8GB of memory.  Each of the Cell blades contains 
two PowerXCell 8i processors, so called Cell processors, 
running at 3.2GHz with 16GB of memory. Blade 
interconnection is achieved through Gigabit Ethernet.  

Unlike traditional multi-core processors which are 
homogenous, such as those on Intel blades, the Cell 
processor itself has heterogonous multi-cores [10].  It 
employs two types of cores optimized for different kind 
of tasks. Each Cell processor has nine cores, i.e. one 

 ___________________________________________  

*Work is part of Science Studio project supported by CANARIE 
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PowerPC Processor Element (PPE) and eight Synergistic 
Processor Elements (SPEs).  The PPE is just a traditional 
64-bit Power processor and acts as a large-scale processor 
core to run the operating system and performs control-
intensive tasks.  In contrast, the SPEs are much simpler, 
but devote more resources to perform computationally 
intensive tasks. Since each Cell blade has two Cell 
processors, in total, there are sixteen SPEs on each Cell 
blade. The sixteen SPEs are independent, 128-bit vector 
processors. Each SPE has its own local storage (256KB) 
for instructions and data.  The SPE access to the memory 
is achieved through its Direct Memory Access (DMA) 
controller. The DMA can work concurrently with SPE 
executions, which hides the latency caused by memory 
accesses.    

The Element Interconnect Bus (EIB) provides four 128-
bit data transmission channels for the inter-
communication among PPE, SPEs, main memory and 
I/O.  It can support up to 307GB/s bandwidth between 
any two bus units.  Therefore, with EIB, each SPE can not 
only work alone, but also be chained together to perform 
data processing with an intensive workload, such as 
stream processing. 

 While the Cell’s special architecture offers many 
advantages for high performance computations, the 
architecture also makes programming on Cell more 
difficult. 

DEVELOPMENT APPROACH 
The goal of this development is to port the PXM data 

analysis software onto the target Cell accelerator platform 
to achieve an accelerated performance. 

There are two major challenges involved in this porting 
process. First, the exiting software was written in IDL 
with some backend procedures written in Fortran. Our 
target Cell platform Prickly can only support programs 
mainly in C/C++. The software has to be rewritten into C 
in order to make it run on Cell.   

Another challenge is to program on the Cell. To make 
use of all those advanced features provided by the Cell, 
especially the computation power provided by those 
SPEs, programming on Cell is a challenging. As each 
SPE has its own local store for holding instructions and 
input/output data, data needs to be moved back and forth 
between the local store and the main memory with 
explicit DMA commands. Because of the limited space 
(256k) for a local store on SPEs, only tasks that fit can be 
considered, otherwise, an advanced overlay management 
needs to be used.   

There were two objectives in developing the PXM data 
analysis application.  First, we wanted to create an 
implementation of the three major analysis procedures 
where the processing tasks were pipelined in order to 
accelerate the processing of a PXM image.  Second, we 
wanted an implementation so that multiple PXM images 
could also be processed in parallel.   

To further improve the processing speed on a single 
image, we want to identify the performance “bottleneck” 
of the entire process and then target an implementation on 
Cell around that “critical” part. Our measurements on a 
sequential version of the analysis code indicated that 
more than 80% of the processing time was spent in the 
peak searching procedure; therefore, it was initially 
targeted as the “critical” computation to be considered for 
porting to the Cell. 

The peak searching procedure involves finding a 
threshold, blob searching, and curve fittings on each of 
the blobs. Among all three subtasks in peak searching, 
curve fitting is the most intensive one. During curve 
fitting on a blob, it applies two 1-D fittings (i.e., one for 
the X direction and one for the Y direction) and one 2-D 
fitting for a box area around each blob. Fig. 1 illustrates 
blobs identified in a PXM image with a certain intensity 
threshold. Each fitting process actually entails solving a 
multi-variable, non-linear least square minimization 
problem. It involves iterations to update the state of 
corresponding variables continually until certain criteria 

 

Figure 1: An PXM image with identified blobs that need curve fittings 
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are met.  Specifically, the 1-D fitting involves solving 
four variables; these results become the initial states for 
the 2-D fitting.  In turn, the 2-D fitting involves solving 
for six variables.  The existing software carries out the 
curve fittings sequentially for each of the blobs in an 
image; this is very time consuming and becomes the 
bottleneck of the entire PXM data analysis. 

 Considering the computational power of a Cell’s SPE, 
with a limited local store, it works well for a process with 
relatively small size but needs to run many times.  
Fortunately, the curve fitting is applied to each blob, 
which is in a relatively smaller area than the entire image 
area. The computation of the fitting process is also 
relatively intense and needs to be applied to every blob in 
an image. Therefore, the curve fitting process was 
selected as the processing task for the Cell’s SPEs.  After 
a collection of blobs has been identified, the fitting 
process can be done on the Cell’s multiple SPEs in 
parallel, i.e. multiple blobs can be fitted by multiple SPEs 
simultaneously.   

To analyze a large set of PXM images, we considered a 
computational approach involving processing multiple 
images in parallel and doing curve fitting on multiple 

blobs in parallel for each image during peak searching.    
The design of our parallel PXM data analysis program is 
illustrated in Fig. 2.  

Using Fig. 2 as a guide the processing proceeds as 
follows.  Initially, n images are loaded to be processed in 
parallel.  Each of these images is initially processed on 
one of Cell’s PPEs in order to identify blobs – potential 
regions having peaks.  A list of blobs is produced for each 
image.  Curve fitting is then done on each list of blobs on 
Cell’s SPEs in parallel. The processing of the blobs from 
an image results in a list of possible peaks. The list of 
peaks is then passed to the indexing computation which 
results in index data and orientation maps based on index 
data. The index data is also used in the strain computation 
which produces a strain results and maps based on strain 
data. The indexing computation and strain computations 
are done on the Intel blades.  

The design illustrated in Fig. 2 that has been 
implemented and deployed on Prickly, FOXMAS, has a 
web interface for job submission and online result 
visualization, that are not discussed in this paper. Because 
of the limited length, this paper only focused on the 
development of the accelerated data analysis.   

 

Figure 2: The configuration of high performance PXM data analysis on Prickly 

Source Images 

Images 

Source Images 
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PERFORMANCE EVALUATION 
We measured the time needed for processing different 

sets of images sequentially with the original IDL 
software. We also measured the performance of 
FOXMAS, i.e., the average processing speed with various 
settings, including the number of parallel pipelines and 
number of SPEs used on each image.  The speedup of 
each test case is compared to the speed of the IDL 
software.   

 PXM images could have different sizes depending on 
the type and setting of a CCD detector. Larger size 
images tend to provide more information with a trade-off 
of a heavier analysis workload. In this evaluation, we 
examined two different image sizes. One set of images 
were collected from APS, each of which has 1042X1042 
pixels and is about 2MB/image. Another set of images 
were from CLS, each of which has 2084X2084 pixels and 
is about 8MB/image. Using the original IDL software on 
a desktop machine, the average processing speed for APS 
images is about 4.31 sec./image and for CLS images is 
about 14.36 sec./image. 

 Prickly has total of 4 Intel blades and 8 Cell blades, we 
examined the performance of data analysis on one pair of 
Cell-Intel blades and on multiple pairs of Cell-Intel 
blades. As described in Fig. 2, peak searching is done on 
the Cell blade; while indexing and strain analysis are done 
on the Intel blade. Since each Cell blade has a total of 16 
SPEs, if n images are processed in parallel, i.e. n 
pipelines,  and  m SPEs are allocated for each image or 
each pipeline,  m and n are constrained to be values such 
that  m×n=16.  Different combinations of m and n were 
tested. For the workload on the Intel blade, if n pipelines 
are initiated for processing n images in parallel, n 
processes are created on the Intel blade, and each of these 
n processes works on the indexing and strain analysis on 
one of n images. The operating system takes care of 
workload distribution among the eight cores on the Intel 
blade. The speedup of each test case is compared to the 
desktop speed using IDL software.  Tables 1 and 2 
present the measured results on one pair of computation 
nodes on Prickly.    
Table 1: Results of processing APS images on one pair of 
Cell-Intel nodes on Prickly 

Images in 
parallel 

(pipelines) 

Number of 
SPEs for 

each image 

Average 
Speed 

(sec./image) 

Speedup 
vs. IDL 
(times) 

1 16 0.63 6.84 
2 8 0.43 10.02 
4 4 0.35 12.31 
8 2 0.26 16.58 

16 1 0.22 19.59 
 

The results presented in Table 1 illustrate that for 
processing images of the size of the APS images, the 
more images that are processed in parallel, the better 
throughput, i.e. processing 16 images resulted in average 

speed 0.22 sec./ image and speedup of 19.59 times 
compared to IDL software.   
Table 2: Results of processing CLS images on one pair of 
Cell-Intel nodes on Prickly 

Images in 
parallel 

(pipelines) 

Number of 
SPEs for 

each image 

Average 
speed 

(sec./image) 

Speedup 
vs. IDL 
(times) 

1 16 2.84 5.06 
2 8 1.81 7.93 
4 4 1.55 9.26 
8 2 1.67 8.60 

16 1 1.68 8.55 
 

In processing the larger size images, i.e. those from 
CLS, the results of Table 2 suggest that processing 4 
images in parallel and with 4 SPEs allocated for each 
image can produce the best throughput, i.e. an average 
speed 1.55 sec./image and about 9.26 times of speedup 
compared to IDL software. The processing of multiple 
images in parallel was achieved through multi-process 
programming, while the parallel blob fitting on the Cell 
was achieved through multi-threaded programming. In 
general, process creation cost is much larger than thread 
creation cost. The overall performance gain of a parallel 
application is dependent on balancing the computational 
workload and the trade-off in setting up the parallel 
processing elements. The result of reducing the number of 
SPEs allocated for each image, i.e., to 2 or 1 in Table 2, in 
lieu of having more parallel pipelines to process more 
images in parallel is not sufficient to overcome the blob 
processing done on each of the larger images within the 
SPEs. Consequently, using 4 pipelines and 4 SPEs results 
in the best performance for images of this size.   
Table 3: Results of processing APS images on multiple 
pairs of Cell-Intel nodes on Prickly 

Pair(s) of 
Cell-Intel 

nodes 

Images in 
parallel 

(pipelines) 

Average 
speed 

(sec./image) 

Speedup 
vs. IDL 
(times) 

1 16 0.22 19.59 
2 32 0.14 30.78 
3 48 0.07 61.57 
4 64 0.07 61.57 

 
To examine the performance of using multiple pairs of 

Cell-Intel nodes on Prickly, based on the results presented 
in Tables 1 and 2, 1 SPE per APS image and 4 SPEs per 
CLS image were used. Tables 3 and 4 present the results. 
The results illustrate that the performance of PXM data 
analysis has been boosted significantly when more 
computational resources are used.  For the smaller sized 
images collected at APS, as presented in Table 3, when 
48 processing pipelines were setup on three pairs of Cell-
Intel blades, the average processing speed can reach as 
high as 0.07 sec./image, which is 61.57 times speedup 
compared with 4.31sec./image of using existing IDL 
software on a desktop machine. For larger size images 
collected at CLS, when 16 processing pipelines were 
setup on four pairs of Cell-Intel blades, the average 
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processing speed (see Table 4) can reach as high as 0.59 
sec./image, which is 24.34 times speedup compared with 
14.36 seconds/image when using the IDL software on a 
desktop machine.  
Table 4: Results of processing CLS images on multiple 
pairs of Cell-Intel nodes on Prickly 

Pair(s) of 
Cell-Intel 

nodes 

Images in 
parallel 

(pipelines) 

Average 
speed 

(sec./image) 

Speedup 
vs. IDL 
(times) 

1 4 1.55 9.26 
2 8 0.96 14.96 
3 12 0.70 20.51 
4 16 0.59 24.34 

 
Notably, the measured speedup from both sets of 

experiments presented in Tables 3 and 4 do not result in a 
linear improvement as more nodes are added. One of the 
factors affecting the speedup is the increased overhead of 
in setting up more pipelines exchanging information 
across the two types of nodes on Prickly. Another factor 
that affects achieving a linear speedup is the data transfer 
and communication cost of the Gigabit Ethernet; as more 
processes are added there is an increase in 
communication.      

The goal of this project is to make use of such an 
accelerated data analysis for a synchrotron beamline to 
achieve a real time experiment and data analysis. The Cell 
platform Prickly is located at The University of Western 
Ontario in London Ontario. A synchrotron beamline, such 
as CLS is located in Saskatoon Saskatchewan. To achieve 
a real time PXM experiment and data analysis, data 
collected at CLS needs to be transferred to UWO in an 
ultra high speed. CANARIE’s cross country lightpath 
network can provide such an ultra high speed data 
transmission. By using CANARIE’s dedicated lightpath 
we are able to complete such a scenario. 

A preliminary functional test has been measured for 
such a scenario. It included a procedure of sending a set 
of total 100 PXM images (about 8MB/image) from CLS 
to UWO, then getting processed on SHARCNET’s 
Prickly at UWO, and presenting final results at an FTP 
site for users to download. It only took around 4 min. to 
complete the entire procedure. In specific, it took about 2 
min. for data transmission from CLS server to UWO 
server through the lightpath, and less than 1 min. for data 
transmission from UWO server to SHARCNET’s Prickly 
through UWO’s intro-network. It only took about 1 min. 
to finish the data analysis on Prickly and send the analysis 
results back to UWO server for users to download. Even 
thought there are still rooms for refinement, the 
performance is quite promising for a real time 
experiment.   

CONCLUSION AND FUTURE WORK  
In this paper we reported the development of an 

accelerated PXM data analysis, FOXMAS, on a Cell 
accelerator platform, i.e. the cluster Prickly on 
SHARCNET. Using the computation power of Prickly, 

especially the Cell processors, FOXMAS can achieve up 
to 60 times faster than a desktop performance of using 
original IDL software package, depending on the size of 
images and the number of computation nodes used on 
Prickly. Combined with CANARIE’s dedicated lightpath 
for data transmission, the promising performance makes it 
possible to process the data at the same high rate as it is 
produced at the synchrotron (CLS).   

Future work for our next step is to implement the 
function of data transmission/analysis at the same time as 
it has been collected during a synchrotron experiment, i.e. 
a real time data collection and analysis. This is currently 
underway using the VESPERS beamline at the CLS. Such 
a model could also be adapted to other synchrotron and 
HPC facilities.  
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FAST ORBIT CORRECTION AT THE CANADIAN LIGHT SOURCE

C. Payne, Canadian Light Source,  Saskatoon, Saskatchewan, Canada
D. Chabot, Brookhaven National Laboratory, Upton, New York, USA

Abstract
Correction of the electron beam orbit in the storage ring

at  the  Canadian  Light  Source  has  historically  been
implemented using a  correction system capable  of  only
moderate update rates. Over the past several years work
has  been  undertaken  to  reduce  orbit  perturbations  and
improve  end  user  synchrotron  beam  quality  by
reimplementing the correction system and enabling orbit
corrections several orders of magnitude faster. This paper
will  describe  the  implementation  and  migration  of  the
orbit control software from the slow correction system to
the fast system.

CLS ORBIT CONTROL HISTORY
The present orbit control system in use at the Canadian

Light Source (CLS) is described in [1]. This system is an
intermediate  step  between  the  previous  orbit  control
system [2]  and the system described in this paper.  The
design limitations of  the  current  system as  impetus for
change  are  worth  mentioning  and  will  be  briefly
discussed below.

DESIGN LIMITATIONS OF THE
EXISTING SYSTEM

There are several key limitations inherent to the orbit
control system in use at the CLS at the time of writing. 

Update Rate Limitations
The  main  motivational  factor  to  migrate  to  a  new

system  is  maximum  possible  update  rate.  The  present
system is only capable of quasi-static  update rates on the
order  of  0.1Hz.  Although  this  has  been  successful  at
sufficiently maintaining the orbit of the CLS Storage Ring
(SR), faster corrections rates are desired to further reduce
orbit perturbations.

Serial Application of Orbit Corrections
 The  Matlab  [3]  program,  CLSORB  [4],  applies

corrections  in  a  sequential  manner.  This  results  in
undesirable  orbit  perturbations  as  the  corrections  are
applied  one  after  another  around  the  storage  ring.
Distribution  of  corrections  from  CLSORB  through  the
Experiential  Physics  and  Industrial  Control  System
(EPICS)  [5]  produces  additional  non-deterministic
behaviour  due  to  network  and  computer  latencies.
Delivering corrector magnet setpoints in this way also has
the effect of accruing hardware delays on a per-channel
basis,  instead of  per  power-supply controller.  This adds
significant delays to the process of setpoint distribution,

and is a major factor governing the achievable rate of the
orbit control system.

HARDWARE
The hardware involved in the orbit  control system is

shown schematically in Figure 1. The hardware consists
of:

An Industrial 3GHz x86 PC IOC with 1GB or RAM
running  Real-Time  Executive  for  Multiprocessor
Systems (RTEMS) v4.10 [6]
Four (4) Versa Module Eurocard (VME) Crates [7]
Four  (4)  pairs of  Struck Innovative  Systems (SIS)
PCI/VME 1100/3100 cards, for connectivity [8]
Four (4) Analog to Digital Converter (ADC) VME
cards (ICS-110BL sampling ADC)
Eight (8) Digital I/O Modules, model VMIC 2536 D-
I/O,  2  per  VME  crate  used  to  control  corrector
setpoints

In addition, hardware independent of the fast orbit control
software system:

Beam  Position  Monitors  (BPMs)  which  produce
analog signals  in  proportion to the  position of  the
electron beam passing through them. [9]
Bergoz BPM Modules  which sample  the  BPMs to
produce  analog  x-y  coordinates  of  beam  position.
[10] These signals are then digitized by ICS-110BL
VME  modules  and  the  data  processed  by  the
RTEMS IOC. 
OCM Power Supply Controllers, VME based devices
interfaced with the OCM power supplies. There are
48  vertical  and  48  horizontal  orbit  correctors,
contained in a bulk IEPower [11] chassis. It should
be  noted  that  although  setpoints  are  via  the  fast,
VME  interface,  the  power  supply  feedback  is
exclusively via serial interface. 

Figure 1: Hardware Overview
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ADVANTAGES OF THE FAST
IMPLEMENTATION

Although the  current  orbit  control system has served
the CLS well, a more efficient and faster system has been
designed.  Along  with  speed,  there  are  several  other
advantages  of  the  fast  orbit  control  system  over  the
existing system.

Update Rate
As the  name  implies,  the  key advantage of  the  new

system  is  an  improved  correction  rate,  which  will  be
several  orders  of  magnitude  faster  than  the  existing
system.  With  the  fast  system,  rates  of  20-100  Hz  are
attainable.

Concurrently Acquired BPM Data
BPM data acquisition in the fast system can be period

driven  rather  than  interrupt  driven.  Although  this  shift
from interrupt  driven is necessitated by the  inability of
determining detailed information on the FIFO buffer state
of the  ICS-110BL,  it  has several,  positive  side  effects.
Using per  ADC threads (4)  to concurrently acquire  the
BPM data ensures true time correlation amongst the BPM
data. As well, the threaded, concurrent nature of the BPM
data acquisition results in both a  reduction in noise by
approximately a factor of 4 as well as a reduction in dead
time of a factor of 16. [1]

Localized Setpoint Calculation and Application
Previous versions of orbit control software have relied

on  multiple  computers  working  together  to  create  a
complete orbit control system. One system would acquire
the  orbit positions, pass them to another system, which
would calculate and apply the corrections, either back to
the initial system, or to other slow systems. 

Corrections are now calculated and applied directly by
the  RTEMS  Input  Output  Controller  (IOC).  This
migration  from  a  remote  setpoint  application,  with
network and other latencies involved, greatly increases the
rate at which applications may be applied to the system.

In  the  fast  system,  once  the  response  matrix  is
determined and transferred from Matlab to the  RTEMS
IOC, the system operates independently, calculating and
distributing new corrector magnet setpoints.

Concurrent Correction Setpoint Application
Similar to the concurrent acquisition of BPM data, the

fast  system  is  also  able  to  simultaneously  apply  the
correction  setpoints  to  the  orbit  correctors.  Once  the
setpoint values are calculated and loaded to the corrector
controllers,  they are simultaneously activated across all
controller  channels.  This  method  minimizes  the
perturbations caused by the serial application inherent in
the previous system.

Multiple Operating Modes
The fast system has the added flexibility of  allowing

multiple modes of operation. [12] This feature is useful
both  for  initial  commissioning  as  well  as  providing  a
migration path from the current system to the fast system.
The  modes,  which  are  exposed  and  controlled  via  an
EPICS Process Variable (PV) include:

Standby:  In  this  mode,  BPM  data  acquisition  is
disabled,  but  control  of  corrector  setpoint  PV's  is
permitted.
Assisted: This mode causes  the  system to emulate
the  current  system where  BPM process  values are
averaged  and  updated  at  20Hz  and  corrector
setpoints  are  distributed  via  the  CLSORB Matlab
program. Assisted mode provides a migration path
between the current system and the fast system, and
has  been  in  use  since  April  2010  while  awaiting
delivery of a full compliment of fast VME controller
boards.
Autonomous:  In  this  mode  BPM  acquisition  is
identical  to  Assisted  but  the  RTEMS  IOC  will
calculate  and  apply  corrections  independent  of
CLSORB.
Timed: This mode is similar to Autonomous, but the
BPM  data  acquisition  is  timer  driven  thereby
allowing faster operating rates.

Of  these  modes,  Autonomous  and  Timed  will  be  the
modes used most often during normal operation.

Orbit Control EPICS Interface
The  fast  system  also  exposes  various  orbit  control

parameters as EPICS PV's, leveraging the nature of  the
Channel Access (CA) protocol to provide a user interface
accessible  to  distributed  CA  client  programs.  The
accessible  system  parameters  include  BPM  x  and  y
averages  and  standard  deviations,  the  number  of  BPM
samples per average, as well as corrector magnet setpoint
control and read-backs.  

SYSTEM PERFORMANCE
Initial testing performed in March 2009 with  one half

(48) the total required number of fast correctors available
has  shown  promising  results.  The  test  consisted  of
opening and closing the gap of  the Hard X-ray Micro-
Analysis (HXMA) Wiggler while observing the expected
orbit  perturbation.  Historically  this  is  a  disruptive
operation, causing relatively large  orbit excursions. The
effectiveness of the new orbit control system's ability to
dampen  beam  disturbances  is  readily  apparent  from
Figure 2 and Figure 3 below.
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Figure  2:  Orbit  response  due  to  HXMA  Wiggler
Operation while operating orbit control in Assisted Mode,
equivalent to slow operation.

Figure  3:  Orbit  response  due  to  HXMA  Wiggler
Operation while operating orbit control in Timed Mode,
Approximately 65Hz update rate. 

Theoretical limits to the update rate of the fast system
in the  current configuration are on the order  of 100Hz.
Realistically attainable rates in Timed mode are 65Hz.

FUTURE WORK
Preliminary work has been done on the next generation

of  fast orbit control which will be capable of even higher
update rates. The changes required to attain even faster
rates include heavily modifying the power supply setpoint
distribution  algorithm  to  distribute  the  cost  of  the
hardware  delays  associated  with  affecting  setpoint
changes. As well,  a behavioural modification permitting
application  of  the  orbit  control  algorithm based  on  the
number of  ADC frames collected, rather  than based on
ADC or RTEMS timer interrupts has been implemented.
Coupled  together  these  changes  permit  application  of
orbit corrections well in excess of 100 Hz. 

CONCLUSION 
The CLS storage ring orbit control has been driven by

CLSORB  for  several  years.  Although  sufficient  in
controlling  the  orbit  to  allow  storing  beam  for  long
periods of time, the system does not operate fast enough
to counteract insertion device movement or other  sources
of beam disturbance on the order of 10 Hz. 

The benefits of an improved orbit correction system for
the CLS storage ring are obvious from the example given.
Routine activities such as movement of  insertion device
gap can be made almost  transparent to user operations.
Other,  low-frequency  sources  of  beam  disturbance  can
also be effectively compensated for with the new system.

Fast  correction  hardware  availability  has  been  the
limiting  factor  in  full  deployment  of  the  fast  orbit
correction system.  We are hopeful that the system will be
fully deployed in late 2010.
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WHAT'S BEHIND AN ACCELERATOR-CONTROL SYSTEM? 

Rüdiger Schmitz, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.

Abstract 
A control system has a lot of features, some essential: 

e.g. a set of application programs. The infrastructure they 
need in order to run so that the operators at least be able 
to switch the accelerator on and off.  

Graphical User Interfaces, intelligent control algorithms 
or data acquisition methods are obvious, but other 
features (not as obvious) also require considerable 
manpower and should not be underestimated. They have a 
major impact on the availability of the control system. I 
call these features the ‘meta-control system’. 

This paper describes the efforts made by the control 
systems group at DESY to provide a reliable tool for the 
operators, minimizing the downtime caused by control 
system failures. It reviews this aspect of computer based 
accelerator control dating back to the late 1970s when the 
accelerator PETRA went into operation, controlled 
entirely by mini-computers from Norsk Data [1].  

Both the computer with the supporting technology and 
the control system group are essential to an accelerator’s 
success. 

INTRODUCTION 
MCS -the machine control group at DESY- has built, 

maintains and improves the control systems of all current 
DESY-accelerators: The preaccelerators LINAC II, 
DESY II and PIA, the light sources DORIS III and 
PETRA III and the free electron laser light source 
FLASH II. Since the decision to switch off the proton-
lepton collider HERA II in 2007, DESY changed its 
scientific profile from a predominantly high-energy 
physics laboratory to a synchrotron light research centre. 
This had a major impact on the required reliability and 
availability of the control systems: 

• The top-up mode for PETRA III does not tolerate 
any failure in the accelerator-chain for more than 5 
minutes. 

•  The cramped schedule of the beam line experiments 
at DORIS III, PETRA III and FLASH II may well 
leave behind an unhappy user if part or all of the 
requested beamtime is lost. 

 

OPERATOR VIEW 
A control system is most visible at the operator- 

console. Nowadays this is an assembly of monitors and 
input devices such as mice, knobs or keyboards connected 
to computers. The operator console is the place from 
which all available functions of the accelerator in its 
different phases of operation can be controlled: user run, 
maintenance periods and machine studies. 

The technical implementation differs a lot from control 
system to control system, but nevertheless the look and 
feel is not much different. (FLASH and PETRA have 

different ‘control systems’ but for some areas like 
vacuum and sequencer there is hardly any difference.) 
Differences arise from the different age of the 
accelerators and also from the skills and preferences of 
the constructor and operator. 

Application programs in operator consoles may be rich 
clients written in Java and Visual-Basic or they may be 
operator panels generated for example by jDDD and web-
based-applications running in a browser such as Web2C 
[2]. 

At the other end, there is the accelerator which will be 
directly affected by actions initiated at the operator-
console or by automatic processes running independently 
of operator interaction. The diagnostic- and machine-
protection systems will necessarily report any 
malfunction of control system procedures. 

In between we have what I call here a  ‘communication 
cloud’, i.e. something allowing communication between 
the operator console and the accelerator. This leads to the 
simple operator view of an accelerator control system 
shown in Fig. 1.  

 

 
Figure 1: Simple operator view of a control system 

 

CONTROL SYSTEM PEOPLE VIEW 
Looking more deeply into a control system one can 

identify the different hardware building blocks in the 
‘communication cloud’: Computers, networks, field 
buses, diagnostic systems and turnkey systems. 

There is no precise definition as to where control 
systems boundaries are drawn. What belongs and does not 
belong to the control system is defined in different ways 
by different people. But at least one needs all major 
subsystems interfaced to the control system. 

An even deeper view will bring us to the software. But 
at this point the system cannot be understood without yet 
further information, information which cannot necessarily 
be found in the control system. 

To get information about the underlying principles and 
concepts of a control system one should ask the control 
system group. They will use a lot of buzzwords or 

Operator Console 

Accelerator 

Communication 
Cloud 

Control-
System 
boundary 
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abbreviations and will refer to documentation web-sites or 
talks given at conferences. They will use the term ‘control 
system’ in two different ways:  

(1) A system controlling an accelerator, e.g. ‘The 
control system for PETRA III’ 

(2) A name for a set of tools providing 
communication protocols and services which 
make for efficient client and server applications; 
e.g. TINE, DOOCS, EPICS, TANGO [3] 

I prefer the use of the term ‘control system’ as defined 
in (1). Running a control system involves more features 
than are laid down in the documents mentioned above. 
Fig. 2 illustrates this fact: 

 

Operating and Presentation Clients

Middle Layer Server

Data Acquisition and Control Busses
CANopen, GPIB, RS232, USB, PCI, SEDAC…

Front End Electronics

Specific Device
Interfaces

T&M Instrument
Interfaces

Common Device
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Operating and Presentation Clients

Middle Layer Server

Data Acquisition and Control Busses
CANopen, GPIB, RS232, USB, PCI, SEDAC…

Front End Electronics

Specific Device
Interfaces

T&M Instrument
Interfaces

Common Device
Interfaces

Front End Device Server

 

Figure 2: Architecture of the control system for 
PETRA III [4]  

 
Why is Fig. 2 incomplete? A few examples: 

• The daily operational needs may require minor or 
major improvements, perhaps even adding to or 
redesigning a certain feature. This may lead to 
pragmatic solutions not foreseen in the description 
of the tool-sets. 

• There are old systems which, due to financial and/or 
manpower bottlenecks cannot be upgraded. 

• The control system has to be able to cope with 
failures and unforeseen situations. 

• The technical and personal environment of the 
control system changes. 

• The diagram shows the system under normal 
operation conditions, but not the process of 
achieving these conditions (e.g. when the system is 
installed) nor the maintenance operations required 
during the lifetime of the accelerator (e.g. when 
hard- or software is replaced). 

• Some purely pragmatic modifications might lead to 
a situation in which the diagram no longer represents 
reality. 

Over and above the technical changes just outlined, the 
control system people are faced with a number of jobs to 
do and problems to solve. I describe these jobs as the 
‘meta-control system’. 

META-CONTROL SYSTEM VIEW 
Here I describe some of the features that a meta-control 

system should have. The focus is on the control systems 
of PETRA III and DORIS III and its preaccelerators, 
using TINE as an integrating tool-kit. 

Fault detection and repair  
The following features or improvements have been 

added or made since 2005 [5]: 
• JAVA-Applications write Logging-Information. The 

control group at DESY has a Log-Viewer-
Application to identify faulty applications. Until 
now, however, there is no automatic notification. 
(jDDD has recently set a notification to a Java 
Message Service Server.) 

• Remote control of Device-Servers shows status and 
allows restart. 

• What we have named ‘Spider’ shows the status of all 
links to TINE network devices. A ‘Tarantula’ crawls 
through those links from one level down to the next, 
building a tree of dependencies. 

• For each type of Windows host used in the control 
system a spare is kept running and there is an agreed 
procedure for how to replace a broken computer 
with the appropriate spare. The time needed for the 
replacement is about 30 minutes. 

Control systems central database  
Measures are in place to make our system resilient to 

disk crashes or computer breakdowns  
The configurations and initialisations of Device Server 

Computers as well as the processes they host are laid 
down in a Central File Repository. There are semi-
automatic procedures using this information to setup a 
new or replace a broken computer. Work still needs to be 
done in order to ensure support for different operating 
systems with the same Central File Repository (e.g. 
proper choice of file-transfer modes, OS-independent file-
formats). 

At regular intervals a central upload process copies 
local files to a network repository. From there they will be 
downloaded during the setup process mentioned above. 

Application deployment  
We have implemented a ‘build and deploy’ procedure 

for JAVA applications [6] which eases the work of the 
programmers and enforces our guidelines for the creation 
and storage of JNLP files. (An offline-tool for re-
checking the files has yet to be integrated into ‘build and 
deploy’.) 

Application programming policies 
A rich client application written for example in JAVA 

can make use of all features of the language; but we have 
rules which restrict usage of the features and it is the 
programmers’ responsibility to obey them. So the control-
people may never lose sight of – or allow others to lose 
sight of – these policies. 
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An application-framework [7] helps to create 
applications which are policy conform, and operator 
panels generated by a panel editor such as jDDD can fully 
implement the policies. 

Maintenance strategies  
The control group uses the same operating system 

updating procedures as the DESY central IT, but 
provisions have been made for the control group to trigger 
the process only when it fits into the accelerator schedule. 

Proactive maintenance is achieved by looking for 
critical events in system-log files (DISK-errors, 
unscheduled reboots). Preventive maintenance involves 
replacing equipment before end-of-life. 

Defence against attacks  
DESY’s central IT-Group provides and maintains the 

anti virus software used by the Windows PCs of the 
control system networks. These networks have no or only 
limited access to the internet. Access-lists in the control 
system network routers which could help to protect the 
control system are under construction. 

Access to accelerator equipment is secured by a device-
server specific list of ip-addresses and accounts. 

Monitoring the system  
We recently implemented monitoring tools servers 

which are fully integrated into the tool-set TINE. e.g.: a 
locator service shows the location of all network-devices 
connected to the control system-network. This will 
automatically trace roaming equipment such as vacuum 
pumping stations. A network analysis service gives 
information on bottlenecks or bad network connections 
and may generate an alarm.  

Integration into Campus IT-Infrastructure 
We try to use as many central services as possible. 

Some services have been introduced by us in close 
cooperation with the central services people. We have to 
keep an eye on how the control system is affected when 
any of the above is out of order. 

This strategy has been positive both for us and for the 
machine-physicists and service-people who easily 
exchange data between the control system and their 
workplace. 

Observation of hard- and software life cycles in 
relation to the accelerator’s lifetime 

A regular review of control systems is advisable, 
keeping an eye on software- and hardware-lifetimes and 
on possible improvements or necessary renewals. 

The end of support for hard- and software forces us to 
make decisions. For example Microsoft Windows XP 
extended support ends in 2014, thus we will not and do 
not need to upgrade the control system of DORIS III to 
Windows 7 because the operation ceases by end of 2012. 

Choice of adequate hard- and software-
solutions 

We mainly use standard PCs in the control system, and 
only occasionally avail ourselves of more expensive 
solutions. We have generally had success with this policy. 
It saves money and keeps diversity low. 

The chosen hard- and software solution must meet the 
requirements and the skills and experience of the control 
system people. 

Preserving approved concepts 
In 1978 we operated PETRA I with mini-computers. 

We had implemented many of these meta-control system 
features. They disappeared along with the computers and, 
at least some, out of the heads of the colleagues! I think 
good concepts and their principles should be preserved. 

CONCLUSION 
An accelerator-control system should support the 

reliable operation of an accelerator in all its different 
operational phases with as few interruptions as possible. 

The control systems group is responsible for that job, 
formulating and activating the concepts, policies etc. 
which hold the control system together and defending it 
against various quick fix pseudo solutions, which are so 
often proposed. Indeed, the control system people are the 
custodians of the meta-control system! 

I believe that, in any institution, you will have at least 
as many control systems as there are control-groups, even 
if there are no or only slight technical differences. The 
control systems for DORIS III and PETRA III for 
instance are technically quite different but are maintained 
by the same people and the meta-control system is 
therefore the same. 

So what is behind an accelerator-control system? 
The control system group! 
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TANGO COLLABORATION NEWS 
J. Meyer (ESRF) on behalf of the Tango community 

ALBA, DESY, ELETTRA, ESRF, SOLEIL

Abstract 
During the last years, the Tango collaboration was and is 
still growing. More and more users are requesting new 
features and developing new tools for Tango. Decisions 
whether the requested features will be implemented and 
whether new tools will be part of the Tango distribution 
need to be made. The organizational aspects of the 
collaboration need to be clarified as well as the decision 
making process for new developments.  

This paper will explain the collaboration, its 
organization and the decision making process as well as 
the latest facts and features around Tango. 

Some ongoing developments are the new code 
generation tool to allow inheritance in the Tango class 
structure, the new event system for high bandwidth event 
distribution and the Tango packaging to allow installation 
with a few clicks. 

WHAT IS TANGO? 
Tango [1] is a control system tool kit developed by a 

community of institutes. It is object oriented with the 
notion of devices (objects) for each piece of hardware or 
software to be controlled. Tango classes are merged 
within operating system processes called Device Servers. 
Three types of communication between clients and 
servers are supported (synchronous, asynchronous and 
event driven). 

But Tango is not only the software bus which handles 
the communication between device servers and clients. 
The Tango tool chain offers software from the hardware 
interface to the graphical user interface for several 
programming languages. 

Tango utilities are available, with the basic installation, 
for code generation, device configuration and testing and 
for administration and survey of a whole Tango control 
system.  

An archiving and a configuration snapshot system 
usable with Oracle or MySQL are also available. 

Table 1 : Available Tango Modules 

Module Description 

Core Libraries Client/Server communication libraries 
for C++, Python and Java 

Device Classes About 300 hardware interface classes 
are available to download  [1] 

GUI Frameworks Available for C++ and Python using 
QT, for Java using Swing and a web 
interface written in PHP 

Client Bindings LabView, Matlab and IgorPro  

Tools Pogo – Code generator for device 

classes in C++, Python and Java 
Jive – Configuration and testing tool 
Astor – Administration and survey of 
the Control system 

Archiving Archiving and snapshot system with 
GUIs and web interface. Usable with 
Oracle and MySQL 

Alarm System Event driven alarm service 

Sardana Framework for experiment control : 
Interface standardization, configuration, 
sequencing, command line interface 

COLLABORATION HISTORY 
Tango development started in 1999 at the ESRF. 

SOLEIL joined as the first partner in 2002, ELETTRA 
and ALBA joined in 2004 and the DESY (beamline 
controls) in 2008. 

For every new member a new memorandum of 
understanding was signed by all collaboration partners. 

We meet twice a year to discuss all ongoing projects. In 
case of lack of consensus, we tried to find a solution, all 
collaboration partners could agree upon.  

A coordinator was named in each institute for all 
organisational, but also technical requests concerning 
Tango.  

A mailing list is available for all questions and 
propositions to the whole Tango community. 

A GROWING COMMUNITY 
Since last year we have two new institutes requesting to 

join the collaboration: MAX-lab in Sweden, FRM-II in 
Germany. Tango is also used by other laboratories, for 
example LMJ (beam diagnostics) in France. Industrial 
companies are evaluating Tango, due to outsourcing 
requests from new projects. 

The number of software development projects around 
Tango is increasing. To package the system and to keep 
the source repositories clean, we have to decide which 
projects will be part of the Tango distribution and which 
ones will be add-ons. 

With the growing community, the increasing number of 
users and the foreseeable number of new developments 
around Tango, we have to find a new organisational form, 
to be sure, to take decisions on development priorities and 
strategies within a reasonable delay. 

THE NEW ORGANIZATION 
Taking into account the increasing number of users, we 

will reduce the frequency of Tango meetings to reduce 
organizational effort and cost. Specialised meetings on 
particular development projects are encouraged. 
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To allow a fast decision making process we are 
changing the collaboration management structure. The 
new structure has three levels: 

1. The executive committee: 
The executive committee takes the strategic decisions 

about developments in the Tango collaboration. There is 
one member from each institute who has signed the 
memorandum of understanding. This representative 
should have enough power to decide on allocating 
resources to develop software for Tango. 

The committee will meet, at least, just after the Tango 
collaboration meetings. 

2. The collaboration coordinator: 
The collaboration coordinator is the central point of the 

organizational structure and liaises between the project 
leads and the executive committee. His responsibility is: 

• To organize and coordinate the executive 
committee meetings, to produce a report of the 
committee meeting and to give feedback to the 
Tango community. 

• To maintain a global project plan, in collaboration 
with the project leads, including requirements, 
schedule and resource requirements. 

3. The project leaders 
Besides the Tango core libraries, several packages are 

considered to be part of the Tango controls system. A list 
of these packages is maintained up-to-date by the 
collaboration coordinator and any change to this list is 
decided by the executive committee. Each package which 
is part of the Tango core has to have a project leader. 

For the Tango community, the project leader is the 
contact person for all questions and remarks concerning 
that particular project. He is in charge of following the 
project schedule and ensuring the requirements are 
satisfied. In case of problems impacting on other Tango 
project(s), the project leader refers questions to the 
collaboration coordinator and eventually to the executive 
committee. 
 

We distinguish two different collaboration membership 
types: 

• Committer: must contribute resources to the 
collaboration. He is responsible for one or more 
Tango core packages. 

• Contributor: can propose code modifications to 
the committers for the Tango core packages and 
submits Tango device classes to the public device 
classes repository. 

How to accept a new collaboration partner? 
To be an official member of the Tango collaboration, a 

new institute needs to sign the memorandum of 
understanding. New members are to be accepted with a 
unanimous decision by the executive committee. 

How to get an official Tango decision? 
All requests for decision should be sent to the 

collaboration coordinator. They will be presented to the 
executive committee during the next committee meeting. 

Decisions are made by voting. The vote of each 
executive committee member is weighted according to its 
status as contributor or committer (cf. above). Each 
committee member has at least a weight of one. An extra 
vote is acquired if the committee member represents an 
institute which is also a committer. 

ON-GOING PROJECTS 
The Packaging 

To allow an easy way to install and run Tango we 
prepare binary packages on top of the source code 
distribution. 

A binary package is available for Windows, since a 
long time, from the Tango web site [1]. Now a first 
version of binary packages is available for Debian and 
Ubuntu Linux users. From Launchpad the different 
packages can be installed as needed [2]. Investigations are 
ongoing how to support binary packages for other Linux 
distributions. 

The Tango Box 
The Tango box is a virtual Linux computer which runs 

in the VMware Player [3] virtualisation software. On this 
virtual machine runs a Tango system and most of the 
Tango tools are installed and ready to be used. It offers an 
overview of the Tango software on a running system 
without installing Tango on a local machine. The software 
on the Tango box is updated once a year. 

GUI Developments 
A lot of effort is spent to add more features and new 

functionality to the available graphical toolkits.  
The Python toolkit Tau supports the whole spectrum of 

viewers now. With the C++ toolkit QTango, synoptic 
displays can be created from CAD drawings. On the Java 
side, an on-going development will open the toolkit for 
different data sources. This should allow the usage of 
widgets with non Tango data sources. 

Pogo the Code Generator 
All the Tango classes follow the same skeleton. 

Therefore, a code generator (Pogo) has been written to 
generate these skeletons. This tool was available at the 
very beginning of Tango. Pogo was implemented using 
hand written parsing techniques. The decision was taken 
to re-write the code generator.  

The new release of Pogo is based on modern techniques 
using Xtext [4] to create a Tango DSL (Domain Specific 
Language). This DSL is then used to describe the new 
Tango class. Using Xpand [5] and a set of templates, the 
Tango class skeleton is generated. Xtext and Xpand are 
part of the Eclipse modeling project [6].  
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With this new way of generating code, it is now 
possible to implement inheritance of Tango device classes 
properly. Only the inheritance of abstract interface classes 
was allowed before. 

 
Figure 1 : Code generation with Pogo 

The new code generator is available for generating C++ 
classes. The templates for Python and Java still need to be 
written. 

THE NEAR FUTURE 
A Faster Event System 

The Tango event system is based on the CORBA [7] 
notification service, the implementation used is 
omniNotify [8]. Today’s event rates are sufficient but 
cannot be improved due to the implementation of 
omniNotify (dead project). The detailed problems have 
been already described at ICALEPCS 2009 [9]. 

Performance measurements for event distribution have 
been carried out using the Data Distribution Service 
(DDS) [10] implementation OpenSplice [11] and the 
publisher/subscriber pattern of the ØMQ [12] Socket API.  

The measured performance values are in received 
events per second between two machines (P4, 2.5GHz, 
Ubuntu 9.04 – Core 2 Duo, 2.6GHz, Ubuntu 9.04) on a 
100 Mbit network. 

Table 2 : Event System Performance Tests 

Sub 1 int (32bits) 1024 int 
 Tango DDS ØMQ Tango DDS ØMQ 

1 770 12500 45000 650 1850 2400 
5 400 7900 14000 200 1800 500 

10 220 6500 7300 100 1700 230 
 

DDS showed the best performance, for a growing 
number of subscribers, due to its multicasting protocol. 
But it has a set of drawbacks for programming and 
configuration. The ØMQ performance was measured only 
with unicast transmission because the multicasting 
showed reliability problems. 

Table 3 : Event Systems Advantages and Drawbacks 

 DDS ØMQ 

+ 

CORBA ORB/DDS 
cohabitation, 
Performance, 
QoS, 
Multicasting 

No extra processes, 
Single cast performance, 
Can switch from uni- to 
multicast transmission 

- 

Three processes + shared 
memory per host, 
SIGKILL forbidden,  
No core dump, 
No dynamic data 
partitioning possible 

Multicasting not yet 
100% reliable, 
Young product, 
More integration code to 
write 

 
The Tango philosophy is to keep it simple. ØMQ seems 

to be more adapted for us, even if the programming effort 
is higher and we have to collaborate with the 
implementers to make multicasting reliable. Due to the 
complexity of a multicasting set-up we would like to keep 
unicasting as the default transmission for the event 
system. But, multicasting should be available when 
needed. 

Library for Image Acquisition (LIMA) 
LIMA is a project for the unified control of two 

dimensional detectors. The aim is to clearly separate 
hardware specific code from the common software 
configuration and common features, like setting standard 
acquisition parameters (exposure time, external trigger, 
etc), file saving and image processing. 

Requirements and specifications are actually collected 
from the interested institutes. 

On top of the functionality of this library, a common 
Tango interface for 2D detectors should be defined. 
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THE TINE CONTROL SYSTEM PROTOCOL: HOW TO ACHIEVE HIGH 
SCALABILITY AND PERFORMANCE 

P. Duval and S. Herb, DESY/Hamburg 

 
Abstract 

Over the years the TINE control system [1] has 
implemented numerous strategies for achieving high 
efficiency data transport within a distributed control 
system.  This was essential for controlling a large 
machine such as HERA [2]. Our recent experience with 
controls for the PETRA3 and FLASH accelerator 
complexes at DESY has revealed new scalability issues.  
The principal problem has been in limiting the 
communications load on the front end servers and 
network in the presence of increasing numbers of client 
applications, many of which are written by 'part-time' 
developers who prefer simple API calls, or use 
development platforms which support only such calls.  A 
single such application, polling hundreds of devices, may 
generate ~1000 calls per second to a single server.  This 
load on the server can be reduced if, for example, the 
intermediate software layers can consolidate such calls 
into array transfers.    TINE now offers various 'second-
order' protocol features which go a long way toward not 
just allowing but 'enforcing' efficient data transfer. We 
shall describe some of these features in this article.  

INTRODUCTION 
In this report we concentrate on how the control system 

protocol can be a limiting factor in scalability regarding 
large distributed systems.  To this end it is necessary to 
review some popular communication strategies along 
with application programmer interface (API) paradigms. 

DISTRIBUTED DATA FLOW 
0th Order: Transaction-based Client-Server 

The earliest versions of most popular control system 
protocols made exclusive use of transaction based client-
server polling.  This data-flow pattern has the inherent 
advantage of a ‘keep it simple’ strategy, but can quickly 
run into scalability issues.  These often manifest 
themselves as server-load problems rather than network-
load problems, although both issues are important. 

We take the average load (per second) on a server due 
to polling clients to be roughly given by  

TDTcS ULNNL ×××~  (1) 

where Ls is the additional load on the server process due 
to processing client transactions, NC is the number of 
clients, NT is the average number of transactions per 
client, LD is the average dispatch load of a transaction 
request at the server, and UT is the average client polling 
rate.  Equation (1) is of course schematic.  The loads LS 

and LD will be taken to refer to the number of CPU cycles 
devoted to the client-side transactions. 

Note that ‘throwing money and threads’ at the problem 
does not reduce the load as defined above.  Faster, multi-
core computers are of course able to do more in a given 
time interval.  Using a thread for each transaction can also 
reduce the impact of sluggish servers on the client side.  
But in the end, the total number of CPU cycles involved 
will be the same (if not more, due to extra thread 
synchronization and context switching). 

Similarly, the average load on a server’s network port is  

TTTcN UPNNL ×××~  (2) 

where LN is the network load (bytes per second), NC, NT 
and UT are as before, and PT is the average transaction 
payload.  This does not depend on the number of threads 
used or the CPU power of the server. 

A real reduction in load (server or network) involves 
reducing either NC and NT or both in the above equations.  
This can either be accomplished artificially (for instance 
by imposing restrictions on the number of and location of 
clients allowed to run and the update rates they are 
allowed to use) or moving to other data flow models. 

1st Order: Contract-based Publish-Subscribe 
As most control system data is used primarily in 

display at the client side, moving to an asynchronous 
publish-subscribe model can work wonders reducing the 
load on a server.  Doing so eschews the ‘keep it simple’ 
approach, as connection and contract management are 
needed.  A transaction request now results in a contract 
managed by the server, along with a table of attached 
clients. Nonetheless, the average load on a server due to 
client requests essentially becomes 

TDTS ULNL ××~   (3) 

That is, the number of clients no longer plays a role. A 
transaction request is cached and made once on behalf of 
all NC clients.   

The outgoing network load (2) essentially remains the 
same, as the transaction results need to be passed to all 
interested parties.  The incoming contribution to network 
load is for all practical purposes decimated, as transaction 
requests are made far less often.  In order to further 
reduce the network load, one can adopt a ‘send-on-
change’ policy, or reduce the number of clients by 
delivering data via multicast (especially effective for 
those transactions involving large payloads).  The TINE 
control system protocol supports both of these features. 

Asynchronous, publish-subscribe based protocols have 
a much larger domain of applicability, which however is 
still finite for several reasons.  First, the API paradigm 
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still permits plaguing a server with an extra large number 
of transactions, NT.  Second, if application programmers 
have complete freedom in choosing their platforms and 
programming styles, client applications may still engage 
in synchronous polling, effectively reintroducing the NC 
factor, and (depending on contract management) possibly 
imposing an additional asynchronous/synchronous 
coupling factor proportional to (NT)2. 

To combat the latter two effects, one could restrict the 
available platforms to those officially approved, and to 
police the set of API standards.  Or one could take steps to 
coerce efficient data acquisition at the protocol level.  The 
TINE control system has now introduced many new 
second order hand-shaking features in this direction. 

2nd Order: Contract-Negotiation 
Client applications (and middle layer servers) require 

data from the control system for display and control of the 
machine.  Specifically tailoring applications for efficient 
data transfer seldom enters into the picture.  Indeed some 
APIs do not even offer this capability. 

So on the one hand we have client applications driving 
control system data flow by making transaction requests 
(contracts), and on the other we have servers which bear 
the brunt of any ensuing scalability or efficiency 
problems.  Servers are of course responsible for collecting 
the data and controlling the hardware.  Thus, minimizing 
the impact of a server’s data delivery plays a strong role 
regarding scalability. 

Various strategies are available for reducing NT and NC 
in the above equations.  In principle, one could use a 
purely push approach, where all of a server’s available 
data are pushed via multicast onto the network.  Although 
this might reduce the server load, it could drastically 
increase the overall load on the network. In addition it 
would require clients to sift through all data from a server 
in order to find the portion of interest (increasing client 
load). Nonetheless, pushing certain popular data elements 
(such as beam energy and current) is in general a good 
idea. 

A server may also reduce the number of transactions it 
deals with if it can analyze the initial client request and, if 
possible, map it onto an existing contract, or anticipate 
further requests and appropriately restructure (negotiate) 
the contract request. We shall show below how this is 
done.  In order to understand the principles involved, we 
present a brief review of control system API models. 

We note that efforts to keep the dispatch load LD to a 
minimum should in any case be made.  The best practice 
involves simply copying ready data within the dispatch 
(rather than launching into numerical calculation or 
hardware readout). 

CONTROL SYSTEM MODELS 

Database Model 
One can view the data flowing in a control system as 

deriving from elements in a database.  This is the EPICS 
[3] approach, where one transfers process variables 

between the client and server.  So the process variables 
have names, and the actions on the variables are one of 
put, get, or monitor. 

Device Server Model 
One can regard control system elements as controllable 

objects managed by a server.  The instance of such an 
object is a device, which has a hierarchical name.  The 
actions pertaining to the device are given by its 
properties.  With minor differences in nomenclature and 
degree of object-orientation this is the model used in ACS 
[4], DOOCS [5], STARS [6], TANGO [7], and TINE.  

Property Server Model 
Certain control elements do not lend themselves well to 

a device oriented view but nonetheless follow the basic 
hierarchical naming scheme of the device server.  This is 
typically true of middle layer services.  Here one does not 
think of a device having properties, but of a property 
applying to different keywords.  This model is also 
sometimes used in STARS and TINE, but is not available 
in TANGO or DOOCS. 

TRANSACTION COERCION 
Below we give some examples of transaction coercion 

and make frequent references to the property mentioned 
in the device server and property server models above, as 
this is the real focal point of the server transaction.   

Multi-Channel Arrays 
Client panels frequently attach individual elements of a 

collection to different display widgets, e.g. power supply 
controller (PSC) currents, beam position monitor (BPM) 
positions, or vacuum pressures.  In large machines, this 
could amount to 100s if not 1000s of single elements.   

TINE, however, allows a registered property to declare 
itself a multi-channel array (MCA), capable of delivering 
all elements of a given property as a vector (with a device 
order determined by the server). A rich client might 
directly request an MCA with all elements.  Panels or 
strictly OO clients will not do this. However, contracts to 
obtain a single element of such properties are now 
renegotiated into a contract delivering the entire array.  
The client is informed via 2nd order handshaking as to the 
array index to device cross-reference. Thus a server only 
maintains a single MCA contract.  The data arriving at the 
client is parcelled out into the individual single-element 
calls underneath the API.  Recently, additional server side 
registration enables the specification of group devices, for 
cases where a property logically separates into sub-
groups. 

User-defined Types (Structures) 
TINE also allows a server to define its own data types 

(structures) which a property can use in order to delivery 
a collection of data as an atomic unit.   

Although a wonderful advent for rich client 
applications, structures present a display problem for 
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simple panel clients, which are more likely to request the 
structure fields individually. A server seeing such a 
request will deliver the entire structure, which will be re-
packaged at the client.  Again, many individual requests 
will collapse to a single contract managed by the server. 

Collapsing Equivalent Contracts 
In order to reduce the number of transactions it is 

important to make sure that equivalent calls collapse to 
the same contract. As aliases assume their canonical 
names when accessed via a client, they are unproblematic 
in this regard.  However, a de-facto alias (device number 
instead of name) or an irregular array length or data type 
could result in a transaction occurring multiple times.  
Although possible to deal with via property registration, it 
is generally up to the server to reject non-standard 
requests with the appropriate error message. 

Polling Intervals and Scheduling 
Client applications sometimes need to know ‘the 

moment something happens’ and therefore request an 
update rate much faster than is otherwise necessary. A 
server can gracefully coerce such impatient clients to use 
a slower update rate by establishing a minimum polling 
interval.  Once again, 2nd order hand-shaking renegotiates 
this with the client.  A server can satisfy the needs of its 
clients by scheduling the requested property the moment 
there are new data to send, thereby reducing latency to 
essentially zero and obviating any need for fast polling. 

Steering the Acquisition Mode 
The payload delivered in some transactions can be very 

large (e.g. video frames or large traces).  So even though 
the number of transactions might be at a minimum, the 
number of clients receiving the payload can result in a 
drain on network resources. The best practice here is to 
coerce all clients interested in large-payload transactions 
to use TINE multicast. A property can automatically 
renegotiate all asynchronous contracts to use multicast 
access (and reject synchronous requests), if so registered.  

In a similar vein, properties can also reject synchronous 
calls in such a manner that an asynchronous listener is 
inserted under the synchronous call at the client side. 

On the other hand, asynchronous monitoring makes no 
sense if the monitored data are static (do not change). An 
attempt to monitor such data will result in instructing the 
client layer to cancel the monitor. 

Exclusive Read 
A server can declare a property to have exclusive read 

characteristics, making it available only to those clients 
who pass through the same security screening applied to 
write transactions (commands).  This can be used to allow 
time-consuming reads (e.g. extra large video signals) to 
be available only to a subset of the total client space. 

RESULTS 
Making use of these 2nd order techniques generally 

involves investing some time at the server front end, 
registering properties so that transaction coercions can 
take place.  The benefits of doing this, however, can be 
dramatic.  Some examples follow. 

The FLASH magnet control consists of approximately 
260 PSCs and is realized by various TINE servers (a 
primary server running on a Solaris host, and several 
PC104 servers running embedded linux).  The client side 
applications are primarily DOOCS DDD [8] panels and 
MATLAB applications, all of which acquire settings and 
values from each PSC individually.  Prior to introducing 
the techniques described above, the primary server had a 
constant background of ~1060 contracts, was being 
synchronously polled with > 500 contracts per second, 
and was at the high end of CPU usage.  By introducing 
MCA access and static listeners for most of the 
synchronous polling, the number of background contracts 
is now ~ 50, there are much fewer synchronous calls, and 
the CPU usage is now back to 10 % or less.  The client 
applications themselves were not modified in any way, 
other than relinking with the new libraries. 

The mixed 100 Mbit/1Gbit infrastructure at PETRA3 
introduces complications when delivering video images 
via multicast, especially if Gbit video servers or routers 
have 100Mbit video clients.  As there is limited flow 
control, data delivery parameters must be precisely tuned.  
The most reliable performance was achieved by 
enforcing, via property registration, multicast access and a 
minimum polling interval. 

The PETRA3 orbit server consists of ~270 Libera BPM 
readout modules which are attached to a single Linux 
CPU.  Most properties are registered to provide MCA 
access.  A minimal polling interval of 10 Hz holds the 
regular bevy of ~20 clients to a set of ~35 contracts and 
with a total CPU load of ~6 %. 

We have shown in this report various methods whereby 
a server can take control over its clients.  A server can 
continue to provide all callers with the information 
requested, but do so on its own terms. 
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FESA3
THE        NEW       FRONT-END          SOFTWARE             FRAMEWORK        AT     CERN   
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Abstract

Currently the LHC (Large Hadron Collider, located at
CERN/Switzerland) is controlled by the use of FESA2.10
(FrontEnd Software Architecture v. 2.10) classes. FESA3
is not only an update of FESA2.10, but a completely new
approach. GSI plans to use the FESA system at the com-
plex FAIR facility.

One of the main reasons to introduce FESA3 was to pro-
vide a framework which can be shared between different
labs. This is accomplished by splitting up the FWK into a
common part, which is used by all labs, and a lab-specific
part, which allows e.g. a lab dependent implementation of
the timing-system.

FESA3 is written in C++, runs a narrow interface (Re-
mote Device Access, a middleware which encapsulates
CORBA), supports multiplexing of different accelerator-
cycles, is completely event driven and uses thread priori-
ties for scheduling. It provides all FESA2.10 functionali-
ties and additionally introduces several new features.

FESA3 is integrated in the Eclipse IDE as a plugin. Us-
ing this plugin, the user can easily create his FESA-class
design (xml file), generate the C++ source code, fill the
device-specific methods, and deploy the binary on a front
end.

As well as the framework the Eclipse plugin has a lab
specific implementation.

An operational release for FESA3 is planned end of
2010.

THE PURPOSE OF FESA3

FESA3 is a software framework which provides an easy
way for developers to produce device classes by generating
most of the code automatically. It supports multiplexing of
different accelerator-cycles and many other features which
can be used by the class-developer. The main purpose of
the framework is to provide an common and unified way to
develop device classes. This approach saves a lot of work
and simplifies debugging, documentation and code adop-
tion for the class-developer and all involved parties.

THE ROOTS OF THE FESA
FRAMEWORK

All early versions of the FESA framework were devel-
oped solely by the CERN facility. FESA3 is the first release

which is developed as an collaboration between CERN and
the GSI. This collaboration was the main reason to restruc-
ture some of the Fesa2.10 fundamental internal parts and to
finally go for a new major release.

FESA3 continues to provide all services from older ver-
sions and as well extends the common approach by addi-
tional services which where demanded by the CERN user
community.

FESA3 AT THE FAIR FACILITY

For the FAIR facility several new accelerator installa-
tions will be built at GSI.

Central aspect is an increased number of research pro-
grams resulting in up to five beams in parallel. The FAIR
facility will be controlled by a new control system which
will be able to support all aspects of the complex GSI/FAIR
operations on a common technical basis. The control sys-
tem for the FAIR facility currently is in the design phase.

One part of this new control system will be the device
software which runs on the front ends. FESA was choosen
as software framework since it already proved itself at the
LHC at the CERN facility and allows to pass the device-
specific implementation directly to the device expert.

CLASS DEVELOPMENT WORKFLOW

The FESA3 Eclipse-plugin guides the class developer on
his way to develop a FESA3 class. The following steps
have to be performed to do so:

1. Design

In the first step the developer needs to design his class
according to his needs. This process involves the spec-
ification of Properties, Fields, Server- and RealTime-
Actions and their dependencies on each other. The
design itself is done via a comfortable XML editor,
which is integrated in the FESA3 Eclipse-plugin and
coupled to an XSD schema for validation.
(see figure 1)

2. Code Generation

Code generation may be started in the plugin if the
class design is valid. An XSLT engine generates C++
code using the class design as input.

 
AND        THE          FAIR    FACILITY
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Figure 1: screenshot of the class-design in the FESA
Eclipse-plugin

3. Implementation

The code generation provides methods which need to
be completed by the class developer. Those Server-
and RealTime-Actions allow to use specific device
drivers for the hardware. External driver libraries can
be included in a class specific make-file.

4. Instantiation

Since the FESA3 class may run on different front
ends, the developer needs to create an instantiation
document per frontend. Inside this document all con-
figuration parameters for this specific frontend are
stored. Similar to the class-design, the instantiation
document is generated by the plugin and can be edited
within it’s xml editor.

5. Compilation

As soon as the implementation is finished, the com-
pilation and linking process may be started. The out-
come will be a class binary for a predefined platform,
which is ready to run.

6. Deployment

The resulting binary, the instantiation file and all other
dependent files need to be placed on the frontend for
which they were configured and to which the device-
hardware is connected.

7. Execution

Finally the class can be executed and debugged. The
FESA3 navigator-tool may help to build up a connec-
tion to the class and debug all possible scenarios.

The described workflow is not strictly forward but also al-
lows to roll back and redo any step which is necesarry.

FUNCTIONAL OVERVIEW

Basic Internal Design

As shown by the use-case diagram below, request-
handling and hardware control are the two complementary
services equipment-software has to model. The two dif-
fer very much in nature since request-handling is an on-
demand service, whereas hardware control is subject to
tight real-time constraints. Obviously, request handling
must run at a lower level of priority and shall not be able
to preempt the real-time task. In order to decouple the
two, equipment-software includes a software abstraction of
the device. Thanks to this abstraction, an operator does
not directly see the hardware device, but rather accesses it
through the so called Server side. (see reference [1])

Figure 2: Separation of Server and RealTime side. [1]

The system is split in two logical layers: RealTime,
which implements all parts that are directly triggered by
events and Server which models the equipment interface
and implements the middleware access. Both services are
physically implemented on the same hardware platform. It
is possible to run these two services in the same process,
or in two separate processes. Devices are implemented as
objects in the object-oriented software terminology. Each
FESA3 class represents a devicetype and allows to manage
different instances of this devicetype. A FESA3 equipment
can represent a collection of different FESA classes, which
depend on each other.

The event driven RT-system

In FESA3 RealTime-Actions can be triggered by differ-
ent types of event, from various event sources.(see figure
3) The possible source types are listed here:

• Timing Event

This event source is meant to be the real accelerator
timing. Different events corresponding to different cy-
cles and machines are received with this source if the
frontend is connected to the timing receiver hardware.

• Timer Event

A timer event is launched by a internal clock on a pe-
riodic interval. The developer can configure this inter-
val in the instantiation document per frontend.
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Figure 3: Basic event based functional structure of the FESA3 framework

• Custom Event

In FESA3 the developer as well has the possibility
to implement his own customized event source. This
event source is used to support all other hardware and
software event sources which do not use the accelera-
tor timing.

• On Demand Event

To communicate between Server and RealTime part of
a FESA3 class there is not only the notification queue,
which connects the RealTime to the Server part, but
also the On-Demand mechanism, which works the
other way around. Via socket connections it allows
to trigger RealTime-Actions from the Server side.

• On Subscription Event

FESA3 allows to establish dependencies between dif-
ferent FESA3 classes. E.g. one FESA3 class can sub-
scribe to properties of another FESA3 class by using
this event source.

The client interface

The client has different possibilities, to communicate
with a FESA3 class using the RDA client interface. Access
methods for the client are Get, Set, MonitorOn and Moni-
torOff. The API to these methods is a narrow one. Figure
4 shows the relation between the RDA DeviceServer, the
middleware layer and the client.

To specify the proper attribute(s), there are several pa-
rameters:

• Property

The property describes a collection of data, which can
be obtained or modified with different client access
methods.

• Device

A FESA3 class represents a device type. A single
FESA class can control many devices of the same

type. Within the parameter Device the client can spec-
ify the proper device instance which is to access.

• CycleSelector

On a multiplexed property, with the cycle selector
string the client can select the cycle (virtual acceler-
ator), he wants to work with. On a property which is
not multiplexed the cycle selector can stay empty.

• Value

Get methods retrieve data as an instance of the type
rdaData. RdaData can store an array of mixed data
types. Besides the data itself, each entry allows to
store additional information.

• Context

The context is used to pass parameters (filters) to the
properties of a FESA3 class.

• ReplyHandler

Monitor on calls require the implementation of reply
handlers. As soon as new data arrives, the middle-
ware triggers the reply handler in which the data is
processed.

• Request

This class is the virtual handle to a subscription. It is
filled by the MonitorOn call and is used to keep track
on a subscription and to terminate it if it is not needed
any more.
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Figure 4: The CERN RDA - middleware layer. (see reference [2])

class relationship

Unlike FESA2.10, FESA3 provides three different ways
of class relationship, association, composition and inheri-
tance:

• Association (see figure 5)

Figure 5: Association between two unique FESA3 classes

An association specifies a light coupling between two
FESA3 classes. The two classes run independently
and do not rely on each other (e.g. class A may shut
down while class B is still running). The two classes
can be deployed on different frontends.

• Composition (see figure 6)

Using a composition the developer can create a strong
coupling between FESA3 classes. The deployment
of class A means to deploy the whole class-tree. As
well it is possible to start B with only C and D as
sub-classes and without A as a smaller composition.
The lifetime of the composition depends on the life-

Figure 6: Composition of many FESA3 classes, repre-
sented as one class

time of the base-class. All classes need to run on the
same frontend. All classes within the composition are
standard FESA3 classes and can be used seperately as
well.

• Inheritance (see figure 7)

The definition of inheritance in FESA3 consists of tree
characteristics:

– Properties/RTActions defined by a baseclass are
available for any subclass.

– Properties/RTActions defined by a baseclass can
be overridden (explicitly).

– The device model of a derived class fully inherits
from the device model of its baseclass.
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Figure 7: Inheritance between different FESA3 classes

The split between framework and lab part

The FESA2.10 framework was strongly coupled with the
CERN Oracle database, the CERN Timing and several file
paths. As one of the major changes this strong coupling
has been removed in FESA3. Each institute which is using
FESA3 now has to provide a sub-package where institute-
specific code can be used. This split does not only touch the
C++ code. The whole process of creating a FESA3 class is
involved. Now it is possible to have a specific metamodel
which triggers an adapted code generation. As well the
FESA3 Eclipse plugin can be adjusted to the needs of the
particular institute.

OUTLOOK

Currently FESA3 still is in the pre-beta phase. An oper-
ational beta for FESA3 will be released end of 2010. For
later releases the following features and tasks are planned:

• Transaction

On larger accelerators the possibility to synchro-
niously trigger a Set for many frontends is needed.
This service is called ”transaction”.

• On-change/deadband support for subsribers

This service allows clients to choose, if they will get
notified if a value did not change at all, or if it changed
only within a predefined deadband.

• Tests and benchmarks of the framework

Tests of the FESA3 performance in terms of reaction-
speed, data throughput and CPU usage need to be
done.
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The front panel consists of Lemo connectors, a power 
ON/OFF switch and indicator. There is input for each 
scaler, and an ARMIN and GATEIN for daisy chaining 
with external equipment. There is a 10MHz CLKOUT 
output for external synchronization, and an ARMOUT 
output that is controllable through EPICS. Typically, for 
time resolved applications, the ARMOUT is connected to 
the ARMIN and the CLKOUT to the first scaler. 

The back panel has a power input connector. Typically, 
an external wall mount or desktop power supply is used 
for electrical safety concerns. There are LEDs to indicate 
activity from EPICS, ARMED, ARMIN, and GATEIN. 
 

Figure 6: Scaler unit. 
 
Most of the EPICS components were already written. 

EPICS databases, MEDM screens, and scaler record 
support were taken from the STD synApps module [6]. 
An ASYN driver was written to provide device support 
and define interfaces that allow PVs access to the scalers 
outside of the record context. Record support provides a 
framework which calls methods from the ASYN driver in 
a programmed sequence depending on its counting mode. 
The driver responds by sending commands and read/write 
data through the bridge to control the scalers.  

The driver defines methods for initializing hardware 
and scalers, reporting its status, processing scaler values, 
and handling interrupts from the FPGA. During 
initialization, the driver registers its methods with the 
record using the Device Support Entry Table (DSET) 
structure [9] hooking them into the framework. An 
interrupt handler is registered with RTEMS to process 
status and read out scalers, and post them to EPICS. 

The FPGA component defines Programmed IO (PIO) 
registers which hook into the bridge. Registers are 
accessed by the ASYN driver as memory locations. 
Commands and data received by the driver indicate what 
function to perform, such as arm, preset, or read a scaler. 
All scalers are up counters. Preset values are converted to 
negative prior to loading into the scaler. When a scaler 
reaches zero, it generates an interrupt to the driver and 
dispatches it to a process which posts the status and data 
to EPICS. 

Similar to the scaler, other applications have been 
developed which use the GEN-II hardware platform. A 
flexible timing module was developed for CCD shutter 
controls. It allows the user to delay and stretch timing 
signals from field instrumentation with 20nS resolution. 
For this application, no new hardware needed to be 
developed. A “bunch scaler” was developed to count the 
number of photons per accelerator bunch from an 
Avalanche Photo Diode (APD) for a Laser-based pump 

probe experiment. A new IO component board was 
required because the field equipment had intermixed 
signal levels, such as TTL, ECL, and NIM. Software 
development for both these applications only required an 
ASYN driver and MEDM screens for the application 
specific behaviour and user interfaces. 

CONCLUSION 
The “Generic Digital” approach provides a design pattern 
that can be employed to develop and rapidly deploy many 
beamline and detector applications. The model allows 
flexibility and the ability to adapt to applications of 
varying configurations and complexities. Existing 
hardware components can be easily interchanged and new 
ones developed. Coupling the uC5282 with an FPGA is a 
hardware configuration that has been proven to be reliable 
at the APS and other laboratories throughout the 
community. Using EPICS, RTEMS, and synApps, 
reduces overall project cost and allows one to focus more 
on the application development, thus minimizing the 
hardware and software development time. Both future 
beamline and detector applications and those currently 
under development, along with the APS users, will 
benefit by the approach discussed in this paper. 
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QT EPICS DEVELOPMENT FRAMEWORK* 
A. Rhyder#, A. Owen, G Jackson. Australian Synchrotron

Abstract 
QCa is a layered software framework based on Qt for 

accessing EPICS data using Channel Access on a range of 
platforms. It is used on several beamlines at the 
Australian Synchrotron. The QCa framework provides 
object oriented C++ access to control systems using 
EPICS (Experimental Physics and Industrial Control 
System). It is based on Qt, a widely used cross-platform 
application development framework. GUI or console 
based applications can be written that use QCa at several 
levels. QCa includes Qt plugin libraries, EPICS aware 
widgets, data formatting classes, and classes for accessing 
raw EPICS data in a Qt friendly way. QCa also includes 
an application for displaying forms produced by the Qt 
development tool ‘Designer’. Using this application a 
complete EPICS GUI system can be generated without 
writing any code. A GUI system produced in this way can 
interact with existing EPICS display tools such as EDM. 
QCa handles much of the complexities of Channel Access 
including initiating and managing a channel. Applications 
using QCa can interact with Channel Access using Qt 
based classes and data types. Channel Access updates are 
delivered using Qt’s signals and slots mechanism. 

INTRODUCTION 
Channel Access is described as ‘one of the core 

components of an EPICS system. It is the software 
component that that allows a Channel Access client 
application to access control-system data which may be 
located on different hosts throughout a network’ [1] 

While CA is the default means to access EPICS data, its 
use is not trivial. A significant understanding of how CA 
works is required to execute the steps required to read or 
write data. The complexity of setting up and terminating 
CA requests leaves room for error. Also, CA uses a C 
programming interface and so does not make use of 
object oriented programming techniques. 

Qt is a cross-platform application and UI framework. It 
includes a C++ class library and a cross-platform IDE. 

The QCa framework provides a Qt based C++ 
framework for easy CA access to EPICS data. 

It provides access to EPICS data at several levels from 
programmatic reading and writing of data, EPICS aware 
widgets for developing GUI based applications through to 
EPICS aware Qt plugins such as push buttons, sliders, and 
text widgets. When these plugins are used within the Qt 
form development tool ‘designer’ EPICS GUIs can be 
developed without the need for any code development. 

QCA FRAMEWORK HIERARCHY 
OVERVIEW 

The QCa framework is designed to allow access to CA 
data in the most appropriate form. The framework is 
based on a hierarchy of classes as shown in Table 1. This 

hierarchy is open at all levels to the developer. 
Appropriate use of the hierarchy is shown in Table 1. 

 
Table 1: QCa framework hierarchy 

Type of 
access to CA 
data. 

Functionality Main classes 

C++ access to 
the CA library. 

Provides 
convenient C++ 
access to the CA 
library. 

CaObject 

Qt based 
access to CA. 

Hides CA 
specific 
functionality. 
Adds Qt 
functionality 
such as signals 
and slots.  

QCaObject 

Data type 
independent 
access.   

Hides EPICS 
data types, 
providing read 
and write 
conversions 
where required.  

QCaInteger 
QCaString 
QCaFloating 

EPICS aware 
graphical 
widgets. 

Implements 
graphical Qt 
based widgets 
that provide 
access to EPICS 
data.  

QCaLabel 
QCaLineEdit 
QCaPushButton 
QCaShape 
QCaSlider 
QCaSpinBox 
QCaComboBox 
QCaPlot 

EPICS 
aware 
graphical Qt 
plugins. 

Adds Qt plugin 
interfaces to 
EPICS aware 
widgets. 

QCaLabelPlugin 
QCaLineEditPlugin 
QCaPushButtonPlugin
QCaShapePlugin 
QCaSliderPlugin 
QCaSpinBoxPlugin  
QCaComboBoxPlugin 
QCaPlotPlugin 

GUI support 
widgets 

Implements Qt 
based widgets 
that support 
control system 
GUIs. These 
widgets do not 
access the CA 
library. 

AsGuiForm 
GuiPushButton 
CmdPushButton 
Link 

 ____________________________________________ 
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C++ ACCESS TO THE CA LIBRARY 
The CaObject base class provides a C++ wrapper 

around the CA library. While available to the developer, it 
was written mainly to provide a level of abstraction 
within the Qt based QCaObject class. It is recommended 
to be used where a Qt framework is not available. 

QT BASED ACCESS TO CA 
The QcaObject class provides full access to EPICS data 

while hiding most CA specific functionality such as link 
status, connections and channels. 

The QcaObject class adds Qt functionality. Data can be 
written using a Qt slot and Qt signals are available for 
data and status information as required. Qt data types are 
used to represent all EPICS data. 

The data in the update signals may be of any type and is 
represented by a Qt variant. 

DATA TYPE INDEPENDENT ACCESS 
The classes QCaInteger, QCaString, and QCaFloating 

are based on QCaObject and interpret all data as integers, 
strings, and floating point numbers respectively. They are 
used to provide access to EPICS data in a known format 
regardless of the actual data type of the EPICS data. For 
example, string data is always required for a text label 
regardless of the underlying EPICS data type. While some 
conversions are unlikely to be of much practical use, all 
conversions are permitted. 

EPICS AWARE GRAPHICAL WIDGETS 
The classes QCaLabel, QCaLineEdit, QCaPushButton, 

QCaShape, QCaSlider, QCaSpinBox, QCaComboBox, 
and QCaPlot allow an application to add graphical objects 
to a user interface that are EPICS aware. That is, they 
interact directly with EPICS data. The application sets up 
the EPICS process variable name and other parameters 
that define how the widget interacts with EPICS data. The 
application does not have to handle EPICS data or any 
aspect of the CA interface. 

The application may supply the EPICS aware widgets 
with an object that the widgets can send Qt signals to, 
including error and status messages signals. 

EPICS AWARE GRAPHICAL QT PLUGINS 
The classes QCaLabelPlugin, QCaLineEditPlugin, 

QCaPushButtonPlugin, QCaShapePlugin, 
QCaSliderPlugin, QCaSpinBoxPlugin, 
QCaComboBoxPlugin, and QCaPlotPlugin are EPICS 
aware widgets with a Qt plugin interface. 

These plugins can be used by any Qt application that 
can load plugins. 

They are loaded into the Qt GUI design tool ‘Designer’ 
which can be used to generate GUI description files that 
include EPICS aware widgets. These files can be loaded 

at run time by any application code, or used as source for 
any application. One application that loads these files at 
run time is AsGui, an MEDM/EDM replacement. A 
feature of these plugins is that they are active at design 
time. 

GUI SUPPORT WIDGETS 
The classes AsGuiForm, GuiPushButton, 

CmdPushButton and Link implement Qt based widgets 
that support the development of EPICS control system 
GUIs. They are not EPICS aware widgets. 

The AsGuiForm class can contain any Qt based 
widgets, including the QCa framework’s widgets. It is 
used as the scroll area in the AsGui application and can be 
used to create sub forms when developing control system 
GUIs in ‘designer’. 

The GuiPushButton class is used to launch new GUIs. 
The CmdPushButton class is used to execute any 

command. Typically it would be used within a GUI to 
perform an action on the local machine, such as launch 
another application, or interact with an MEDM session. 

The Link class provides a generic mechanism for 
configuring how widgets in a GUI interact. For example, 
the value in one widget can control the visibility of 
another. Examples of the GUI support for Qt plugins  are 
shown in Figure 1. 

QCA BASED APPLICATIONS 
The QCa framework currently includes a couple of 

applications. The main application is AsGui. 
AsGui is a graphical control system user interface. It 

displays EPICS aware GUIs based on user interface files 
created using ‘Designer’ as shown in Figure 1. 

 

 
Figure 1: A sample GUI created in designer using EPICS 
aware plugins and GUI support plugins 
 

QCaMonitor is a console application that takes a list of 
EPICS process variable names as an argument and 
monitors changes to the data specified by the names. It 
will perform the same task as the standard EPICS 
application caget. It is an example of using QCaString 
objects to generate a stream of textual based updates.
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CLASS USAGE 

 
Figure 2: Typical QCa class usage 
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THE BEAMLINE E

Yuhong Yan#, Luden
ENCS, Concor

Abstract 
Scheduling the experiments to the 

synchrotron at the Canadian Light So
manual procedure so far. Once every
beamline scientists discuss before 
schedule as many approved experim
There are so many constraints on reso
availabilities, user preferences, and exp
to consider that none has ever been ab
manual scheduling results are optimal
Canarie funded project Science Studio, w
automatic scheduling module as a part o
After the synchrotron users submit their
User Office, the automatic scheduling m
optimal scheduling solution that s
constraints modelled, if such a solution e
the results on a Web calendar. In this 
our contributions on design and imple
scheduling module and our study on aut
of synchrotron experiments. 

THE BACKGROUN
The automation of the scheduling act

is part of the Canarie funded project Sc
Science Studio project develops a com
management system [1] that allows t
control the experiment devices, observ
processes, and collect data from their 
instead of travelling to the CLS site.  

There are about 30 plus the CLS l
around the world. All the facilities have
approval procedures, regardless the dif
of calls-for-proposals and the length of 
Scheduling the approved proposals is d
the CLS, the beamline scientists who 
scheduling experiments on the beamlin
documents like spreadsheet and pdf as t
to communicate with the users and ma
schedules on a calendar. In order to 
easier, the beamline scientists tend to 
combinations they should consid
scheduling under conflicting constr
become intractable as the number of us
increase.  

In this paper, we present our solutio
scheduling function. The User Office
Studio platform has a proposal manag
manage the proposal submission and rev
the CLS, the call-for-proposals occurs 
 ______________________________________________  
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The UI service generates the Web UI. The users interact 
with the system through a common Web browser.  

The beamline services offer the functions to observe the 
experiments and operate the physical devices from a Web 
browser. The underlying beamline control system is 
implemented using EPICS based Input/Out Controllers 
(IOCs) and with report access capability. This module is 
not the focus of this paper. 

MODELING THE SCHEDULING 
PROBLEM 

The experiment scheduling problem is modelled as an 
integer programming model. 

Suppose the CLS has m beamlines I = {1, …, m} and n 
approved proposals J = {1,…, n}. Currently a proposal 
defines one experiment. So we use experiment and 
proposal interchangeably in the following text. 
Experiments and beamlines are characterized by the 
following parameters which represent the clients’ 
preferences and the scheduling constrains: 

The cycle start time St defines when the synchrotron 
scheduling cycle starts. A cycle is six months, e.g. from 
2010/1/1, 0:00AM to 2010/6/30, 12:00AM. Therefore, St 
can be the time point of 2010/1/1, 0:00AM. 

The cycle end time Se defines when the synchrotron 
scheduling cycle ends. 

The experiment unacceptable start time Us[j, o], where ݆ ∈ ,ܬ and  ∈ {1, … ,  indicates when the o-th ,{1ݔܽܯ
unacceptable period starts for the experiment j. Max1 is a 
constant that an experiment can define up to Max1 
unacceptable periods. In the CLS, Max1 = 6. 

The experiment unacceptable end time Ue[j, o],   where ݆ ∈ ,ܬ  ∈ {1, … ,  indicates  when the o-th {1ݔܽܯ
unacceptable period ends for the experiment j.  

The experiment release time R[j], where ݆ ∈  is the ,ܬ
earliest possible start time of the experiment j. Before that 
time, the experiment j cannot be scheduled.  

The preferred end time D[j] where  ݆ ∈  is the latest ܬ
preferred finishing time for the experiment j. The 
experiment j should be scheduled before this time.  

The processing time P[j], where  ݆ ∈  is the time ,ܬ
duration to complete the experiment j. 

The weight W[j], where ݆ ∈  represents the priority ,ܬ
given to the experiment j. Many factors can determine the 
priority for an experiment. For example, the proposals 
with biological samples have higher priority, and the 
commercial proposals have higher priority than the 
normal academic proposals. 

The eligibility ܧ[݅, ݆] ∈ {0,1}, where  ݅ ∈ ,ܫ ݆ ∈  is a ,ܬ
Boolean value. When E[i,j] = 1, the experiment j can be 
conducted on the beamline i. 

The beamline has some down time that is unusable for 
experiments. The beamline unusable start time Ub[i,u], 
where ݅ ∈ ݑ，ܫ ∈ {1, . . . ,  indicates when the u-th ,{2ݔܽܯ
unusable period starts. Max2 is a constant for the maximal 
number of unusable periods. The beamline unusable end 
time Ua[i,u], where ݅ ∈ ݑ，ܫ ∈ {1, . . . ,  indicates ,{2ݔܽܯ
when the unusable period ends.  

The above variables contain the known facts of our 
model. The following variables are going to be assigned 
their values by the scheduling algorithm. 

The experiment start time S[j], where ݆ ∈  is the ,ܬ
scheduled time for starting the experiment j. 

The assignment X[i,j] ∈{0,1}, where  ݅ ∈ ,ܫ ݆ ∈  is a ,ܬ
Boolean value. X[i,j]=1means the experiment j is assigned 
to the beamline i. 

The scheduling has to adhere to the following rules: 
Only the eligible beamlines can be selected:   ∀݅, ݆, ܺ[݅, ݆] ≤ ,݅]ܧ ݆]  (1) 
One beamline per experiment: ∀݆, ∑ ܺ[݅, ݆]ୀଵ = 1 s. t. ܺ[݅, ݆] ∈ {0,1} (2) 
The experiment start time should be greater or equal to 

the release time: ∀݆, ܵ[݆] ≥ ܴ[݆]   (3) 
The experiment start time should be greater or equal to 

the cycle start time:  ∀݆, ܵ[݆] ≥   (4)   ݐܵ
The experiment end time should be less or equal to the 

cycle end time: 
  ∀݆, ܵ[݆] + ܲ[݆] ≤ ܵ݁                          (5) 
On a beamline, the experiments can't overlap:  ∀݅, ݆, ݇, s. t. ݆ ≠ ݇, ݇ ∈ ,݅]ܵ ܬ ݆] ≥ ܵ[݅, ݇] + ܲ[݇] ∨ ܵ[݅, ݇] ≥ ܵ[݅, ݆] + ܲ[݆]   (6)  
An experiment should be out of the unacceptable time 

window: ∀݅, ݆, ,ݑ ܵ[݅, ݆] + ܲ[݆] ≤ Ub[i, u] ∨ ܵ[݅, ݆] ≥ ܷܽ[݅,  (7)  [ݑ
An experiment can only be arranged in the beamline 

available period: 
    ∀݆, , ܵ[݆] + ܲ[݆] ≤ ,݆]ݏܷ [ ∨ ܵ[݆] ≥ ܷ݁[݆,  (8)       [
The objective of the problem is to minimize the total 

weighted lateness which is defined as the sum of time 
differences between the preferred end time of an 
experiment and its actual finish time. It is a criterion 
representing how much the schedule satisfies users’ 
expectations in terms of users’ preferred finish times. ∑ |ܹ[݆] ∗ (ܵ[݆] + ܲ(݆) − ୀଵ|((݆)ܦ                 (9) 

SOFTWARE IMPLEMENTATION 
The Web UI for the Calendar 

The Science Studio platform has a common Web UI for 
all its modules (Figure 2). The left vertical bar shows the 
menu items, and the current item is the “automated 
schedule”. A calendar in the content pane shows the 
schedule for a beamline. 

The color encoding represents the different operation 
modes of the beamlines. For example, the normal mode is 
in green. Our scheduling application is implemented for 
two purposes: first, it supports manual scheduling by 
providing the beamline scientists with a calendar liked 
interface, on which the beamline scientists can define their 
facility operation modes and manually schedule eligible 
experiments onto the shifts; second, the scheduling 
application is able to invoke the automated algorithm 
resides the in ILOG and retrieve the results back for 
displaying them on its calendar UI. Figure 3 shows some 
of the manual operations. With a right click on a time slot, 
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a drop-down list pops up, containing a
experiments. The user can check the det
an experiment by right-clicking the expe

Figure 2: Example screen shot showing
schedule results. 

Figure 3: Example screen shot (enlarge
some manual scheduling oper

Testing with the real world data 
We use the CLS proposals data for 

2010 for testing the scheduling function
these proposals is in Table 1. Totally 
about 100 spokespersons from about
approved, most of which are from Canad

Table 1: General user proposal 

Beamline Total 
Requests 

01B1-1 (Mid IR) 5 
02B1-1 (Far IR) 15 
06B1-1 (SXRMB) 9 
06ID-1 (HXMA) 25 
07B2-1 (VESPERS) 5 
10ID-1 (SM) 36 
11ID-1 (SGM) 32 
11ID-2 (PGM) 14 
Total 141 

 
These proposals are manually 

beamlines. Each row in Table 1 shows 
proposals scheduled on one beamline a
shifts used. We show we can do th
automatic schedule function in our modu

Figure 4 shows the input data file f
convert the shifts into nature numbers. 
first shift is from 2010/1/1, 0:00am to 2

 all the schedulable 
detail information of 
periment in the list. 

 
ing a calendar with 

 
ged) for illustrating 
perations. 

 
or the first cycle of 
tions. A summary of 
ly 141 proposals by 
ut 50 institutes are 
nadian institutes.  

al summary 

Total Shift 
Request 

77 
258 

72 
211 

60 
343 
228 
120 

1369 

 scheduled to 8 
s the number of the 

e and the number of 
the same with the 

odule. 
e for the ILOG. We 

. For example, the 
o 2010/1/1, 8:00am, 

and it is converted to 1. In Figur
the beamlines. N=141 is the num
scheduled.  R is the array of
experiments. As all the experim
from the first shift in the cycle, 
is the array of the weights o
numbers in W is a proposal re
100.  P is the array of process
array of the eligibilities for 
beamlines. We can see the first 5
beamline 1. Variable Ub and
unusable start time and end time
obtained from the real data. Va
the cycle start and end time. 
between Ts and Te except pairs 
numbers of Ub and Ua are 1 a
unusable. 

Figure 5 shows the schedu
outputted by the ILOG. Each ite
index of beamline, the index o
start time, the allocated shifts]. 
[7, 122, 14, 1] means on beaml
experiment is scheduled from th

Figure 4: Example of the inp

Figure 5: Part of the scheduli
for beamline
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ACCURATE MEASUREMENT OF THE BEAM ENERGY IN THE CLS 
STORAGE RING* 

J.M. Vogt#, J.C. Bergstrom, S. Hu, CLS, Saskatoon, Canada

Abstract 
Resonant spin depolarization was used at the Canadian 

Light Source (CLS) to measure the energy of the beam in 
the storage ring with high accuracy. This method has been 
employed successfully at several other synchrotrons in the 
past. At the Canadian Light Source, however, resonant 
spin depolarization is an intrinsic capability of the 
transverse feedback system, which is based on a Libera 
Bunch-by-Bunch unit. The Bunch-by-Bunch system used 
at the CLS was customized to include a bunch cleaning 
feature based on a frequency-modulated oscillator. By 
setting the frequency of this oscillator to the spin tune, the 
beam can be depolarized and the effect can be observed 
by watching the life time of the beam. No changes have to 
be made to the permanent setup of the transverse 
feedback system, and no special instrumentation is 
required to make the energy measurement. 

RESONANT SPIN DEPOLARIZATION 
The theory of resonant spin depolarization as a means 

of measuring the beam energy in a storage ring has been 
described in detail in Ref. [1]. After injection, the beam 
polarization builds up with a machine-dependent time 
constant, usually in the range of a few tens of minutes. 
Depolarization is then accomplished by applying an RF-
signal at the resonant frequency of the spin. The effect of 
the resonant depolarization is observed either as an 
increase in the amount of Touschek scattering, or as a 
decrease of the beam life time. Several facilities have 
used this method in the past [1-7]. 

The frequency at which resonant depolarization occurs 
is a direct measure of the beam energy. Equation (49) in 
Ref. [1] gives the spin tune ν as: 

2
ecm
Eaa =γ=ν ,    (1) 

where 

00115965.0
2

2ga =
−

=   

is the anomalous magnetic moment of the electron, E is 
the beam energy, and me is the electron mass. At the 
nominal beam energy of the CLS storage ring, which is 
2900 MeV, the spin tune is ν = 6.5812. 

 
 
 
 
 

 ___________________________________________  
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The expected resonant depolarizing frequency fdep is: 

MHz0197.1ff ofracdep =⋅ν= ,   (2) 
where vfrac is the fractional part of the tune and fo = 

1.7544 MHz is the orbit frequency of the storage ring. 
Note that there is an ambiguity between 5812.0frac =ν  
and 4188.01 frac =ν− , so that another solution for the 
depolarizing frequency is: 

( ) MHz7347.0f1f ofracdep =⋅ν−= .  (3) 

INSTRUMENTATION AT THE CLS 
The Transverse Feedback System 

The transverse feedback system is based on a Libera 
Bunch-by-Bunch unit, which was customized to include a 
frequency modulated oscillator for bunch cleaning [8]. 
The frequency of this oscillator was set to the spin tune 
and the amplifiers and the vertical kicker of the transverse 
feedback system were used to depolarize the beam. 

Detection of Depolarization 
Because of signal-to-noise considerations, the preferred 

method of detecting depolarization is by measuring 
Touschek electrons. However, the arrangement of the 
magnets in the storage ring and the shape of the vacuum 
chambers make it impossible to set up Touschek detectors 
at the CLS. Depolarization therefore had to be detected by 
observing its effect on the life time of the beam. 

MEASUREMENTS 
Machine Setup 

The machine setup was determined by the following 
considerations: 
• In order to maximize the Touschek effect on the life 

time, the bunch current had to be as high as possible,  
• The bunch current was limited by the head-tail 

instability, 
• In order to minimize the vacuum effect on the life 

time, the total current had to be as low as possible, 
• The total current had to be high enough for a 

sufficiently accurate measurement of the storage ring 
current and the life time. 

As a compromise, three bunches in the storage ring 
were filled with a current of about 10 mA/bunch. 

 

 

WEPL004 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Accelerator Controls

36

Diagnostics



Frequency Sweep 
The frequency-modulated oscillator was swept in a 

range of frequencies that included the expected resonant 
depolarization frequency. The product of life time and 
beam current was observed (see Fig. 1). If the life time of 
the beam is only determined by Touschek scattering, this 
product is expected to be a constant as long as the 
polarization of the beam does not change. When the beam 
is depolarized, Touschek scattering increases and the 
product of life time and beam current is expected to drop. 
In reality the product increases slowly, probably due to a 
contribution to the life time by the vacuum in the storage 
ring, which slowly improves as the beam current decays. 

 
Figure 1: The blue curve shows the product of beam 
current and life time. The green curve is the frequency of 
the oscillator. The blue curve drops between t=800s and 
t=1200s as the beam is depolarized. 

Because of the fluctuation of the current × life time 
measurement, the depolarization frequency could not be 
read with the desired accuracy. The measurement was 
therefore repeated several times after the beam was 
allowed to polarize again, and each time the range of the 
frequency sweep was narrowed. In the end the sweep was 
made narrower than the range necessitated by the energy 
spread of the beam in the storage ring, and the beam was 
partially depolarized. 

RESULTS 
The depolarization frequency determined in this 

manner was 
MHz001.0019.1fdep ±= . 

The error is dominated by the energy spread of the 
beam in the storage ring. Using Eq. (1) and Eq. (2), the 
beam energy can now be calculated as: 

MeV8.2899
a
cm

f
f

E
2

e

o

dep
int1 =⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ν= ,  (4) 

where νint = 6 is the integer part of the spin tune. This 
result is very close to the expected value of 2900 MeV. 
However, at this point the ambiguity between νfrac and 1-
νfrac could not be ruled out. Using Eq. (1) and Eq. (3), the 
second solution of the beam energy can be calculated as: 

 MeV6.2828
a
cm

f
f

1E
2

e

o

dep
int2 =⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+ν= . (5) 

In order to distinguish between these two solutions, the 
beam energy was slightly increased and the measurement 
was repeated. This time the depolarization frequency was 
measured as: 

MHz001.00205.1fdep ±= . 
This leads to the solutions: 

MeV2.2900E1 = ,    (6) 
MeV2.2828E2 = .    (7) 

Since the beam energy had been increased, the results 
in (4) and (6) must be the correct solutions. 
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STATUS OF THE FUTURE SPIRAL2 CONTROL SYSTEM 

D. Touchard*, P. Gillette, C. Haquin, E. Lemaître, L. Philippe, E. Lécorché# (Ganil / Caen, France ) 
J.F. Denis, F. Gougnaud, J.F. Gournay‡, Y. Lussignol, P. Mattei (CEA-IRFU / Saclay, France) 

P. Graehling, J. Hosselet, C. Maazouzi (CNRS-IPHC / Strasbourg, France)

Abstract 
For the study of fundamental nuclear physics, the 

SPIRAL2 facility, a driver accelerator followed by a rare 
ion production process, will be coupled with the existing 
GANIL machine to provide light and heavy exotic nuclei 
at extremely high intensities. To ease the collaboration 
with several institutes on the control system design, 
EPICS has been chosen as the basic framework and a 
specific care has been taken concerning the software 
organization and management. While first operational 
interfaces for power supplies, faraday cups or beam slits 
are already operational, a triggered fast acquisition system 
for beam diagnostics, a radiofrequency control system, 
and an admittance measurement system are going to be 
achieved. First EDM supervision screens and high level 
tuning applications based on EPICS/XAL framework 
have been designed. The use of relational databases, on 
the one hand for the design of an environment to generate 
the EPICS databases, on the other hand to manage, set 
and archive meaningful values of the new facility, is 
under investigation. From the beginning of last year, two 
sources followed by their first beam line sections have 
been tested. Promising results are presented. 

THE SPIRAL2 PROJECT 

Overview 
Following the recommendations of international 

committees and to fulfil the growing demand of the 
international physiscists community, in May 2005 the 
French Research Minister decided to build the new 
SPIRAL2 facility at GANIL laboratory (CNRS-CEA) in 
Caen (France) [1]. The project aims to enlarge multi-beam 
production using Isotope Separation On Line (ISOL) 
method. A superconducting LINear ACcelerator (LINAC) 
for light and heavy ions preceded by a radio frequency 
quadrupole (RFQ) will deliver up to 40MeV/A for 5mA 
deuteron, respectively 14.5MeV/A for 1mA heavy ion 
continuous wave (CW) beams [2]. These beams can be 
used for the production of intense Radioactive Ion Beams 
(RIB) involving the fusion, fission, transfer reaction 
mechanisms. More specifically, production of RIB with 
intense neutron-rich nuclei will be based on the fission of 
uranium targets bombarded either by neutrons produced 
by a first impact of the deuteron beam on a carbon 
converter, or by the direct deuteron or heavy ion beam 
impact. The RIB post-acceleration will be performed by 
the existing CIME cyclotron, which is perfectly suited to 
the separation and acceleration in the energy range up to 
10MeV/A for the atomic masses between 100 and 150. 
SPIRAL2 beams after CIME can be reused in present 
experimental areas of GANIL (see fig 1). 

 

Figure 1: The SPIRAL2 and GANIL facilities. 

Milestones 
The first primary beams are expected in spring 2012 

(phase 1) while the production process is planned more or 
less one year later (phase 2). 

Some parts of the accelerator have been tested: the ion 
source and its low energy beam line have been in test at 
CNRS-LPSC (Grenoble) since 2008 and the deuteron 
source and its coupled beam line are progressively tested 
at CEA-IRFU (Saclay) since the beginning of this year[3]. 

Collaboration organisation 
In order to build a large machine as SPIRAL2, an 

international collaborative effort has been made to 
establish the grounds for the design. A large team 
composed of people from CNRS, CEA, and international 
institutes is involved in the scheme. This is also the case 
as far as the command control system is concerned. The 
following three French laboratories, GANIL (Caen), 
IPHC (Strasbourg) and IRFU (Saclay) are currently 
designing and developing respectively the whole 
hardware and software command control system phase 1 
architecture. For the phase 2, collaboration with the 
following three laboratories, LPSC (Grenoble), CENBG 
(Bordeaux), and LPC (Caen) is presently under 
consideration. 

CONTROL SYSTEM 

Main choices 
The main choice of EPICS [4] as a common framework 

was early decided to ease pieces of software development 
and integration efficiency. A set of drivers already 
 ___________________________________________  
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developed inside this community has been picked to 
control the majority of equipment. Mainly remote 
terminal units are VME VxWorks crates with MVME 
5500 CPUs and Red Hat Enterprise Linux PCs hosting 
EPICS Input Output Controllers (IOCs). On the other 
side, Siemens S7 programmable logic controllers (PLC) 
are mainly dedicated to slow material protection systems 
needed for radio frequency, cryogenic, vacuum, or 
interlock systems[5]. 

Tuning applications read and write values via the 
EPICS Channel Access protocol. These values are hosted 
in EPICS IOCs accessing equipment directly with ADAS 
VME I/O cards, or Modbus/TCP field bus networks. 

Software development 
To ease software sharing a unique EPICS SPIRAL2 

working environment, an equipment naming convention, 
and operational rules for interfaces have been specified. 
The use of SVN server, a versioning control software 
system, hosting specifics SPIRAL2 EPICS and JAVA 
directory skeletons, was decided to centralize all the 
pieces of software [6]. To tune a large facility as 
SPIRAL2, supervision screens developed with EPICS  
Extensible Display Manager (EDM), with the same 
template files and more sophisticated JAVA high level 
applications derived from the XAL [7],[8] framework, are 
under way. In order to investigate new EPICS innovative 
tools, an evaluation of the relatively new Control System 
Studio (CSS) integrated development environment has 
begun this year. 

EQUIPMENT INTERFACES 

Power supplies 
To transport or control the beam along the facility, a set 

of 600 magnetic or high voltage pieces of equipment with 
specific power supplies driven through the 
MODBUS/TCP network protocol are needed [9]. 
Although different kind of power supplies have been 
already selected, for most of them a common mapping 
interface will be enforced between IOC and power 
supplies and a special care was taken about status 
feedback and tuning application interface. A first EPICS 
IOC database interface has already been developed and 
enhanced with an EPICS/GENSUB record. 

Faraday cups 
Faraday cup, a beam interceptive diagnostic [10], aims 

to measure through a VME/IOC beam intensity for either 
pulsed or continuous beam. Specific EPICS drivers were 
written for the fast acquisition boards ADAS ICV108/178 
[11]. Last development improvements allow to set on the 
fly acquisition rate from 100K to 1.2M samples/s and 
dynamically select the piece of equipment to acquire. This 
system is being validated during beam tests. 

Beam profilers 
Profile monitors measure and visualize the beam 

dynamics. The EPICS IOC database and JAVA 

visualisation interfaces of secondary emission profiler 
have been recently developed. This development has 
particularly confirmed the necessity of the interface rules 
decided at the beginning of the project because of the 
special work induced by the mapping of complex data 
between IOCs and high level applications. 

Emittance measurement system 
Emittance measurement characterizes the horizontal 

and vertical transverse optical behaviour of the beam. The 
system is built over two scanner pods [12] that are 
controlled with brushless motors connected to an Oregon 
MaxV 4000S card. These pods require high voltage 
power supplies controlled with an ISEG VHQ202 M 
board or an ADAS ICV714 board. Even though an ADAS 
ICV150 board presently acquires values inside the 
faraday cups, the fast acquisition solution described above 
will be used for nominal performances. A state machine 
piece of software inside the IOC with a specific algorithm 
controls the scanner pods in order to build a whole 
emittance measurement. 

Radiofrequency control system 
Radiofrequency equipment such as choppers, bunchers, 

RFQ and LINAC cavities work at 88.0525MHz. They are 
independently powered by amplifiers controlled via the 
MODBUS/TCP protocol. IRFU laboratory has developed 
SPIRAL2 specific VME64x Low Level Radio Frequency 
(LLRF) boards which integrate, Field Programmable Gate 
Array (FPGA) to regulate the amplitude-phase of each 
cavity. An EPICS device/driver has been developed for 
this card, along with a new type of record. This record 
also implements an acquisition mode needed for 
commissioning any piece of software, electronic 
development or cavities [13]. The prototype of the VME 
board and RF card and the principle of the Proportional-
Integral-Derivative (PID) digital control of phase and 
amplitude have been validated. 

DATABASE ORGANISATION 

Equipment characterization 
Considering 4000 new pieces of equipment expected to 

control the facility which will be mainly managed by non 
EPICS users, led the team to consider a specific 
equipment INGRES database associated to a friendly 
JAVA user interface. Each type of equipment should be 
driven by generic EPICS development which consists of 
database files with macro substitution. A specific IOC 
generator will produce start-up IOC files filled with each 
equipment characterization. This organization was 
successfully tested with a power supply generic 
development. 

Beam parameters 
The SPIRAL2 facility will produce and accelerate a 

range of beams including deuterons and heavy ions, with 
different optics, and trajectories. In order to tune this 
facility efficiently, a beam management process as the 
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one already existing at GANIL is now foreseen [14]. A 
first application based on the XAL framework described 
below and based on an Ingres database has been 
successfully tested this year. 

Archives 
The first evaluation of the EPICS CSS archiving 

system based on a MySQL 5.5.1 database has shown a 
need of disk space of about 10To to store continuous 
activity 7d/7, 24h/24 during 8 weeks run for 400 
significant machine parameter values having 10Hz 
change rate. To keep performances compatible with the 
CSS data browser, a study on MySQL is underway for 
partitioning tables and tuning servers. 

HIGH LEVEL APPLICATIONS 

Simulations 
Very extensive calculations using TOUTATIS and 

TRACEWIN [15] codes developed by the IRFU 
laboratory have been performed to simulate beam 
behaviour and losses, especially in RFQ and LINAC 
section. These codes could generate equipment theoretical 
values that could be inserted in the beam parameter 
database described above. The software gateway between 
TRACEWIN and the parameters database has been 
validated last year. 

Common frameworks 
The whole XAL software could not be reused as is, due 

to SPIRAL2 specificities such as multi ion species 
accelerated. The evaluation of this framework has shown 
that it could increase significantly development 
efficiency. First applications developed with this 
graphical interface or reusing some code or pieces of 
software, such as accelerator configuration, profiler 
display, beam adaptation or optimisation, are underway. 

BEAM TESTS 
Beam line section LEBT1 tests performed at LPSC as 

shown in fig. 2 were an important step to validate the 
associated control command. 

 

Figure 2: LPSC and IRFU beam tests. 

A Labview PC controlling the heavy ion source and a 
set of EPICS Linux/PCs and VxWorks/VME crates 
controlling the line equipment communicate through a 
Labview / EPICS gateway supplied by National 
Instruments. For EPICS front end part, power supplies 
and Faraday cups interfaces, the fast data acquisition 
system, dialogue with the PLCs, emittance measurements 

have been integrated. Tuning applications such as the 
correlation of all parameters and analysis of the heavy ion 
source have been validated. In order to study the beam 
characteristics, a special use of TRACEWIN connected to 
a Faraday cup and a legacy profiler diagnostics, and 
controlling power supplies has successfully optimized the 
beam transmitted. In the same state of mind, and in order 
to control the deuteron source with a fully EPICS control 
system, the beam line section LEBT2 is being tested at 
IRFU. 
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SETTINGS MANAGEMENT WITHIN THE FAIR CONTROL SYSTEM
BASED ON THE CERN LSA FRAMEWORK

J. Fitzek, R. Mueller, D. Ondreka, GSI, Darmstadt, Germany

Abstract

A control system for operating the future FAIR (Facility
for Antiproton and Ion Research) accelerator complex is
being developed at GSI. One of its core components is the
settings management system.

At CERN, settings management and data supply for
large parts of the CERN accelerator complex is done using
the LSA (LHC Software Architecture) framework. Sev-
eral concepts of the LSA framework already fit the FAIR
requirements: Generic structures for keeping accelerator
data; modular design; separation between data model, busi-
ness logic and applications; standardized interfaces for im-
plementing the physical machine model. An LSA test in-
stallation was set up at GSI and first tests were performed
controlling the existing GSI synchrotron SIS18 already
with the new system.

These successes notwithstanding, there are issues result-
ing from conceptual differences between CERN and FAIR
operations. CERN and GSI have established a collabora-
tion to make LSA fit for both institutes, thereby developing
LSA into a generic framework for accelerator settings man-
agement. While focussing on the enhancements that are
necessary for FAIR, this paper also presents key concepts
of the LSA system.

FAIR

The international FAIR facility with its nine new accel-
erator installations will be built at GSI, using the existing
linac and synchrotron SIS18 as injectors (see Fig. 1).
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Figure 1: GSI/FAIR beamlines, P. Schuett, GSI 2010.

Central aspect is an increased number of research pro-
grams resulting in up to five beams in parallel with pulse-
to-pulse switching between different particle types. The
future facility will be controlled by a new control system
which will be able to support all aspects of the complex
GSI/FAIR operations on a common technical basis [4]. The
future control system is designed at the moment, keeping
well working and proven principles while adopting new
methodologies where beneficial.

Important aspects of the control system are generation
of settings and data supply. It was evaluated and decided
to use the existing LSA framework from CERN for set-
tings management and data supply within the FAIR control
system. A collaboration with CERN was set up with joint
development effort put into future LSA development [1].

LSA - THE LHC SOFTWARE
ARCHITECTURE

LSA was developed at CERN starting in 2001 and is now
the core controls software component for settings manage-
ment and data supply within the CERN control system. For
a detailed description of LSA see [2].

LSA - Functional Overview

The LSA system was designed in a generic way and pro-
vides clear separation between data model, business logic
and applications. Its modular structure allows institute spe-
cific implementation to be easily plugged in.

The system covers all important settings management
aspects: optics (twiss, machine layout), parameter space,
settings generation and management, settings modification
(trim), propagation from physics to hardware parameters,
operational and hardware exploitation (equipment control,
measurements), and beam based measurements.

An accelerator within LSA is modeled by defining its
parameter hierarchy – from top level physics down to hard-
ware parameters. Using the optics, the LSA system can
already calculate good initial settings. Corrections can be
applied to any level of the hierarchy, resulting in a con-
sistent change of many devices at the same time. As an
example for a part of such a hierarchy at GSI, see Fig. 3.
The LSA system consists of different functional building
blocks, which among other benefits entitle physicists to im-
plement the machine model themselves in a structured and
simple way.
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LSA - Technology Stack

LSA is written in Java and uses the Spring framework,
that provides a light-weight container for the Java plat-
form, dependency injection, aspect oriented programming
(AOP), testing framework, remoting and transactions. An
overview of the LSA software stack is shown in Fig. 2.

Figure 2: LSA software stack, G. Kruk, ICALEPCS 2007.

LSA is visible to the applications trough a series of
façade classes that group the functionality of LSA by topics
(setting management, hardware access etc.). They repre-
sent a stable and backward compatible interface which sep-
arates applications from business logic, thus applications
can concentrate on presenting information.

Communication with the devices is done through a pow-
erful abstraction layer called JAPC (Java API for Parame-
ter Control) [3], that hides middleware specifics and thus
allows access to all devices through the same interface.

LSA AT GSI

The collaboration on LSA started in 2007 with two soft-
ware developers from GSI working for 1.5 years on site in
the LSA team during the LHC commissioning and startup.
Since then the collaboration is well established. In 2008,
an LSA test system was set up at GSI.

Setting up an LSA test system

The LSA system runs out-of-the-box given an empty
LSA database with just a few tables prefilled. First steps
include setting up an Oracle database instance and an
LSA test server, which is a standalone Java process. For
the small number of missing software references (e.g. to
CERN’s online model server or role based access system),
a dummy implementation needs to be provided which ful-
fills the interface. Since the LSA system is data-driven,
the next step is to import the accelerator layout into the
database, such as static information about accelerators,
beamlines and devices. As a result of this initial setup,
generic LSA applications deployed via Java WebStart are
already running.

After a new JAPC plug-in for the existing GSI middle-
ware was developed, first calls to devices proved that the
environment was correctly set up.

Implementing GSI accelerators within LSA

A project team consisting of machine physicists and soft-
ware developers from different groups at GSI started mod-
eling the existing synchrotron SIS18 within the institute
specific part of LSA: defining the parameter hierarchy, im-
plementing propagation rules, importing optics and defin-
ing test cycles. Since the implemented rules were written
in a generic way, even test cycles for the future FAIR syn-
chrotron SIS100 have already been successfully generated.
Next step will be to look at the existing GSI storage ring
and its representation within the new system.

Figure 3: Example of an LSA parameter hierarchy at GSI.

While modeling the existing accelerators in LSA, the
project team mainly focusses on the LSA concepts and the
question, whether they are really generic enough to fit all
needs of complex and parallel accelerator operations.

First test with beam

Keeping in mind the challenge of putting the new con-
trol system for FAIR in place while the existing facility is
running, it is however vital, that the new system will be
commissioned with parts of the existing machine.

For the settings management and data supply part with
LSA, this includes testing the new system already with the
existing accelerators. As a first milestone, a successful test
with beam was performed in march 2010 with the existing
synchrotron SIS18. Several scenarios were tested: opera-
tions with one and two cavities and one and two shot ex-
traction using a cycle with fast extraction.

Figure 4: SIS18 test: single shot extraction.
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Extending LSA

The flexibility of accelerator operations at GSI put a new
view on the LSA system. In particular while modeling the
SIS18, certain restrictions were found within the LSA ma-
chine model, resulting from the rather static operation of
the accelerators at CERN. Based on these observations, re-
quirements were collected. For some of these topics a final
solution has been agreed upon and implementation has al-
ready started.

One new feature within LSA which will be implemented
within the collaboration is the flexibility of cycle length:
length of cycles and therefore length of specific functions
like the dipole current can vary due to applied trims. This
feature will be heavily used at GSI, where e.g. extraction
energy is frequently trimmed and the corresponding adap-
tation of the cycle length is indispensable for the optimiza-
tion of the duty cycle. This of course presumes a flexible
timing system with no predefined base cycle length.

Another feature will be the support for modeling a full
chain of accelerators, especially modeling inter-accelerator
dependencies, which is necessary for FAIR. Also at CERN,
the focus shifts towards controlling the full accelerator
chain. This change in perspective is related to the fact, that
now the same control system is used for many accelerators
at CERN. The idea is e.g. to connect the extraction energy
of one accelerator with the injection energy of the next ac-
celerator in the chain and automatically trim settings for
the whole affected chain when changed in one place. First
brainstorming on this topic has started and will be contin-
ued in the near future.

So far, it seems that all of the requirements now coming
from GSI are also of interest for CERN and that their im-
plementation will be part of the LSA core system. The goal
of both involved parties is clearly to make LSA as generic
and flexible as necessary to be able to really fulfill all re-
quirements, that arise from complex accelerator operations.

Technically implementing new features in the LSA core
system is encouraged by the use of the Spring framework.
It easily allows plugging in test implementations by one
party using XML configuration while the existing imple-
mentation remains untouched. This also supports using one
repository for the LSA core system even while realizing
new features.

However, also institute specific implementation like ac-
cess to devices, accelerator specific physics propagation
rules etc. fit into the LSA concept: they reside in institute
specific modules which complement the core functionality
by implementing the respective interfaces. Even though it
is planned to manage those specific software modules lo-
cally at the institute site in the future, at the moment the
GSI modules still reside at the CERN repository, benefit-
ting from CERNs build and release environment.

Development of LSA based applications

In addition to the existing generic LSA applications there
is the need for new applications developed at GSI which

fit the operators workflow. Since the LSA business logic
is well separated from the applications and encapsulated
by GSI specific façade classes (where only a subset of full
LSA features is made visible to application developers), ap-
plications can focus on displaying information. Addition-
ally standard prefilled GUI elements and a stable API sub-
stantially ease application development and also encourage
others to write applications based on LSA.

Figure 5: LSA application showing a SIS18 supercycle.

SUMMARY/OUTLOOK

The prototype installation and successful first tests with
beam proved that the LSA framework already fits the re-
quirements for settings management and data supply for
single accelerators within the FAIR control system. From a
technical perspective it was easy to install and to set up the
system in its initial state. The biggest effort was to imple-
ment the accelerator model using the LSA framework.

New requirements arise from the flexible GSI/FAIR ac-
celerator operations and from the necessity to model the
whole accelerator complex within LSA. The correspond-
ing enhancements of the LSA framework are implemented
within the collaboration. In this way LSA evolves into a
generic and flexible settings management framework for
complex accelerator facilities.
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INTEGRATION OF PROGRAMMABLE LOGIC CONTROLLERS INTO 
THE FAIR CONTROL SYSTEM USING FESA 

R. Haseitl, C. Andre, H. Bräuning, T. Hoffmann, R. Lonsing, GSI, Darmstadt, Germany 
 

Abstract 
For the upcoming 'Facility for Antiproton and Ion 

Research' (FAIR) at GSI, the Front End Software 
Architecture (FESA) framework built by CERN has been 
chosen to serve as front-end level of the future FAIR 
control system [1]. All beam diagnostic devices of FAIR 
will be controlled by FESA classes that are addressable by 
the new control system. The connectivity to the old 
control system is retained, since both control systems will 
be in operation contemporaneously for several years. 
Commercially available Programmable Logic Controllers 
(PLCs) have been installed as part of Beam Induced 
Fluorescence (BIF) monitors to replace outdated network 
attached devices and to improve the reliability of the BIF 
systems. The new PLC devices are controlled by FESA 
classes which are addressed from the existing C++ 
software via Remote Data Access (RDA) calls. This 
contribution describes the system setup and the involved 
software components to access the PLC hardware. 

THE BIF SYSTEM 
Beam Induced Fluorescence monitors determine the 

transverse beam profiles with minimum beam disturbance 
[2]. The measurement principle is based on the excitation 
of gas molecules by the passing ion beam in the beam 
pipe. The emitted photons are measured by digital CCD 
cameras with image intensifiers to ensure single photon 
detection. Using two cameras installed above and 
sideways of the beam pipe, the horizontal and vertical 
beam profiles are measured simultaneously. Currently, 
there are four BIF monitors installed in GSI accelerators 
and transfer lines. For the next years, a final number of 
seven monitors is anticipated. 

Hardware 
Each camera has a remote controllable iris to adjust the 

light intensity illuminating the image intensifier. A 
smaller aperture of the iris also increases the depth of 
field. This results in a larger properly focused area in the 
obtained image. The amplification of the image 
intensifiers can be adjusted by setting two voltages for the 
different amplification stages. 

The aperture of each iris as well as the amplification of 
the image intensifiers has formerly been controlled with a 
self-built, Ethernet connected module, containing several 
digital-to-analogue converters (DACs). During long term 
runs of the system, these modules crashed non-
deterministically after some hours or days of operation. 
For the FAIR project, a more reliable solution was 
desired. The setting of voltages is a common task for 
PLCs, so this commercially available and field-tested 
solution was selected.  

Software 
The software controlling all BIF devices, including 

irises and image intensifiers, is called ProfileView [3]. 
The communication with the old hardware is performed 
via a standard TCP connection. New settings are sent to 
the device, which replies with an acknowledge message. 
The communication channel is kept open continuously, to 
detect failures as soon as possible. 

After extensive testing of the system, it was decided to 
replace the faulty devices by PLCs. To control the new 
hardware, the ProfileView software was adapted to 
support both hardware variants. 

Figure 1: One of the 'satellites' of the BIF installation. It controls two BIF monitors and features two sets of control 
devices (from left to right): Power Supply, ET 200M controller, SM322 relay element with eight outlets, two SM332 
12-bit DACs. 
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 PLC HARDWARE 
As PLC hardware, the SIMATIC system from Siemens 

[4] was selected (see Fig. 1). The PLC is able to set 
voltages for each iris, the intensifiers and calibration 
LEDs which had to be controlled manually before. 
Furthermore, an easy to use remote reset capability for 
supplemental hardware devices of the BIF system is 
realized by relay modules. The relays support switching 
of 230 volt supply voltage. Devices of the BIF system like 
the cameras or the gas flow control can be restarted 
remotely in case of errors. 

The hardware was installed at different locations along 
the linear accelerator. A schematic of the system is 
depicted in Fig. 2. The main controller and the Ethernet 
communication module are located in an electronics 
room. The distributed sub-systems with local control 
units, relays and DAC devices, so-called 'satellites', are 
located near the BIF hardware in a radiation safe area. 

The system consists of the following Siemens 
SIMATIC components: 
• S7-300 - the main controller 
• CP343-1 Lean - for Ethernet communication 
• ET 200M - the satellite controller 
• SM322 - relay with eight outlets 
• SM332 - 12-bit DAC with four outlets 
 

Communication from the main controller to the 
satellites takes place via Profinet.  

To ensure correct voltages at the BIF hardware, the 
connections from the DACs to the devices are made in 4-
wire technique, to sense the voltage loss over the cable 
length. In this way, conduction losses are compensated 
and the applied voltage at the hardware matches the 
desired voltage in the software. 

 

FESA CLASS AND PLC SOFTWARE 
The FESA framework developed by CERN [5] will be 

the front-end level of the FAIR control system. A FESA 
class is typically developed by the hardware specialist of 
a device and provides read/write access on the device's 
registers. FESA runs on PowerPC or Intel based VME 
CPUs and on standard Linux PCs. The connection from 

the control system to the FESA class is established via 
RDA calls defined in the CERN Middleware (CMW) 
library. A FESA class allows incoming connections from 
multiple applications. If an application subscribes to data 
changes in the device, the FESA class will notify the 
application in case of new values. 

 

FESA classes 
To access the PLC via the control system, two FESA 

classes are in operation: One very simple class ('BIFPLC') 
for basic communication with the PLC and a more 
complex class to perform calculations and monitor the 
PLC status ('BIFControl'). The BIFControl class uses the 
communication functionality via an FESA equipment 
link. It performs the transformation of values from the 
graphical user interface (GUI) into the bitwise register 
representation needed for the DACs in the PLC. 
Furthermore, the instantiation of BIFControl defines 
failsafe values for each DAC. To protect the image 
intensifier system, all voltages are limited within 
BIFControl between defined thresholds. The relay 
contacts for 230 volt switching are controlled by 
BIFControl, too. 

 

Communication with the PLC 
The BIFControl class has full read/write access to the 

memory of the PLC controller via the network. Write 
cycles are usually initiated whenever the class gets new 
settings from the GUI. Read cycles can be initiated by the 
GUI or periodically by the class itself. 

From the PLC controller's point of view, the data 
transfer consists of reading from or writing to the same 
memory space. This is typically done from within the 
periodically executed organization block 'OB1'. This 
memory access is completely asynchronous to the access 
by the BIFControl class. To facilitate the access to 
complex data structures from within the PLC, scripts and 
a web interface exist [6]. These tools analyse the design 
of the BIFPLC class and create short function blocks to 
access the data structures in the PLC's memory. The 
scripts are able to generate Step 7 code for the Siemens 
PLC used at GSI as well as code for Schneider PLCs. 

SOFTWARE INTEGRATION 
The ProfileView software for BIF monitors is entirely 

written in C++. To access the BIFControl class for PLC 
control, a directory server is asked via CMW for a device 
handle. The returned handle offers access to get, set and 
subscribe methods. CMW exists as a static library and is 
linked into the ProfileView executable. It contains the 
RDA functions and data access methods to connect to 
FESA classes and to extract user data from RDA 
telegrams. RDA itself is based on CORBA.  

It is possible to set single values as well as multiple 
data fields at once. The BIFControl class can be accessed 
from different applications or expert programs at the same 
time. Therefore, a notification on any value change is 

 

Figure 2: PLC installation. 
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desirable. For this purpose a subscription handler is 
installed, listening to value changes of BIFControl. By 
invoking the monitorOn() function on the device handle, a 
user defined callback function can be declared. Every 
change of any value in the class leads to a call of the 
specified callback function, containing the new values. 
This way, ProfileView gets notified, if PLC values are 
changed by any other application. 

 The subscription handler is programmed as a separate 
thread to avoid blocking the application when it is waiting 
for new data. Once an updated data set arrives at the 
handler, the new data is processed inside ProfileView and 
shown in the GUI (see Fig. 3).  

 
The values of the image intensifier amplification are 

directly passed to the GUI and shown in millivolt units. 
Iris values are treated specially: since there are small 
differences between the remote controllable iris devices, 
each iris has to be calibrated separately before it is built 
into a BIF monitor. The calibration provides a millivolt 
value for each aperture of a particular iris. These settings 
are stored in the initialization file of the BIF monitor. If a 
new iris value is set, ProfileView sends the appropriate 
millivolt value to the FESA class, which in turn sends the 
bitwise representation to the PLC. The chain is executed 
in reverse when the FESA class pushes a new iris value to 
subscribed client applications.  

The relays are implemented as a bit array inside 
ProfileView and the FESA class. If a relay should be 
toggled, the others have to keep their state. If the user 

wants to set a new relay value, it is matched with the 
stored state of the bit array and sent to the hardware.  

The integration of the PLC functionality into 
ProfileView hides the hardware specific part from the 
user. The GUI looks the same, no matter if the old 
hardware or a PLC is used for iris and image intensifier 
control. The relays are only available when a PLC is used.  

CONCLUSION AND OUTLOOK 
Since there are several applications for PLC controllers 

planned for the future FAIR facility, this prototype is a 
good test of the system reliability and the integration into 
the existing control system. 
The PLC hardware turned out to be very stable and 
reliable in operation. Using the 4-wire technique, the 
voltages at the hardware are accurate to ± 0,01 volt. 
During commissioning and several weeks of tests, the 
PLC did not crash and never lost its connection to the 
FESA class. 

Currently (2010) one BIF monitor is equipped with a 
PLC system and one more is prepared for the hardware 
exchange. During 2011, the existing and any additional 
BIF monitors will be updated with PLCs. One PLC 
system will be installed in a radiation exposed area in the 
transfer line from the linear accelerator to the 
synchrotron. The dose will be measured directly at the 
PLC to gather information about the system's radiation 
hardness. 

In 2011 a new version of FESA (3.0) will be finalized 
by CERN in collaboration with GSI. It will simplify the 
development of PLC FESA classes. Instead of having two 
FESA classes for PLC control, the complete PLC 
functionality will be a static library which can be linked 
to any FESA class. 
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Figure 3: Original BIF image with GUI elements for iris 
and image intensifier control.  
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FESA BASED DATA ACQUISITION  
FOR BEAM DIAGNOSTICS AT GSI 

T. Hoffmann, H. Bräuning, R. Haseitl, GSI, Darmstadt, Germany

Abstract 
In view of the upcoming Facility for Antiproton and Ion 

Research (FAIR) at GSI with its increased complexity in 
beam control and diagnostics, the decision was taken to 
use the well-tested CERN made Front-End Software 
Architecture (FESA) as the lowest level of the new 
control system [1,2]. In the past years, the current stable 
FESA framework (Version 2.10) has been adapted and 
installed at GSI, with the major part of the adaptation 
being the different machine timing models of GSI and 
CERN. With a stable environment at hand, all current and 
new beam diagnostic related data acquisition systems will 
be implemented with FESA. To demonstrate the 
suitability of FESA for demanding data acquisition 
problems with high data rates or large amounts of data, 
two different projects such as the Tune Orbit and 
POSition measurement (TOPOS) and the Large Analog 
Signal Scaling Information Environment (LASSIE) are 
presented. Experiences with implementing standard 
interfaces such as CAN, GigE and PLCs in FESA 
applications as well as a move towards low cost Intel 
based controllers like the Men A20 VME controller or 
industry PCs running a real time Linux will be discussed. 

THE FESA ENVIRONMENT AT GSI 
Besides the development of the next generation FESA 

3.0 environment by staff of the GSI controls department 
in collaboration with CERN CO/FE, the GSI beam 
diagnostic department (BD), which is responsible for the 
layout of the FAIR beam diagnostics DAQ system, is 
developing FESA 2.10 classes for dedicated BD systems. 
These efforts are made to show the feasibility of all 
expected data acquisition requirements and to train 
programming of the front-end part of the new control 
system for FAIR. At the beginning of 2010 the FESA 2.10 
installation and integration at GSI was fully 
accomplished. The environment resides on a powerful 
blade system, which is the new mainframe of the GSI 
control system providing NFS based access to all front-
end controllers (FEC) and to all branches of code 
development. Basic information on FESA is given in 
[1,2]. The main parts of the FESA systems are: 

Operating System 
At present the operating system (OS) of the GSI control 

system is a Red Hat Enterprise Linux Server release 5.5 
with kernel 2.6.18-92 - x86_64. The OS for the FECs is 
Scientific Linux CERN 5.4 with kernel 2.6.24.7-rt27, 
which contains patches for real-time support. 
Supported FEC Hardware 

FESA 2.10 provides cross compilers for Intel and 

PowerPC based CPUs. For maintainability reasons the 
following FEC systems are supported by GSI: 

• Standard Industry PC 
• Kontron KISS PCI760 with PXEBoot, diskless, 

Intel AMT remote management system 
• MEN A 20 VME CPU with PXEBoot, diskless.  

For applications requiring real time behaviour the CES 
RIO3 CPUs with Lynx OS can be used as an exception. 

For the time being the upcoming xTCA for Physics 
standard [3] as a new form factor is under evaluation for 
the usage at FAIR. For the tests an Adlink AMC-1000 
CPU in an ELMA xTCA-6 frame were chosen. After 
integration of the diskless system into the control system, 
the installation will be tested with high bandwidth 
applications such as GigE video imaging and analog data 
sampling. 

Timing 
FESA 2.10 is strongly dependent on the CERN timing 

system and its timing receiver hardware, which is 
different to the existing GSI timing. To gain efficient use 
of the FESA RT action feature a dedicated FPGA based 
GSI-CERN timing converter was developed. It allows to 
use the CERN timing receiver hardware with the GSI 
timing. Although some purely CERN specific features are 
not available, this converter allows to trigger RT actions 
by accelerator timing events in a multiplexed beam 
operation for all three GSI accelerators (UNILAC, SIS, 
ESR). 

JAVA Graphical user interface 
To provide GUIs for the developer as well as for the 

users such as machine operators or system experts the 
JAVA based concept of CERN was chosen. It consists of 
the Java API for Parameter Control (JAPC, [4]) and 
CERN libraries such as the JDataViewer and the CERN 
middleware (cmw-rda). Due to the JAVA web-start 
functionality and the general JAVA platform 
independence, the GUI may be used at any office at GSI. 

TUNE, ORBIT, AND POSITION 
MEASUREMENT (TOPOS) 

The first test project for FESA and its related 
middleware and GUI solutions at GSI was a development 
for the tune, orbit and position measurement (TOPOS) at 
the heavy ion synchrotron SIS in collaboration with 
Cosylab and Instrumentation Technology, Slovenia. The 
development of the modular extendible TOPOS was 
performed also in preparation for the FAIR project and 
the usage at the FAIR synchrotrons. The data acquisition 
concept is well described in [5].  

This very demanding system, with data rates up to 
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700MByte/s, showed good results with respect to 
performance, stability, and usability. After benchmarking 
tests with the former beam position monitoring (BPM) 
system it will be raised to operational status at GSI. Fig. 1 
gives an impression of the online tune measurement. 

LARGE ANALOG SIGNAL SCALING 
INFORMATION ENVIRONMENT 

(LASSIE) 
LASSIE is the new FESA based DAQ project to 

distribute and analyze a large quantity of beam diagnostic 
related analog and digital signals. It consist of FESA 
based data acquisition classes and JAVA GUIs. Recently 
the readout of a scaler array with 192 channels for SIS 
and connected beam line data was implemented in FESA. 
It is based on a VME system with six SIS3820 
Multiscalers [6] and a dedicated timing receiver board. 
Scaler input consists of signals from beam loss monitors, 
experiment counters and other data like accelerator rf, 
current transformers etc. via a voltage-to-frequency 

converter. The scalers can be latched with a frequency of 
up to 1 MHz which provides fine-grained information 
about the spill structure. The GUI framework provides 
general GUI and non-GUI components like for example 
data structures, settings manager and a help system for 
rapid application development. Current applications 
include integrated counter values between selected 
machine events, spill structure analysis and trending.  

The system is now accessible from the accelerator 
control room for testing and will replace the Kylix based 
ABLASS [7] system with all functionalities. At typical 
scaler latching frequencies for normal operation around 
100 to 1000 Hz, the FESA class can easily handle the 
readout of all 192 scaler channels. Using two memory 
banks, the FESA class allows GUIs to access the data of 
the just completed spill while acquiring the data for the 
current spill. In order to reduce the network load, the GUI 
applications use the filter mechanism of FESA to request 
for example the spill structure of only those channels 
which are displayed.  

Another bottleneck for high latching frequencies is the 
transfer of data via the VME backplane. According to the 
SIS3820 specifications [6], the transfer rate via the VME 
backplane is limited to about 50 MByte/s for MBLT64 
block transfer. To compare the rate capabilities of the 
older PowerPC based CES RIO3 CPUs and the new Intel 
based Men A20 CPUs, a test system with a single 32 
channel scaler  and a virtual machine cycle of  2000ms 
runtime and 150ms pause was set-up. Figure 3 shows the 
maximum number of scaler channels which could be read 

out by the FESA class without any connected GUI clients 
as a function of the latching frequency. Scaler access was 
done via block transfer (BMA) on the RIO3 and DMA on 
the Men A20. The Men A20 board consistently has a 
higher data throughput with a maximum measured rate of 
34 MBytes/s. A total CPU load of only 10% indicates that 
this rate is limited by the transfer from the scaler module 
to the memory and not by data handling in the FESA 
class. In contrast, a maximum data rate of 22 MBytes/s 

Figure 1: The FESA based TOPOS system showing
horizontal and vertical tune measurements on excitation 
of the beam at 2*108 U73+ ions per bunch. 

Figure 2: LASSIE: FESA based spill structure analysis of 
synchrotron signals (from top to bottom: current 
transformer, quadrupole ramp and beam loss monitors).  

Figure 3: Number of scaler channels which can be 
readout as a function of the latching frequency. 
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was measured with the RIO3. This is accompanied by a 
strong increase in the CPU load, which indicates that the 
processor power is the limiting factor. However, it must 
be noted that this superiority of the Men A20 is only valid 
in the case of DMA usage. For direct access of a single 
register, the RIO3 has a slight advantage with a measured 
data rate of 1.4 MBytes/s as compared to 1.2 MBytes/s 
for the Men A20 board. In addition, setting up the DMA 
transfer takes some time and is thus suitable only for the 
transfer of large blocks of data via the VME bus. 

Moreover, the Men A20 CPU with its 1000 Mbit/s 
Ethernet interface also allows a higher data transfer rate to 
the GUI application as compared to the RIO3. Thus the 
RIO3 CPU has been phased out in beam diagnostics 
applications and is replaced with the Men A20 CPU. 

Future applications of the LASSIE system may include 
direct readout of ADCs for pulse-height analysis or TDCs 
for even more detailed spill structure analysis. For FAIR 
it is estimated that more than 1000 channels, distributed 
over the complete campus, will have to be read out. 
Preparatively the current system will be used as a test 
setup for a distributed DAQ system for proper intra-cycle 
data correlation.  

SCADA APPLICATIONS 
In addition to sophisticated DAQ systems, beam 

diagnostic devices depend strongly on technical 
subsystems such as pressurized air actuators, stepper 
motors, gas flow meters, high voltage power supplies and 
remote control operations. Such control requirements are 
also to be handled with FESA as the connector between 
the device and the GUI. 

For devices like actuators, flow meters and such, a 
field-bus system will be established. For the time being 
the Programmable Logic Controller (PLC) Simatic S7-
300 from Siemens is under evaluation. A description of 
the system and the connected beam induced fluorescence 
(BIF) measurement is given in [8]. Essential for this PLC 
setup was the interfacing with FESA, which was achieved 
using the IEPLC tool [9] from CERN. It creates Simatic 
code for data block exchange via Ethernet, which 
exchanges data with a predefined FESA 2.10 PLC class. 
The handling of the BIF system, e.g. control power for 
micro channel plates and camera iris regulation by use of 
FESA is now operational. The required calls to get and set 
data from the FESA class are implemented in a QT [10] 
based GUI. 

The integration of the multi-channel high-voltage 
power supplies like the CAEN SY1527 into the control 
system is a must. A FESA class was developed which 
accesses the SY1527 system via Ethernet connection. The 
FESA class provides access to all channels at once for e.g. 
shutdown procedures, but also single channel access from 
application GUIs, where only a subset has to be 
controlled. This is achieved by extensive use of the filter 
mechanism provided by FESA for its properties. Safety is 
easily enhanced by the FESA class included monitoring, 
logging and alarm options. 

A strict demand for all FAIR DAQ systems is the 
remote control access to all crates and systems, preferably 
via Ethernet. In some cases hardware has to be used, 
which allows only CAN bus access, for which a FESA 
class was developed.  

OUTLOOK 
In preparation for the FAIR project and the realization 

of the beam diagnostic DAQ system, all significant BD 
requirements, such as readout of high data rates, video 
imaging, distributed systems, slow controls, etc. were 
realized with FESA. The results are very satisfying and 
give confidence for the usage of FESA at FAIR. All new 
BD-DAQ systems for the existing accelerators will be 
realized with FESA to train developers and operators on 
the new technology. The new FESA Version 3.0 is 
expected to be released soon. By separating the FESA 
framework into a general and a lab-specific part, the new 
version will accommodate the GSI environment more 
suitably. As soon as a production quality will be reached, 
the current BD FESA classes will be ported to the new 
version. Although some differences between the current 
and the new FESA version exist, no major problems are 
visible at the moment. 

The next important development will be the DAQ for 
the beam position monitoring in the UNILAC at a cycle 
frequency of 50 Hz to demonstrate the real-time 
performance of FESA.  
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FAIR TIMING MASTER

Mathias Kreider, Tibor Fleck, GSI Darmstadt, Germany

Abstract

In the scope of building the new FAIR facility, GSI
will implement a new timing distribution system based on
WhiteRabbit. The FAIR system will resemble a tree topol-
ogy, with a single master unit on top, followed by sev-
eral layers of WR switches, down to about two thousand
timing receivers throughout the facility. The Timing Mas-
ter will be a mixed FPGA/CPU solution, which translates
physical requirements into timing events and feeds them
into the WR network. Macros in the FPGA resemble a
32x multicore with a strongly reduced instruction-set, each
event processor responsible for a specific part of the facil-
ity. These processors interact in real time, reacting to inter-
locks and conditions and ensuring determinism by parallel
processing. A powerful CPU prepares the timing event se-
quences and provides an interface to the control system.
These tables are loaded into the RAMs of each participat-
ing processor, controlling their behaviour and event output.
GSI is currently working on the WR timing system in close
collaboration with CERN, making this system the future
of GSI/FAIR. This contribution covers technical details on
the expected timing scenario, macro internals and discus-
sion on possible future development.

INTRODUCTION

Purpose

Future GSI/FAIR facility will use timing events to con-
trol machine actions. The FAIR Timing Master will cen-
trally generate all necessary events for the whole accelera-
tor facility. These will be used to trigger all beam guiding
components as well as all beam diagnostic measurement
devices where individual event filters apply for each sin-
gle front end controller. The timing receiver is integrated
into the standard FAIR frontend controller used mainly for
power supplies. For all other use cases, especially all beam
diagnostic devices, special timing receiver interface cards
will be supplied in different form factors. Typical event
reaction will be direct trigger output or IRQ. Furthermore
a separate high precision clock distribution system called
BuTiS for RF components where highest requirements to
accuracy and synchronization apply will be closely coupled
to the FAIR timing system.

The WhiteRabbit Transport Layer

The future Timing System of GSI/FAIR and CERN will
be based on the WhiteRabbit architecture. WR is a deter-
ministic field bus [2], the physical system consists of a non-
meshed GbE network topology, running timing services on

OSI layer II. Custom switches and endpoints are used for
timing measurements and the WR protocol.
WR provides phase compensation and absolute time dis-
tribution with an accuracy down to a nanosecond. Forward
error correction algorithms are employed to get highest sys-
tem reliability. Deterministic lag times are made possible
by using Quality of Service (QoS). This makes preferring
marked high priority packets possible. Since the lag time
to destination is reliably known in advance, this allows ma-
chine control packets to always arrive on time.

The FAIR Timing Master

To provide an interface to the general control system of
the facility, a powerful CPU handles the abstract beam pro-
duction down to the creation of sequence programs for con-
trol of Event Processing Units (EPU).

Every abstract physical part of the accelerator facility
like the linear accelerators, synchrotron rings and storage
rings, will be represented by a dedicated timing event gen-
erator unit.

Figure 1: Mapping components to EPU programs

Interaction between these machine parts requires fast
synchronisation between their timing schedules. For exam-
ple, a synchrotron ring needs to time its ejections precisely
with the receiving collector ring. The design therefore in-
cludes a fast mechanism for exchanges between generators.
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PLANNING

The Timing Master (TM) is a mixed approach between a
powerful CPU for easy integration into operating software
as well as easy use of existing libraries and middleware.
However, CPUs have underlying core and power manage-
ment functions which make response times in the desired
range unpredictable. An FPGA is used for event generation
and time critical communication.

Figure 2: Timing Master Functional Blocks

ARCHITECTURE

Figure 2 shows the details of the current implemen-
tation in testing. It shows the data flow from Operating
through machine translation, conversion to programmatic
format and real time execution inside the FPGA submitting
data to the transfer layer.

DATA FLOW

The TM’s CPU gets instructions for a production line
(Isotope, Amount, Energy, Source, Path, Target) from Op-
erating. Physical requirements are translated into machine
requirements by the LSA middleware. The resulting event
sequences with their dependencies are transformed into
event generator programs, compiled and loaded into the
FPGA’s memory where they will be executed.

IMPLEMENTATION

CPU

The top interface to the control system is based on FESA,
a device model framework and driver package. An inter-
face to the LSA core provides machine behavior descrip-
tions calculated from physical parameters. Below this is
the event sequencer, compiler and FPGA communications
module. As soon as a production line is fully defined, rel-
ative execution time of all necessary events and dependen-
cies between the indiv To allow reload of new programs
during runtime without interruption, memory write access
is managed by CPU only to write in places not currently
locked for execution. Preinserted conditions in the EPUs
program allow branching off to new program code on de-
mand. Sequences for all interlock, beam abort or beam re-
quest scenarios can be predefined for all EPUs. The timing
masters real-time decision logic will then always switch to
safe, consistent alternative event sequences.

FPGA

The FPGA houses multiple processor macros, each with
its own memory and controller. These Event Processing
Units (EPUs) are all equal in implementation, their behav-
ior is fully determined by the programs loaded into their
RAM.

EPUs are made dedicated to certain parts of the facil-
ity or serve public functions, like collecting and process-
ing beam requests from experimental stations. This has
the benefit of having a human readable program for each
timing generator. and interaction between involved com-
ponents is easily traceable because it follows the supposed
beam path. This leads to well defined modules and in-
terfaces, which can easily be tested standalone, therefore
speeding up system development.

Their programs run in parallel, are able to listen to ex-
ternal signals and interlocks, generate timing events and
synchronise themselves with other processors by an n by n
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flag matrix in a single cycle. In order to achieve fast syn-
chronisation, the flag matrix (each EPU can signal all other
EPUs) is completely realised as FlipFlops for fastest ac-
cess. An EPU can set its own flag vector and read the Bit
concerning itself from all other flag vectors, clearing it in
the process.

EPU and Instruction Set

The EPUs opcodes define mainly programmatic courses,
like jumps, branches and nested loops. They are not gen-
eral purpose processors but specialised sequencers. An
EPU instruction contains an Opcode, IO select instructions
and dedicated data fields for event codes, time values and
constants. This is not an optimal use of the FPGAs mem-
ory, but certifies execution times for each opcode and com-
pletely circumvents memory fragmentation.

WR Interface

For issues of load balancing, the Timing Master will
have a 100 µs collection cycle or granularity window for
outgoing events. The event concentrator macro then sends
a compact stream of events to the WR module, where they
are channel encoded and grouped into Ethernet packets.
Packet size also has an impact on the effectiveness of the
Forward Error Correction algorithm used in WR [4]. Cur-
rent settings expect a packet length of at least 200 byte for
the FEC to work efficiently, otherwise padding bytes must
be added.

Since the Timing Master broadcasts all events facility-
wide and only a few events are valid for an individual node,
predefined event filters will run in each nodes FPGA. When
an event is received, a node typically issues special trigger
signals or interrupts.

CONCLUSION

The concept of dedicated EPUs representing accelerator
components showed promise in early simulations.

A small number of EPUs were run with hand written
test programs, covering scenarios with up to four cooper-
ating EPUs. The task at hand is scaling these scenarios in
simulation to copy real scenarios. As soon as the simula-
tion is able to reproduce slowed down event sequences of
the current controls system, modules will be prepared for
synthesis.

OUTLOOK

A prototype system is planned to be set up in parallel
to the current pulse centre in 2011. By comparing control
sequences, a continuous test for aptability to the task of
running the current facility can be done. First test is run
with pre-written event programs, this allows testing in pro-
ductive conditions without further concern about schedul-
ing and machine calculations done above or transfer down
below.

After a first design stop of the EPU macros, the next goal
is an early implementation of the TMs software modules
most importantly the Event Sequencer and compiler. The
sequencer will be a solver tool able to synthesise the LSA
output sequence by reducing it to programmatic structures
and event numbers. The current compiler for the EPUs lan-
guage can be converted to a JIT-Compiler module for the
master.
A productive system is planned to be put into service at
GSI/FAIR in 2016.
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FROM AN EMPTY PC TO A RUNNING CONTROL SYSTEM: A KNOPPIX 
LIVE-CD FOR DOOCS 

G. Grygiel, DESY Hamburg, Germany

Abstract 
Software deployment of operating and control systems 

is a hard task for beginners and can be an error prone one 
for experts. As an evaluation of a potential, fast 
deployment technique, a Linux/Knoppix Live-CD [1] for 
the DOOCS [2] control system software has been 
developed. This CD contains a DOOCS core system, 
some example and middle layer server programs and 
basic client applications. Optionally, one can install a 
Knoppix and DOOCS system directly from the CD. All 
DOOCS and operating system software are provided as 
Debian [3] packages.  This paper will describe the Live 
system CD in more detail and discuss the interaction of 
Java Web-start based applications, other control system 
client applications, DOOCS name service and device 
servers. 

 
Figure 1: DOOCS Architecture 

MOTIVATION 
The idea is to run the DOOCS control systems with all 

major programs directly from a CD. The 'experts' have 
then an always available and workable system and this 
e.g. is an USB flash drive on the keychain.  It's ment to 
provide an overview of the entire system, without 
complex installation and configuration. A beginner 
receives a fully equipped and functional system. It is 
possible to start immediately with the development of 
control system servers and having all tools at hand. The 
Live-CD also demonstrates the integration of the various 
controls system architectures, like DOOCS, EPICS [4] or 
TINE [5], used at modern accelerator facilities. 
Features of the CD are: 
• Any time, every where available. 
• Quick start for beginners. 
• Debug tool for experts. 
• Demonstrates the whole chain, from the name 

service, device servers, up to the display. 
• Demonstrates the interaction of the various control 

systems (DOOCS, TINE, EPICS). 

CHOICE OF DISTRIBUTION 
For almost all components, DOOCS Debian packages 

have been developed, therefore it should be a Debian 
based distribution. Currently at DESY the Ubuntu [6] 
distribution is used. Various tests have shown that the 
Live-CD made by Klaus Knopper is significantly faster 
than the Live-CD of Ubuntu or Debian. The KNOPPIX 
distribution has a very good driver support; it is fast and 
designed to be run directly from a CD / DVD (Live-CD) 
or USB stick. The first attempt to remaster a KNOPPIX 
live CD was immediately successful. 

RECIPE TO BUILD THE LIVE-CD 
Start with booting from the KNOPPIX CD. A 

minimum of 3 GB free disk space should be available. 
Then copy the complete disc to the free space. Then again 
one can boot the usual Linux system and start changing 
the content of the KNOPPIX CD.  Use 'chroot' to install 
and configure all control system and other software. With 
chroot one is able to run a command or interactive shell  
in a special root directory. Also Internet access is possible 
out of the chroot environment. Change the look and feel 
to give the CD a personal note e.g. titles, graphics, menus.  
All it takes to remaster a KNOPPIX CD is described in 
the KNOPPIX_Remastering_Howto [7]. There are many 
UNIX commands to execute; therefore a good 
UNIX/Linux knowledge is required.  It took a view 
interactions until everything worked and looked as 
expected. 

To speed up the development process: 
• Create the CD image.  
• Start this image under qemu [8] (processor emulator) 

with KVM [9] support. 
KVM (Kernel-based Virtual Machine) with native 

virtualization support helped a lot to speedup the 
development process. The boot up process takes less than 
a minute. If KVM with native virtualization support is 
present, it will be used by qemu automatically. 

CONTENT 
The CD contains a DOOCS example server 

(SINGENERATOR) which talks also the TINE protocol. 
Furthermore DOOCS, EPICS and TINE command line 
tools (CLI) and some graphical java programs. 

In detail: 
• DOOCS 

o Server programs 
 ENS (equipment name server). 
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 watchdog (controls other DOOCS 
servers). 

 sine generator which also talks TINE 
o Client programs 

 CLI tools (doocsget, doocsput). 
 jddd [10] (Java DOOCS Data Display) 

talks also TINE, EPICS and Tango . 
 jDTool (Tool for displaying and 

changing DOOCS data. 
• TINE 

o CLI tools (tget, tput, …). 
o InstantClient (Tool for displaying and 

changing TINE data). 
• EPICS Base R3.14.11 

o CLI tools (caget, caput). 
o Server (excas). 

 A complete development environment for creating 
your DOOCS server is also available. In addition, the 
original content of the KNOPPIX CD is available 
(MPlayer, Internet access software, Mozilla Firefox and 
Thunderbird, GIMP, Open Office and a lot more).  The 
latest version can be downloaded from 
http://doocs.desy.de/. 
 

 
Figure 2: Knoppix with DOOCS Singenerator 

BUILD A DOOCS SERVER 
• Enter the following commands in a terminal: 
 cd doocs/source/server/test/example  
 make 
• And run it: 
 /home/knoppix/doocs/Linux/obj/server/test/exam

ple/example_server 

• Try to change the files eq_example.h and 
example_rpc_server.cc, Add a further D_float 
property. 

• Create an operator panel with jddd. 

JAVA CLIENT PROGRAMS 
The control system client programs are mainly java 

based. JavaWS (Java Web Start) is a clever mechanism to 
start java programs. JavaWS guarantees that you are 
always runs the latest version of the application and it 
eliminates complicated installation or upgrade 
procedures. The disadvantage is the dependence on a 
functioning Internet connection. That is why all Java 
programs are installed directly on the CD; it does not 
depend on the network to use the CD. 

GOODIES 
• Explore the DOOCS system and its capabilities by 

using the ready-to-go runtime version of DOOCS 
and TINE/EPICS/TANGO clients.  

• Build your own DOOCS server and run it.  
• Build your own DOOCS client as graphical user 

interface using the  JDDD framework.  
• Connect to the internet to browse the web, read mail, 

and ...  
• Change your environment to access extern control 

systems  
o DOOCS ENS host:  

set ENSHOST  
o EPICS gateway:  

set EPICS_CA_ADDR_LIST  
o TINE: 

set TINE_HOME  
unset TINE_STANDALONE 
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CONSOLIDATING THE FLASH LLRF SYSTEM USING DOOCS
STANDARD SERVER AND THE FLASH DAQ

O. Hensler, W. Koprek, H. Schlarb, V. Ayvazyan, C. Schmidt,  DESY, Hamburg, Germany  
Q. Geng, SLAC, Menlo Park, CA, U.S.A.

Abstract
Over the  last years the  LLRF group developed many

different flavors of hardware to control the RF systems at

the ���� ������	
 ���� �
 ������� �������. This led to
a variety of firmware versions as well as control system
programs and display panels.
A joined attempt of the LLRF and the controls group was
made over the last year to consolidate hardware, improve
the firmware and develop one DOOCS front-end server
for  all  6  RF  stations.  Furthermore,  DOOCS  standard
server  are  used  for  automation,  like  simple  state
machines,  and  the  FLASH  DAQ   for  bunch-to-bunch
monitoring tasks, e.g. quench-detection.

An  outlook  of  new  developments  for  the  upcoming
European XFEL, using xTCA technologies, will be given.

INTRODUCTION
Over the last 15 years FLASH has evolved from a small

test  facility  with  a  gun  and  one  8  cavity-accelerator
module, running at about 100 MeV, to a photon science
user facility. After the last shutdown in 2009/10 FLASH
has been upgraded to 7 accelerator modules with eight 1.3
GHz cavities each, plus a  3rd harmonic module with four
3.9 GHz cavities. This set-up allows FLASH to run at a
maximum beam energy of about 1.2 GeV.  Presently, six
RF  stations  are  required  to  supply  the  gun,  the  3rd

harmonic- and the seven 1.3 GHz modules with RF.
Over this long period, the  controls for the  Low-Level

RF (LLRF)  evolved alongside  the  modifications  of  the
accelerator.  Many different flavours of LLRF controller
hardware, starting from a pure analogue-based system for
the first gun, a successfully used DSP[1] system for the
modules  and  different  versions  of  Simcon  and
SimconDSP[2] systems were developed. All these systems
came with dedicated firmware, device server software and
operator display panels, leading to a very inhomogeneous,
global control system. Such a system was hard to maintain
and  applying  global  automation  procedures  was  very
difficult,  because  of  the  different  structure  and naming
convention of every device server.

The effort to consolidate the LLRF system during the
last shutdown will be described. 

DOOCS
The  Distributed  Object  Oriented  Control  System

DOOCS[2]  is  the  leading  system  for  the  FLASH
accelerator.  DOOCS  is  a  standard  client/server  control
system and based  on an object-oriented approach at the

front-end/server  and  client/display  side.  It  is  mainly
implemented in C++, but there is now a Java client-side
implementation  called  jDOOCS,  on  which  the  new
display tool jDDD[3] is based. An interface for MATLAB
clients is provided. The communication protocol is based
on  ONC Remote  Procedure  Calls  (RPC),  but  a  strong
effort  is  on  the  way  to  replace  them  by  the  TINE[2]
protocol.

HARDWARE

In order to achieve a homogeneous LLRF system, it is
very important to start at the hardware level already. It
was decided to use only two types of SimconDSP VME
boards, which are equipped with ten 14 bit ADCs. One
type has a Virtex V50 FPGA from Xilinx installed, which
is suitable to run all control algorithms needed and is used
as master card. If only additional analogue I/O is required,
a SimconDSP board, equipped with a Virtex V40 is used
as a slave card. The two boards are interconnected via 1
Gb fibre link to exchange the real-time data.[4]

FIRMWARE

After  coming  up with a  common hardware  platform,
only a few different version of  the FPGA firmware are
needed, which have many parts in common, like the VME
interface structure. The VME part has been optimized to
allow  the new 10 Hz operation of FLASH. A mapping
file is provided for all VME register and tables allowing
to  change  the  firmware  independent  from  the  device
server. The following firmware versions are needed :

� RF gun: This version is special, because the RF gun
has  no  hardware  probe  signal.  This  has  to  be
calculated   from  the  forward  and  reflected  power
signals.  In addition, the gun is a normal conducting
cavity, which requires different control algorithms. 

� Master board: This version includes all LLRF control
and  regulation  algorithm  as  well  as  beam  based
feedbacks.

� Slave  board:  A  simplified  version  to  readout  the
ADCs and calculate the partial vector-sum is needed.
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LLRF CONTROLLER SERVER
The LLRF controller server is the interface between the

SimconDSP  board  and  the  control  system  and
programmed using the DOOCS tool kit. The server runs

on a local SPARC CPU inside a VME crate. As operating
system Sun Solaris is being used. The CPU board has a
hard-disk  attached  to  store  the  server  binary,  shared
libraries,  configuration  files,  archiving  and  the  FPGA
firmware,  providing  complete  network  independent
operation.

The main design goal is to have just one device server
binary, which should be configurable to the needs of the
individual  RF  stations.   This  was  achieved  by
programming individual classes e.g. for cavity read-out,
vector-sum, main control or board set-up.  These classes
are activated during start-up of the DOOCS server, while
reading  the  server  configuration  file,  the  locations  are
created  with  its  individual  properties.  Complex  control
algorithms are separated in a C library, which allows to
use these algorithms in several projects and is provided by
the  LLRF team.  All  classes  recover its  values  into the
firmware after a power-up or firmware reload.

The  LLRF  controller  server  uses  the  FLASH
nomenclature now, e.g. one location name per cavity. This
eases the correlation by date with other server information
and  simplifies  the  design  of  operator  panels.  The
following classes are implemented :
Board class

This class loads the FPGA firmware, in case the system
is  powered  up  or  a  new  firmware  version  should  be
loaded.   By monitoring a  firmware counter,  the  overall

operation  of  the  firmware  is  monitored.  In  case  of  a
failure,  the  RF is  switched  off  via  the  FLASH timing
system.
Main Class

This  class is the  central  part  of  the  LLRF controller
server. Most of the controls, like amplitude or phase set-
point, is done here. All control tables for the firmware are
generated in this class and downloaded to hardware. 

Due to thermal effects during startup of the accelerator,
it is required to change the output rotation matrix in feed-
forward  mode  in  order  to  speed  up.  During  feedback
operation, these values are drifting back, though they need
to be adjusted slowly. Beam based feedbacks are closely
connected with the LLRF regulation and handled in this
class as well.

A similar version of this class is used for the RF gun.
Cavity Class

This class reads the I and Q values of one cavity probe
for one macro bunch and calculates amplitude and phase
from it. A calibration parameter for each cavity is stored
in this location.
Vector-Sum Class 

The vector-sum class is similar to the cavity class, but
is reading the partial or total vector sum of the system.
The total output rotation matrix is calibrated here.
Learning Feed-Forward Class

This  class  monitors  the  error  signal  of  the  LLRF
system, which is the difference between set-point and the
driving output. In case this error signal gets too big, the
learning  feed-forward  (LFF)  algorithm  tries  to
compensate  by  calculating new feed-forward  correction
tables. 
Toroid Class

This class is monitoring the attached toroid signal. This
channel is needed for beam-loading compensation (BLC).
Pyro Class

The  Pyro  signal,  which  allows  to  measure  the
compression in the bunch compressors,  is  connected to
one of the ADCs. This class monitors this signal and sets
a  parameter  needed  for  the  pyro  feedback  into  the
firmware.
ACC1-ACC39 Class

The purpose of the 3rd harmonic module ACC39 is to
linearise the 1.3 GHz RF signal.  The two RF stations for
ACC1 and ACC39 have to be operated in parallel. This
class  takes  care,  that  amplitude  or  phase  is  set
simultaneously to both stations between macro bunches.

DAQ ATTACHED SERVER
The FLASH DAQ[5] system pushes so called spectrum

data (2K float array) from many front-end computer to a
central shared memory with the 10 Hz repetition rate of
the  accelerator.  This  shared  memory  synchronizes  this
data on a macro-pulse basis. This allows to correlate data

Figure  1: This picture shows the overall concept for one
RF  station  with  all  required  front-end  computer  and
middle-layer  server  using  DAQ  and  standard
communication
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from the  whole machine easily.  A second advantage of
this  scheme  is,  that  this  huge  amount  of  data  is
transported only once over the network, but may be used
by  several  DAQ  attached  server.  A  library  called
DOOCSddaq is provided to read spectrum or float data
from the Buffer Manager directly. A trigger to the server
is  issued,  after  the  data  buffer  are  filled.
This concept is used by the following  LLRF server :

� Quench-detection: calculates from the I and Q values
the  Q loaded and  detuning of  each cavity.   With
these  values a  quench  event  can  be derived.   The
server  generates  in  case  of  a  quench  a  flag  per
klystron section. This flag is used by the finite state
machine to switch off the RF.

� LLRF diagnostic:  this server  calculates  values like
flattop mean, RMS,  flattop slope, bunch to bunch
stability  and  others  for  every  cavity  to  generate
performance statistics.

� PIEZO calculation: this server calculates the Lorenz
force detuning of  the individual cavities and  drives
the piezo front-end server accordingly.

AUTOMATION

The concept to automate the RF is based on a simple
finite state machine (FSM) approach. The main purpose is
to  simplify  the  on/off-switching  procedure  and  faster
recovery from trips. 

This  FSM is realized in the  standard DOOCS server
framework with the addition of the DOOCSdfsm library,
which provides simple classes for monitoring float values,
recover set-values or resetting interlocks. The FSM is the
central server for the automation, it starts up or switches
off the whole RF.  All actions in other server are triggered
by the FSM, giving the operator one central location to
look for the status or problems of the RF system; no other
software should switch the RF. 

The FSM runs with a repetition rate of 2 Hz, checking
several  things, like  interlocks,  coupler  vacuum,  klystron

status or quenches. In case of a problem in one state, the
so called  tripaction()  function is  triggered to bring  the
system to a save condition, then the FSM tries to recover
the  RF  system.  The  same  states  are  checked,  when
starting-up or recovering from trips.

OUTLOOK
For the upcoming European XFEL project, it is planned

to use xTCA as hardware platform, because of the modern
PCIx  communication  and  the  standardized  remote
monitoring capabilities. The required down-converter and
fast ADCs  µTCA cards are already available, the LLRF
controller  board  is  in  the  design phase.  Porting  of  the
LLRF controller server code from the old SPARC VME
CPU to a  INTEL x86 CPU is in progress. The goal is to
have  one  source  code  base  only  by  exchanging  the
hardware  interface  through  compile  flags.  Due  to  the
much better performance of the INTEL CPUs, it will be
possible  to  run  most  of  the  middle  layer  server,  like
quench detection locally. 

SUMMARY
The LLRF system at FLASH has been consolidated to

one  unified  set-up  for  all  RF  stations  in  terms  of
hardware,  firmware,  software  and  naming  conventions.
Operator  panels  have been  simplified  and  better  expert
panels have been designed.

The concept of a simple FSM is in standard operation,
but some improvements have to be implemented to sort
out  conflicts  between  operator  intervention  and  FSM
recovery action. 

The learning feed-forward algorithm has  been ported
from a MATLAB tool to the LLRF controller server and
is in standard operation as well. Applications like vector-s
um calibration or  quench detection are implemented  as
DOOCS server  already,  but  need  more  commissioning
and tighter integration into the FSM framework. Further
work is needed to improve the reproducibility of the RF
system behaviour.

It  is reasonable to say, that the first user run showed
already improved performance of the LLRF controls and
the new structure will be well-suited to be the base for the
European XFEL.
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Figure 2: This picture shows the FSM concept for one RF
station 
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AN ORBIT FEEDBACK FOR THE FREE ELECTRON LASER IN 

HAMBURG (FLASH) 

R. Kammering DESY (Hamburg, Germany), John Carwardine ANL (Argonne, IL, USA)

Abstract 
The lack of knowledge of the exact energy profile of 

the Free Electron Laser in Hamburg (FLASH) and 

thereby of the orbit response matrix, made the 

implementation of a conventional orbit feedback in the 

past very difficult. 

The new run period started this spring after extensive 

modifications of the facility, showed that the responses 

matrixes seam now to be in good agreement with the 

theory, thereby allowing the application of standard orbit 

feedback techniques. 

The physics concepts and the chosen architecture to 

implement such software on the middle layer and 

interplay with other high-level software components will 

be discussed. The development and implementation of 

this software using the DOOCS servers in combination 

with the dynamic components of the Java DOOCS data 

display (jddd) allowed a flexible and scalable 

implementation, which could also serve as a prototype for 

future implementations at e.g. the European XFEL. 

MOTIVATION 

The task of stabilizing beam jitter, as it is the case at 

most synchrotron radiation facilities, is not feasible for 

the FLASH linac, because the orbit can only be sampled 

at the maximum of pulse repetition rate of 10 Hz. 

So the task of compensating fast-varying errors, for 

example in magnetic fields of corrector magnets or 

vibrations due to ground movements is here not the main 

focus of this orbit feedback implementation. 

Instead of this the main objectives for an orbit feedback 

at a linear accelerator are to: 

- restore saved orbits 

- compensate long-term drifts 

- stabilize the orbit downstream while tuning the 

machine further upstream  

- making localized orbit changes 

These are only the most important objectives an orbit 

feedback could attack. For FLASH it is even further 

envisioned to change the today practice of using 

individual steerers (dipole magnets) to tweak the orbit 

at a certain position along the machine (we will call this 

the longitudinal position in what follows), but instead 

of this modify beam positions using the orbit feedbacks 

target values at this longitudinal position. 

BASIC SCHEMA OF A BEAM BASED 

ORBIT FEEDBACK 

The basic principle of the FLASH beam based orbit 

feedback follows the standard techniques as e.g. described 

in [1]. A linear response matrix (R) describes the action 

of small changes ( I = [ h, v]) in the corrector magnet 

fields (dipoles) on the beam position ( X = [ x, y]) 

measured at the beam position monitors (BPMs). 

R I = X 

Inverting the response matrix allows to derive the 

needed values to be applied to the correctors to yield a 

certain change in the beam position. In cases of unequal 

numbers of BPMs and correctors, the response matrix is 

non-square which can be inverted using the pseudo 

inverse or singular value decomposition. 

Ij = g R
-1

 (Xref – Xmeas) + Ij-1 

With the gain factor g = 1 this would lead to a full 

correction of a given difference between the desired Xref 

and actual beam position Xmeas, if the new current Ij will 

be written to the correctors in step j. One will usually 

work with a gain factor << 1 and also apply some filtering 

to the Xmeas data to avoid ringing and overcorrection. 

 

 

Figure 1: Basic structure of the beam based orbit 
feedback loop 

ARCHITECTURE 

The main objectives of the FLASH orbit feedback are 

not to damp high frequency position jitter, but more to 

assist operation and decouple actions within the machine. 

Therefore it was planned from the beginning to 

implement this as a pure software feedback with moderate 

operation frequency (0.5-2 Hz). 

The basic architecture for such a software-based 

feedback therefore follows the classical design of a 

middle layer server as described in the following section. 

DOOCS as basic software infrastructure 

The dominant control system at the FLASH facility is 

the Distributed Object Oriented Control System 

(DOOCS) [2]. Therefore a logical choice for the orbit 

feedback is to implement this software using C++ and the 

existing DOOCS application-programming interface 

(API). DOOCS offers a natural mapping of the monitors 

(BPMs) and correctors (steerers) to C++ objects, which 

significantly eases working with many devices, and thus 

understandablity of the code. 
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Optics Toolbox 

In standard operation the machine optics and hence the 

beam transfer matrix will not change, provided the energy 

and quadrupole magnetic fields variations are negligibly 

small. Therefore we excluded the determination and 

manipulation of the transfer matrix from the core 

feedback function and instead used the well-proven optics 

functions from the optics toolbox used at FLASH [3]. 

This toolbox is a collection of Matlab functions providing 

all relevant beam optics operations needed for standard 

optic tasks. This toolbox is used to create inverse 

response matrixes and stores these in files, which are read 

by the orbit feedback (see Figure 2). 

The orbit server 

The orbit feedback server is not reading the actual 

beam position from the front end servers attached to the 

beam position monitors (BPMs), but rather it is read from 

a server instance (called orbit server) used for 

synchronizing and pre-processing (e.g. the intra bunch 

train average) as shown in Figure 2. 

The orbit server itself is embedded in the FLASH data 

acquisition system (DAQ), from where it collects the 

BPM readings (for details about the DAQ system see e.g. 

[4]). 

 

Figure 2: Architecture and data flow 

The orbit feedback 

The orbit feedback uses standard DOOCS RPC 

communication to collect BPM data and perform the 

calculations needed to create the corresponding vector of 

corrector setpoint changes. The updated corrector 

setpoints are written to the TINE-based magnet server, 

which distributes them to the relevant power supply (PS) 

controllers (for TINE see [5]). 

The management of the reference orbits (vectors of 

setpoint values) will be handled through the existing 

FLASH Save and Restore system. 

The display level 

Java DOOCS data display jddd [6] is used for 

monitoring and control of internal states of the orbit 

feedback server. 

Defining BPMs and steerers as DOOCS objects and 

subsequent mapping to jddds dynamic lists makes it 

possible to work with many devices as if they were a 

single instance. (FLASH, even though its length is only 

about 300m, contains ~ 50 BPMs and ~ 70 correctors.) 

This is realized by the simple technique of “draw once, 

use many times”. 

Figure 3 shows the jddd editor with the line 

representing a single BPM instance while in the lower 

right corner the same panel in run mode is showing the 

full list of BPMs. 

 

Figure 3: Java DOOCS data display, showing the 
BPM pane in edit and run mode 

STATUS 

The basic software interface for reading the beam 

positions and writing the corrected currents has been 

implemented using C++ as a standard DOOCS server. 

Rough estimates for total loop times (150-300 ms) have 

been made and show that operation with the targeted 

operation frequencies of 0.5–2 Hz are well suitable. 

First routines for accessing response matrixes delivered 

by the optics toolbox have been integrated and the whole 

data flow chain is already operational. 

All implementations have been accompanied by the 

continuous development of jddd panels mainly aimed for 

debugging, but these will also serve as a good starting 

point for final monitor and control panels. 

First tests with the beam are planned to take place in 

the end of this year. 

CONCLUSIONS 

The implementation of a software based global orbit 

feedback for the FLASH facility using the existing 

software landscape is well on its way. The lose coupling 

and combination of the different control system 

components and protocols has allowed this new software 

to be developed without any need for modification of 

existing parts. 

The combination of DOOCS object oriented approach 

and the dynamic generation of the displays and panels, 
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have proven to ease the development a lot. Such methods 

will be a must for working with the high device 

multiplicities, as one will have at e.g. the European 

XFEL. 
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STATUS, APPLICABILITY AND PERSPECTIVE OF TINE-POWERED 
VIDEO SYSTEM, RELEASE 3 

Stefan Weisse, David Melkumyan (DESY, Zeuthen) 
Philip Duval (DESY, Hamburg)

Abstract 
Experience has shown that imaging software and hard-

ware installations at accelerator facilities needs to be 
changed, adapted and updated on a semi-permanent basis. 
On this premise, the component-based core architecture 
of Video System 3 was founded. In design and implemen-
tation, emphasis was, is, and will be put on flexibility, 
performance, low latency, modularity, interoperability, 
use of open source, ease of use as well as reuse, good 
documentation and multi-platform capability. Special 
effort was spent on shaping the components so that they 
can easily fit into small-scale but also into area-wide in-
stallations.  

Here, we describe the current status of the redesigned, 
almost feature-complete Video System, Release 3. Indi-
vidual production-level use-cases at Hasylab [1], PITZ [2] 
and Petra III [3] diagnostic beamline will be outlined, 
demonstrating the applicability at real world installations. 
Finally, the near and far future expectations will be pre-
sented. 

Last but not least it must be mentioned that although 
the implementation of Release 3 is integrated into the 
TINE control system [4], it is modular enough so that 
integration into other control systems can be considered. 

 

OVERVIEW 
The origin of the featured Video System 3 (VSv3) is the 

Photo Injector Test Facility Zeuthen (PITZ). It is a test 
facility at DESY for research and development on laser 
driven electron sources for Free Electron Lasers (FEL) 
and linear colliders [5, 6]. 

Currently, VSv3 is almost feature-complete. Since 
2008, it has emerged out of its predecessor [7], now 
known as Video System 2 (VSv2). The current software is 
a result of more than 10 years experience on video con-
trols at particle accelerators. 

As the lifetime of an accelerator facility can be a few 
years or decades, in contrast to the fast-pace IT world, a 
few design criteria should be kept in mind. Some API or 
operating systems can be potentially obsolete just a few 
years after commissioning. Both environmental consid-
erations (radiation level) and customer demands can re-
quire frequent exchange of components and/or software 
evolution and upgrades. Thus there is a strong motivation 
to incorporate flexibility, modularity and interoperability 
in the design.  

VSv3 was designed and implemented to meet all of 
these requirements, as well as those general requirements 
any video system must meet. These include high perform-
ance and low latency.  

Selection of key characteristics/capabilities: 
 
• raw greyscale images up to 16 bits per pixel 
• raw colour images (24 bit RGB) 
• integrated JPEG compression/decompression (grey 

and colour) 
• production-level interfaces and experience in opera-

tion of: Prosilica GigE cameras, analogue cameras, 
JAI GigE cameras, JAI/Pulnix GigE cameras and 
equipment possible to attach using MS Directshow 
interface (Webcams etc.) 

• high-bandwidth possible [8] 
• low latency possible (what you steer is what you get) 
• production-level 1.4 megapixel transfer, 16 bit grey, 

at 10 Hz update rate 
• up to 30 frames per second can easily be reached 
• Area of Interest (AOI)-only transfer  
• shared memory interconnection of server-side com-

ponents 
• multicasting of video images 

COMPONENTS 
The video system comprises of several different com-

ponents, selected ones are described in details below (see 
Figure 1). 

The VSv3 Transport Layer (VSv3 TL) specifies the 
layout of a well-defined flexible image data type (header 
and bits) plus ways of transport which is integrated but 
not limited to TINE control system. Structure, header 
fields and pixel data formats are well documented. 
Small Grabber Part (SGP) is the central front-end 
server-side component to acquire video images. To keep 
the C++ code simple, one SGP process will deal with only 
one camera at a given time. Various editions of SGP exist. 
Edition means it supports exactly one API to interface 
image sources / hardware. Most important editions at the 
moment are Prosilica, JAI and MS Directshow SDK, all 
on Windows platform. The C++ source code is kept plat-
form independent as much as possible and references only 
widely available open source libraries. Thus, migration to 
other operating systems is expected to be on the order of 
hours or days. This of course depends on the availability 
of SDK for the chosen platform.  

The connection from image source to SGP can be 
switched from one image source to another remotely. For 
example, if only two video streams are wanted in parallel, 
20 cameras can be supported with just two SGP server 
processes. SGP provides one TINE control system output 
interface with VSv3 TL and one interface to shared mem-
ory (SHM). 
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VSv2 Compatibility Layer is an intermediate C++ 
server-side component dedicated to provide backward 
compatibility. Its purpose is to receive image stream via 
VSv3 TL (using TINE or shared memory), convert the 
image to VSv2 format and provide VSv2 output connec-
tions (TINE and pure TCP sockets) to legacy VSv2 cli-
ents.  

Raw to JPEG intermediate C++ server-side component 
was designed to provide easy translation of raw uncom-
pressed images to JPEG images, with a tuneable compres-
sion factor. Input is possible via VSv3 TL (TINE or 
SHM), output is provided as TINE VSv3 TL. Supported 
are greyscale and colour images. Near-real time operation 
is possible. The CPU load required for this needs to be 
considered but resources are easy to provide on today’s 
powerful commodity PC hardware. 

TINE ACOP Video bean is a fundamental client-side 
component which displays video streams and provides 
basic functionality for image enhancement as well as in-
tegrated analysis made by Cosylab [9]. As Java has been 
selected as the target platform for future control system 
client-side at DESY, native Java has been used as the pro-
gramming language. This gives the immediate benefit of 
platform independence. One might expect Java to reduce 
the code execution speed of the software. However, even 
if this does play a role (for example in low-level network-
ing functionality), overall performance figures so far are 
satisfactory. With the high processing power of today’s 
PC hardware and the periodic increases in power, Java 

can be considered a real alternative to native code in 
video system client software. As a Java bean integrated 
into the ACOP framework [10], it is easy to include along 
with other ACOP beans in Java clients (from rich clients 
to simple panel clients). In lieu of a dedicated client ap-
plication, ACOP beans also provide a generic Video Ap-
plication, which is designed to work out-of-the-box. 

A well-defined Universal Slow Control (USC) Solu-
tion found within VSv3 provides abstraction and mecha-
nisms to control slow parameters of hardware devices. 
The server part contains various connections to interface 
hardware, layout of parameters in hardware and well-
defined TINE property interface. The USC client uses this 
to present hardware parameters to operators in a conven-
ient, platform-independent Java GUI. 

A MATLAB client-side image acquisition interface 
provides a simple, easy to use interface for users of Mat-
lab. The interface supports all image features of VSv3 as 
well as a VSv2 input which is provided for backward 
compatibility. Operators are currently making good use of 
this interface, writing their own scripts and clients. 

USE CASES 
As of September 2010, most components necessary for 

a full-scale operation have been finished and are already 
installed in stable production environments at PITZ 
(DESY Zeuthen), Hasylab and Petra III (DESY Ham-

 
    Fig. 1: Simplified layout of VSv3 components are their interaction 
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burg). The process of rolling out components at EMBL 
Hamburg has recently been started. 

The Hasylab installation is focused on having many 
Prosilica Gigabit Ethernet (GigE) cameras all running in 
parallel at slow update rate (~2 Hz). Currently about 45 
server processes are distributed across two machines. Im-
ages are acquired at defined positions on user beamlines 
in the newly built Petra III experimental hall [11]. Imag-
ing is used for online beam centering and position moni-
toring. On the client side, the ACOP Video Application is 
used as video display. USC is used for tuning of camera’s 
image acquisition parameters (gain, shutter speed, etc.). A 
special challenge has been transporting data on the 1 Gbit 
network interface at the server machine which is shared 
with the general mixed Gbit/100-Mbit controls network. 

The Petra III installation consists of a VSv3 Prosilica 
GigE camera installation at Petra III diagnostics beamline 
[12] as well as an already existing VSv2 analogue camera 
readout which provides images of beam positions at pre-
accelerators and beam distribution paths in-between. 
Cameras are driven with a slow update rate of about 2 Hz. 
On the client-side, the ACOP Video bean has been inte-
grated into rich Java clients custom-made for Petra III 
control. The earlier mentioned Java-based video analysis 
collection of components (made by Cosylab) is a vital 
part of the controls setup. A special challenge at Petra III 
was that due to limitations in the existing control network 
bandwidth, certain mechanisms had to be implemented / 
configured in order not to exhaust limited network re-
sources. 

The PITZ setup consists of various camera types. At the 
moment analogue JAI cameras (M10 RS, M10 SX), 
Prosilica GigE (GC-1350, GC-1350C) and JAI/Pulnix 
GigE (RM-1405GE) are installed. Foreseen are installa-
tions of more JAI/Pulnix (RM-2030GE) and JAI GigE 
cameras (JAI BM141GE). In contrast to Hasylab installa-
tion, PITZ has about 25 cameras but only about 10 server 
processes. A camera assignment/switching panel has been 
provided to the operators, who use this to route video sig-
nals from source to destination. On the client side, PITZ 
is mainly using VSv2 software, which interfaces with 
VSv2 Compatibility Layer component that has been in-
stalled at server-side. VSv3 software is used directly with 
the VSv3-based Universal Slow Control solution for cam-
era setup (e.g. adjusting gain and shutter in order to tune 
image quality at place of acquisition). Special challenges 
here are the demands of PITZ regarding imaging: loss-
less image quality, near-realtime and low latency. Fur-
thermore constant changing of hardware and software 
requires a robust and flexible setup in order to avoid sig-
nificant investment of time to keep it all up and running. 

EMBL Hamburg has used VSv2 for sample changer 
monitoring and control to great satisfaction. As step by 
step EMBL user beamlines are commissioned at Petra III, 
VSv3 components are foreseen to be installed there. As a 
first step, an interface for Labview readout of VSv3 TL 
outputs has recently been provided. This is used to moni-
tor video from Hasylab screens, which is very useful for 
EMBL operation. 

ON THE HORIZON, PERSPECTIVE 
Effort in the next months will be put on finishing in-

tended features at the server-side. For example, applying a 
unique trigger event number obtained from a central 
source to each video frame is foreseen. Likewise, the in-
tegration of recording and playback of video sequences to 
Archive or DAQ installations is foreseen. At the client 
side, an image import/export API with stable methods to 
load/save the transport layer’s image data type to/from a 
PNG file will be released, followed by an extension to 
sequences of images to PNG files in a ZIP container.  

Over the coming years, the extension and upgrade of 
currently existing installations will transpire. Apart from 
documentation and Video System website updates, the 
client libraries will provide a range of APIs so that a user, 
no matter his software experience will be able to interface 
the Video System with his own tools (e.g. ROOT, Mat-
Lab, Labview, C/C++ library, Java, or .NET). VSv3 and 
ACOP video tools already comprise a collaboration span-
ning several institutes. At the same time, new collabora-
tion partners are very welcome and are encouraged to 
contact us. 
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THE FERMI@ELETTRA CCD IMAGE ACQUISITION SYSTEM  

G. Gaio, F. Asnicar, L. Pivetta, G. Scalamera, Sincrotrone Trieste S.C.p.A. ELETTRA 
 
 
Abstract 

FERMI@Elettra is a new 4th generation light source 
based on a linac-driven Free Electron Laser (FEL) which 
is currently being built in Trieste, Italy. The CCD image 
acquisition system is a fundamental diagnostic tool for the 
commissioning of the new accelerator. It is used for the 
characterization and tuning of the laser, electron and 
photon beams. The Tango based software architecture, the 
soft real-time performance and the embedded image 
processing algorithms are described. 

ACQUISITION SYSTEM 

CCD   
Three Basler CCD cameras (model scA780-54, 

scA1390-17 and scA1400-17) are currently integrated in 
the image acquisition system. All of them provide a 
Gigabit Ethernet connection and a hardware trigger input 
for the synchronization, and mainly differ for the number 
of pixels. 
A total of 84 CCD cameras are installed: 

• 16 are dedicated to the diagnostics of the 
photo-injector and seed lasers; their  purpose is the 
measurement of the laser beam trajectory along the 
optical path and the characterization of the laser 
beam profile; 

• 52 are integrated in the fluorescent screen system, 
which allows the analysis of the electron and photon 
beams along the linac and the FEL undulators; 

• 16 are installed in the photon beam transport system 
and will be used for the measurement of the 
parameters of the photon beam provided to the 
experimental stations. 

Up to 18 among the above mentioned CCD cameras 
have to be concurrently and continuously acquired. 

Image servers 
In the final configuration five server computers will 

take care of the acquisition of all the CCD cameras. 
Each of them consists of a one-unit 19-inch rack mount 

server configured with two Xeon QuadCore 3.0GHz 
processors, 4Gb of DDR3 RAM and up to six Gigabit 
Ethernet links. One of them is connected to the control 
system network, three are dedicated to the acquisition of 
the CCDs and one is used for the real-time 
communication through the Network Reflective Memory 
(NRM) [1]. 

The servers run a GNU/Linux 2.6 kernel patched by the 
Xenomai real-time extension [2], which provides them 
with deterministic capabilities. This is used in particular 
by the Ethernet driver to share time-critical data among 
the control system computers using the NRM. 

 

IMAGE PROCESSING 
For each CCD, a Tango [3] device server is dedicated 

to the control of the main parameters like exposure and 
gain, performs the image processing and makes the results 
available to client applications running in the control 
room. 

Performance and flexibility to adapt to the beam 
changes are the requirements that the processing software 
have to fulfil. The performance must guarantee to meet 
the deadlines because the acquisition and analysis of the 
image have to be done shot-by-shot. The maximum 
repetition rate of the linac is 50Hz, which means that a 
maximum of 20 ms is available to process each image. 
For this reason, it is convenient to analyze only the 
portion of image containing the beam profile, 
conventionally called Region Of Interest (ROI).  

The image processing is divided into three steps: 
automatic ROI detection, calculation of the beam profile 
moments and data storing with a precise timestamp. 

Automatic ROI Detection 
Searching the beam spot inside an image could be a 

complicated task. Sometimes it is easier to find the parts 
of the image where there is no beam instead, i.e. to define 
the background. 

In order to perform the ROI detection efficiently, the 
full scale image is under-sampled. The resulting samples 
size should be at least twice the minimum size of the 
beam spot in both planes in order to have at least a few 
points of the beam in the under-sampled image.  

If necessary, the image is smoothed by a low pass filter 
to mitigate the presence of artifacts. A thorough design of 
the low pass filter parameters can dramatically enhance 
the magnitude of the beam profile with respect to the 
noise due to reflections on the vacuum pipe surface (Fig. 
1).  
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Figure 1: image of the electron beam measured at the exit 
of the photo-cathod gun, before (left) and after (right) the 
under-sampling/filtering process.  

The background level is estimated through the analysis 
of the complementary cumulative distribution function of 
P(X<=x), which represents the probability that a pixel 
value X is lower then x. This task is performed in three 
steps: 
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• subdivide the amplitude range of the image into N 
equally spaced values and store them in the array 
vec_lev[1..N]; 

• For each vec_lev[] element, count how many pixel 
values in the image are higher and store this count in 
the array vec_area[] 

• Compare each element of the array vec_area[] with 
the predecessor. If the difference between 
vec_area[n] and vec_area[n+1] for n=1..N-1 is a 
above a predefined threshold T, then the background 
level is found (Fig. 2) and corresponds to 
vec_lev[n+1]. 

The experience demonstrates that for most of the beam 
shapes, with an 8-bit resolution image, a couple of 
optimal values is N=20, T=0.4.   

We can assume that the pixel with maximum value in 
the under-sampled image corresponds to the centroid of 
the beam.  
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Figure 2: complementary cumulative distribution function 
calculated from the under-sampled image of Fig. 1 

In order to find the ROI, each border of the square that 
initially contains the centroid is expanded until there is at 
least one pixel on the border which value is higher than 
the background level.  
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Figure 3: Final result of the image processing. ROI is 
highlighted directly on the image. 

Once the expansion of the ROI around the beam has 
terminated, the coordinates of the ROI found in the under-
sampled image are converted into the original image 
scales (Fig. 3). 

Moments estimation 
In order to estimate the moments of the beam profile, 

besides the “raw” algorithm (average and σ), three 
possible fitting functions can be used: gaussian, 
asymmetric gaussian and a seven-parameter function 
called “Confiteor” [4], of which the gaussian fitting 
function is a particular case. With the exception of the 
raw algorithm, the calculation of the fitting function 
parameters is based on the GNU Scientific Library (GSL) 
[5] non-linear least-squares algorithm.  

A software library for the calculation of the jacobian 
matrix of derivatives needed in the iterative GSL 
algorithm has been developed. The fitting iterations stop 
when the predefined fitting error or a time limit is 
reached. The first and second moments are then 
analytically calculated. 

The comparison of different algorithms shows that for a 
beam shape that is far from being gaussian, the gaussian 
fits could differ a lot from the correct result (Fig. 4).  
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Figure 4: Comparison of the fitting functions applied to a 
beam which has not a gaussian distribution. 

Table 1 shows the horizontal σ calculated by different 
algorithms and their performance. The results obtained 
with the raw algorithm and with “Confiteor” are in good 
agreement; the latter is slower but much more robust in 
case of “salt and pepper” noise.  

Table 1: Comparison between different moment 
estimation methods (image with full scale size 
782x582px, ROI size 120x200px) 

Calculation mode     Processing  time σx 

Raw     2.4 ms 0.309 mm 

Gaussian     4.8 ms 0.255 mm 

Asymmetric Gaussian     5.2 ms 0.254 mm 

Confiteor     9.6 ms 0.326 mm 
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Data storage 
The proprietary binary libraries provided by the CCD 

cameras vendor can only be used in the Linux user space 
domain , therefore it is not possible to acquire and store 
the CCD data in real-time. Despite this limitation, a 
thorough tuning of the priorities in the Tango device 
server and the overruling in the assignment of interrupts 
and processes to the eight CPU cores, allows anyway the 
acquisition of the beam image shot-by-shot in a reliable 
way.  

The bunch number, a sort of time stamp which 
identifies each of the accelerated bunches, is distributed in 
real-time via the NRM along the accelerator. It is used to 
tag every acquired image and eventually unveil any 
misalignment (two images with the same bunch number) 
in the acquisition. The tagged images can be easily 
correlated with other diagnostics data (e.g. from BPMs, 
Charge Monitors, …) or with the strength of the 
accelerator magnets that can also be driven on a 
shot-by-shot basis. 

The beam parameters calculated by the image 
processing are stored into circular buffers, which support 
both storing and retrieving operations in kernel and user 
space. The buffered data can be extracted specifying 
either the time limits or the bunch numbers. A number of 
filter methods (mean, median, Kalman, etc.) can be used 
to extract already de-noised data. 

CLIENT APPLICATIONS 

Graphical User Interface (GUI) 
A GUI developed using Q-Tango [6] supervises 

the operation of the CCD cameras (Fig. 5). The graphical 
panel allows to deal with the CCD Tango device server 
API (attributes and commands) and visualizes the beam 
image at a selectable refresh rate and with the preferred 
false colour palette. It is possible to magnify the image, 
save a snapshot (TIFF) and store the image raw data 
(CSV).  

 

Figure 5: CCD control panel 

 
Moreover, the panel features a smart interface for the 
CCD calibration process and for measuring distances in 
the beam image (pixel and mm). 

Real-time Machine Physics Applications 
The emittance is one of the most relevant parameters 

that must be optimized in a FEL. It could be measured by 
changing the focusing characteristics of a quadrupole 
magnet and measuring the corresponding size of the 
electron beam using a downstream fluorescent screen. By 
driving the quadrupole magnet current synchronously to 
the acquisition of the screen images, it is possible to 
obtain a good estimation of the emittance in less than 20 
shots [7]. 

Another measurement that takes advantage of the 
shot-by-shot acquisition is the evaluation of the timing 
jitter of the electron bunches. The measurement consists 
in titling each electron bunch by means of a RF deflecting 
cavity with the proper phase, and intercepting it with a 
fluorescent screen. The projected image acquired by the 
CCD represents the longitudinal profile of the bunch and 
the movement of the centroid in the vertical axis 
corresponds to the beam timing jitter. 

CONCLUSION 
The CCD camera acquisition system is one of the most 

important diagnostics tools for the commissioning of the 
new accelerator. The capability to acquire beam images 
and correlate them with the other machine parameters on 
a shot-by-shot basis has contributed significantly to the 
success of the commissioning operations. 

The auto-tuning of the image processing algorithms, the 
optimization of the processing code and the introduction 
of an abstraction layer to allow the integration of other 
CCD camera vendors, are some of the new developments 
foreseen for the future. 
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EPICS APPLICATIONS IN THE CONTROL OF SPES TARGET 
LABORATORY 

 

M. Giacchini, A. Andrighetto, G. Bassato, N. Conforto, L. Giovannini, 
  INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova), Italy 

 

 
Abstract 

The project of a new facility for the Selective 
Production of Exotic Species (SPES) has started  at  LNL. 
Radioactive ions will be produced by impinging an UCx 
target by a 70MeV, 200µA proton beam delivered by a 
commercial cyclotron. Then, the unstable ions will be 
accelerated by injecting them into the LNL 
superconducting  LINAC.  The construction of  Target 
and Ion source prototype (Fig. 1) is at an advanced stage 
and, after more than two years spent in its construction, 
preliminary extraction tests were carried out with non-
radioactive beams. The control of  Target instrumentation 
is based on EPICS; we describe here the basic choices on 
hardware and software tools on both IOC and client side 
and give a brief description of last developments.  

THE TARGET LABORATORY 
INSTRUMENTATION 

The target instrumentation controls the beam extraction 
and  transport up to a diagnostic station where the 
physical characteristics of the beam are measured.  The 
beam production is obtained by heating the target to a 
temperature of about 2000 C, necessary for the optimal 
extraction of ionized fragments.  

The power required for heating is delivered  by an array 
of high current power supplies (LAMBDA GENESYS 
series) configured in a master-slave chain and providing a 
current in excess of 1300 A.  Other heating methods are 
foreseen for the future (i.e. using a laser or a microwave 
source) but currently only the ohmic dissipation has been 
used. Once extracted, the beam is focused by an 
electrostatic lens of three quadrupoles f ed by a set of  HV 
bipolar power supplies (a special assembly of rack mount 
units manufactured by Ultravolt). 
The target and the power supplies are placed on an 
insulated platform that is brought at about 60KV from 
ground by a FUG (HCP series) power supply.  The 
electrical power required by GENESIS modules is 
transferred to the platform through a 20KW insulation 
transformer.  An Ethernet transceiver from copper 
(100Base-T) to fiber optic is used to link the control 
network  to the instrumentation placed over the HV 
platform; a multi-port Ethernet to serial converter 
(Comtrol Device Master) is then used to connect the 
devices equipped with a serial interface. 

 

 
 
        Figure 1:  The target chamber and ion source 
 

CONTROL DEVICES 
The devices used to control the beam production and 

extraction are Linux-based IOCs. The LAMBDA-
GENESYS master unit has a serial RS232 link to the host 
controller, which is a standard PC running on CentOS 
Linux. This OS distribution has been chosen because it is 
open-source, stable and completely compatible with 
RedHat. The device support is derived, with minimal 
modifications, from the driver developed at PSI, based on 
StreamDevice[1].  The HV power supplies (both Ultravolt 
and FUG) have an analog interface and are controlled by 
means of three microIOCs manufactured by Cosylab (SI). 

These devices are embedded controllers based on a 
PC104 board and running under Debian Linux (preloaded 
on a flash disk). Each unit has three I/O boards, providing 
an adequate number of analog and digital I/O channels. 
EPICS drivers and debugging utilities come built-in with 
the controller software. 

 
BEAM DIAGNOSTICS 

 A diagnostic station has been placed at the output of 
the electrostatic triplet to measure  the beam current and 
profile. The beam current is measured by means of a 
faraday cup, while the profile is reconstructed by 
sampling the currents acquired by a set of horizontal and 
vertical grids. Stepper motors are used to insert/extract the 
devices along the beam line. The data acquisition system 
is implemented in a VME crate and runs under Vxworks.  
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The controller is an Emerson (formerly Motorola) 
MVME3100, the ADC is a XYCom XVME566 board, 
while the stepper motor controllers are home made 
devices.  A modified version of the diagnostic box has 
been realized to measure the beam emittance: the main 
difference in hardware setup consists in a sliding slot 
moving in front of the grid array and a linear encoder to 
acquire the slot position.  Once the raw data have been 
acquired, they are transferred to a host computer where 
the beam emittance is calculated and displayed (Fig.2). 

 

 
 

Figure 2: sample of emittance measure in a CSS screen 
 

THE OPERATOR INTERFACE 
A long term evaluation has been carried out to select 

the best tool to create graphic interfaces. First applications 
(the control of LAMBDA PS) were developed using 
MEDM that, despite its age, still remains an effective tool 
for fast prototyping and debugging. It was clear, however, 
it couldn’t be the right choice for a project that will 
require maintenance over a period of twenty years at 
least.  Then we decided to test the capabilities offered by 
LabView which  provides a great graphic rendering and a 
big amount of customizable control widgets (Fig. 3).  

 

 
 
Figure 3:  Control screen of HV power supplies 

    There are two possible approaches in using LabView as 
EPICS client: the most traditional is based on the “shared 
memory” method developed at SNS[2]; the most recent, 
available since the release 8.6, makes use of  NI native 
“network shared variable” technology. We tested both, 
with particular attention to the SNS solution.  Figure 3 
shows a LabView screen of  the user interface realized for 
HV power supplies.  
At the end, however, we decided to focus on CSS 
(Control System Studio)[3], that resulted, by far, the most 
innovative and promising tool for new developments. 
CSS is based on Eclipse, a customizable framework, that 
allows the developer to extend its functionality by adding 
new control plug-ins. Thanks to this feature, different 
CSS versions are available; we decided to adopt the SNS 
version that includes a rich set of  graphic widgets (BOY), 
a new implementation of Alarm Handler and a new 
interface to Channel Archiver. 

 

THE ARCHIVER  
The  Archiver  is, in an EPICS system, the basic tool 

for archiving and retrieving the process variables. The 
Archiver can work using its embedded data base or in 
conjunction with an external RDB. At LNL we tested 
both configurations, using, as external data base, the 
freely distributed software  mySQL.  Due to the limited 
number of  PVs currently in use, the performances of 
mySQL are more than acceptable.  However, a new 
project was started, in collaboration with Brookhaven 
National Laboratory, to study the possibility of using the 
Archiver in connection with the non-relational data base 
HyperTable [4], which is based on a novel concept of file 
system and exhibits very promising performances in 
terms of speed: this project is HyperArchiver  and will be 
shortly presented in the next paragraph. 
 
The HyperArchiver project 
   The initial  idea was  triggered by the observation that 
the most famous and fast search engine in the world 
(Google) makes use of  a proprietary distributed  data 
base system (BigTable) that allows managing an 
enormous quantity of data with a surprising  efficiency 
and speed.  Most of algorithms used  for data searching  
are property of Google and not published  but the 
concepts underlying the data base structure are known 
and can be found in other commercial DBs.  One of this 
products, HyperTable (by Zvents), is available either in a 
professional  version  and in an open source distribution 
under GNU public license.  We decided to test this latter 
version and realize a connection to the Archive engine.  
We compared the store/retrieve speed with the 
configuration based on mySQL and it resulted that 
HyperTable is faster of about a factor of three in writing 
and more than a factor of ten in reading.   A collaborative 
test was carried out at SNS to compare the HyperTable 
solution to their Archiver implementation, based on a 
connection with an Oracle server; also in this case it came 
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out  that HyperTable  is  faster in both reading and 
writing, with a significant improvement  in data 
retrieving. 
We also designed the necessary plug-in  to retrieve data 
and display them into CSS (Fig.4). The interface to CSS 
works but causes a significant slow-down in data reading 
that still has to be fixed. The collaboration on HyperTable 
continues and our goal is to reach a stable configuration 
to be used as the default Archiver installation  for SPES 
project. 
 

 
 
Figure 4: Snapshot of  PV retrieval (simulated ramp of 
analog values) in CSS. 

 
 

THE CONTROL  NETWORK 
 

   Special care has been dedicated to the  design of the 
control network. The following services were 
implemented: 
• Gateway, to provide access to external services 

together with isolation from LNL network 
• DHCP server, to manage  IP addresses of control 

computers. 
• Firewall, to protect the network from 

unauthorized accesses. 
• Backup server, based on a Network Attached 

Storage (NAS) device, to allow full or 
incremental backup of  control machines.   

• Nagios [5] server, whose function is monitoring 
the operation of all installed IOCs and 
dispatching alarms in case of  malfunction. 

• CVS and Wiki servers: the CVS repository keeps 
trace of  code versions and NamingConvention 
updating, while the Wiki server is very useful to 
maintain the documentation on team activity. 

• PXE boot server for Vxworks and automatic 
reinstallation of operating system plus Epics 
development environment for Linux computers. 

 

CONCLUSION 

The control system of  Target Laboratory has been a 
test bench for hardware and software technologies that 
will be used for SPES facility. Some technical options 
have been investigated enough to lead to strategic choices 
(i.e. using CSS for the development of user interface). 
Other key points must still be tested. A very important 
one is the integration of  PLCs used for safety 
applications into the EPICS network. A solution based on 
dedicated drivers is possible for many families of PLCs, 
but we are strongly oriented to focus on the usage of an 
OPC server[6]. This approach has the considerable 
advantage of being independent from the PLC brand. 

We also plan to continue the development of 
HyperArchiver, encouraged by the great interest shown 
for its possible application in large projects [7] where the 
capability of managing a huge amount of  PV data in a 
fast way is of extreme relevance. 
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[7]  http://www-arch.iter.org/sites/epics2010/slides/ 
[8]  http://epics.hg.sourceforge.net/hgweb/epics/xycomioc 
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SOFT REAL TIME CONTROL WITH CLIENT/SERVER CONTROL 

SYSTEM 

Y. Furukawa, Spring-8/JASRI, 1-1-1 Kouto, Sayo-cho, Hyogo, JAPAN.

Abstract 

Real-time properties have studied for client/server 

control system on single CPU system with Linux and 

Solaris operating system (OS) with real-time scheduler. 

Time jitters were within one msec for Linux OS and for 

Solaris OS on the MADOCA control system[1] that is the 

SPring-8 standard control system (CPU was 1.6GHz Intel 

Atom processor). These results are small enough for 

many synchrotron radiation experiments such as x-ray 

diffraction experiments with continuous scanning method. 

The client application can be described using scripting 

language, so real-time applications are developed and 

modified easily. The system has been used in the diffuse 

scattering beamline at the SPring-8. 

INRODUCTION 

There are many request on real time controls with msec 

order time resolution on synchrotron radiation 

experiments, such as scanning micro probe XRF, 

continuous scanning x-ray diffraction experiments, etc. In 

these applications, exact timing is not required because 

the counting results can be normalized by each step time 

or integrated intensity of incident x-ray. So the sub-msec 

order soft real time controls are suitable for these 

appllications. 

To realize real-time application, real time operating 

system (OSs) has been used, it is, however, difficult to 

develop the real time applications on theses OSs because 

it required low-level (device driver or kernel level) 

software development and there are poor development 

support tools. 

Modern OSs, like Linux or Solaris, have been 

improved its real time properties and became to be used 

for real time applications. Under these OSs, soft real time 

can be realized only set the framework software and these 

applications to use real time schedulers, such as RT-class 

on Solaris or FIFO and round robin scheduler on Linux. 

There are many single program implementations to 

realize the real time properties. It requires the detailed 

knowledge for device control libraries and frame work, it 

is hard task for x-ray beamline scientist because most of 

them are not specialist of the control software. 

If real time applications can be described using simple 

scripting languages, many non control specialist can 

develop the real time applications. It is possible if the 

client/server type system provides real time properties. In 

this paper, results of the real time property measurements 

in the case of the MADOCA control system on the single 

CPU system and it has enough for the synchrotron 

radiation experiments. 

MEASUREMENTS OF THE REAL TIME 

PROPERTIES 

Real time property measurements were made on Solaris 

10 and Linux (vanilla kernel 2.6.34 and real time patch[2] 

applied kernel 2.6.33.7-rt29). In the Solaris case, 

parameter hires_tick=1 was set in /etc/sysconfig for 1 

msec tick. For the Linux case, tickless kernel and 100Hz 

tick were set in kernel parameters. All the software were 

installed on the Atom Z530 (1.6GHz) processor based 

control sysmte called “Blanc-4” developed at the 

SPring-8[3]. The blanc-4 has 512MByte main memory 

and 16Gbye flash memory based storage. All the 

softwares were set RT-class in the Solaris case (using 

priocntl command) or FIFO scheduling for the both Linux 

case (using chrt command). 

 

 

Figure 1: Software scheme of the measurements.  

 

Software scheme based on the MADOCA control 

framework is shown in Fig.1. Each program communicate 

using system-V IPC (message queue). Command 

Interpreter (CI)[4], used as a client software, issued 

messages to the Message Server (MS). The MS transfers 

the control message to the Equipment Manager Agent 

(EMA) which controls actual devices and send back a 

result message to the CI via the MS. In the measurement, 

the EM was set as a timer, which returns a result message 

to the client (CI) after sleeping a given time by the 

message from the CI as shown in Fig. 2. The time 
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durations from send a message to receive the result 

message were measured for 1,000,000 loops. 

 

 

Figure 2: Time chart of measurements. 

 

The results of time measurement are shown in Fig.3, 4 

and 5 as a function of trail number for Solaris, Linux 

2.6.34 and Linux 2.6.33-rt29 for first 30,000 loops. The 

statistics of the results were summarized in the Table 1. 

For the case of vanilla kernel of the Linux is not suitable 

for the real time applications. For the case of Solaris, time 

deviation is with in 0.8msec, it can be applicable some 

synchrotron radiation experiments. Time deviation for the 

Solaris 10 seems to come from SYTEM-class processes 

that have higher priority than RT-class processes. 

 

 

Figure 3: Result of loop time measurement for 

Linux-2.6.34 

 

Figure 4: Result of loop time measurement for 

Linux-2.6.33.7-rt29 

 

Figure 5: Result of loop time measurement for Solaris 10 

 

Table 1: Statistics of results 

OS/kernel Meam 

time 

(msec

) 

Standard 

deviation 

(msec) 

Min. 

(msec) 

Max. 

(msec) 

Linux-2.6.34 3.917 1.30 685.6 2.698 

Linux-2.6.33

.7-rt29 

2.759 0.0091 2.731 2.969 

Solaris 10 4.000 0.0175 3.349 4.417 

 

Results for the RT-patched Linux kernel is with in 

0.1msec and it is good enough for most synchrotron 

radiation experiments like scanning XRF, x-ray 

diffraction experiments. In the vanilla kernel is not 

pre-empt if the process is in the kernel space, while in the 

RT-patched kernel, the process is pre-empt in both kernel 

space and user space, so in the RT-patch kernel is assign 

the CPU time to real time process faster. 

 

APPLICATION TO THE CONTINUOUS 

SCANNING X-RAY DIFFRACTION 

MEASUREMENT 

As an application of the real-time controls, continuous 

scanning diffraction measurement system has been 

developed with Linux-2.6.33.7-rt29 system. A schematic 

view of the measurement system is shown in Fig.6. 

Diffracted X-ray by the sample is counted using x-ray 

detector and the detector is scanned using stepper motor. 

The x-ray counts are recorded as a function of the 

detector angle and from an analysis of the result, atomic 

structure is obtained. 

In a conventional way, step scan was used, i.e, before 

counting a x-ray intensity, the detector was moved some 

angle. It had a dead time to waiting for end of detector 

motion. In continuous scanning method there is no 

overhead, it is, however, required msec order timing 

accuracy because counting duration is a few ten msec to a 

few seconds. 
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Figure 6: Schematic view of the diffration measurement. 

 

A test of the continuous scanning was made using 

1.00MHz clock instead of the x-ray counting, so the 

timing accuracy could be checked by uniformity of the 

counteing results. The result of the continuous scanning 

for 100msec step is shown in Fig.7. The speed of stepper 

motor rotation was 1000 pulse/sec. Deviation of the 

counting results is within 0.3%, this is good enough for 

most x-ray diffraction measurements. The 0.3% deviation 

of the counting data is corresponding to 0.3 msec timing 

deviation. 

The counting result is not 100,000 but around 104000 

counts, this measn  the each loop time is 104 msec and it 

take 4 msec to obtaining motor position and counter data. 

This can be adjustable by changing the timer sleep time.  

There are periodical spike on the counting data in the 

Fig.7. The period of the spike is about 1000 pulse, i.e. 1 

sec. A motor position backing-up script was running at 

the same time, so the access racing to the stepper motor 

controller occurred. Under these racing condition to the 

device, timing deviation is small enough, less than 

required 1msec. 

 

 

 

Figure 7: The result of the continuous scan for 100msec 

step with 1MHz input. 

CONCLUSION 

Real-time properties for the client/server system on 

Linux and Solaris OS were investigated and for Solaris 10 

and RT-patched Linux case, it is shown that there are 

good timing accuracy. Especially for the RT-patched 

Linux, timing deviation is within 0.3msec. 

To develop the client program, a scripting language can 

be used, so real-time software development becomes very 

easy. Note that some scripting languages invoke garbage 

collection and it deteriorates the real-time property. The 

CI is designed not to cause garbage collection. 
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STARS ON PLC 

T. Kosuge, K. Nigorikawa, KEK, Japan

Abstract 
The Simple Transmission and Retrieval System 

(STARS) [1][2] is a message transfer software for small-
scale control systems having TCP/IP sockets; STARS can 
work on various types of operating systems. In this study, 
we have successfully run the STARS server and client on 
the F3RP61 (Yokogawa Electric Corporation). 

At present, PLCs are used for beamline interlock 
systems (BLISs) and PCs are used for monitoring and 
permission control system (CCS) of BLISs at the Photon 
Factory. Running STARS on a PLC makes the integration 
of BLIS and CCS possible. This paper provides a detailed 
description of the process of running STARS on a PLC. 

BLIS AND CCS 
Over 20 beamlines are in use at the Photon Factory and 

each beamline has a beamline interlock system (BLIS) for 
ensuring radiation safety and maintaining a vacuum 
environment in the beamline (Fig. 1). A PLC is used as a 
controller for the BLIS; it controls the beamline 
components (beam shutters, experimental hatches, gate 
valves, vacuum gases, etc.). 

Figure 1: Beamline and BLIS. 

 
The CCS monitors the status of BLIS and controls the 

permission signal, which permits beamline usage, through 
the PLC interface installed in each beamline (Fig. 2).  

Beamline components

Device Net

PLC

Station
controller

Main controller

RS-232C

PLC interface
STARS Client
(Embedded Linux)

Ethernet
(to CCS STARS server)

 
Figure 2: BLIS and PLC interface of CCS. 

At present, the RS-232C is used for communication 
between the BLIS and PLC interfaces. The number of 
monitoring points that the CCS can support is limited 
because of the low speed of communication. Integration 
of the BLIS and PLC interfaces is one of the solutions to 
this problem.  

F3RP61 
F3RP61 (e-RT3 2.0/Linux) is a CPU module that can 

be installed on the Yokogawa FA-M3, which also has 
EPICS running on it [3]. In this study, we used F3RP61-
2L as a test bench (Fig. 3). 

 

Figure 3: F3RP61 on FA-M3. 

STARS 
STARS is an extremely simple software for small-scale 

control systems having TCP/IP sockets as well as the 
provision for text-based message transfers (Fig. 4). A 
STARS server can work on various types of operating 
systems (the STARS server is written in Perl). 
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Figure 4: STARS server and clients. 

 
STARS consists of client programs (STARS clients) 

and a server program (STARS server). Each client is 
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connected to the server via a TCP/IP socket. STARS 
users can upgrade the system by writing client programs, 
and STARS clients can participate in the system at any 
time without system stoppage. Recently, STARS was 
used for the CCS, beamline control system (see Table 1), 
and access control system of the experimental hall at the 
Photon Factory. 

 
Table 1: Installation Status of STARS-based Beamline 
Control System (as on September 2010) 

Category Installed Beamline 

PF-2.5GeV 
Ring X-ray 

BL-1A, BL-3A, BL-4B, BL-5A, BL-
6A, BL-6C, BL-7C, BL-8A, BL-8B, 
BL-9A, BL-9C, BL-12C, BL-14A, BL-
17A, BL-18B 

PF-2.5GeV 
Ring VUV and 
Soft X-ray 

BL-2A, BL-11B, BL-13A, BL-16A, 
BL-19A, BL-20B 

PF-AR NE-1A, NE-3A, NW-2A, NW-10A, 
NW-12A, NW-14A 

Other Slow Positron Facility 

 

STARS SERVER ON F3RP61 
Various scripting languages are available for 

installation by means of RPM packages. In this study, we 
used Perl as our scripting language because the STARS 
server is written in Perl and therefore, it would not be 
necessary to modify the server program code. 

STARS CLIENT ON F3RP61 

STARS C Library 
The Yokogawa Electric Corporation provides C 

libraries that enable access to IO devices or other CPUs 
available on the FA-M3. In addition, the C language is 
used for the development of a STARS client that can 
access IO devices available on the FA-M3. 

STARS uses TCP/IP sockets and can only handle text-
based messages. Skilled programmers will not find it 
difficult to program the STARS client. In addition, the 
task of programming is made easier with the availability 
of the STARS C library. The various functions that are 
part of the STARS C library are shown below. 

 
• stars_alloc: Allocates memory for a STARS 

connection. 
• stars_open: Opens a connection to a STARS server. 
• stars_free: Releases the memory allocated for a 

STARS connection. 
• stars_close: Closes a STARS connection. 
• stars_set_timeout: Sets a time out value for the 

“receive” function. 
• stars_get_timeout: Gets the time out value for the 

“receive” function. 

• stars_get_handle: Gets the file handle value for a 
STARS connection. 

• stars_send: Sends a message to a STARS server. 
• stars_receive: Receives a message from the STARS 

server. 
• stars_add_callback: Sets the function pointer for a 

STARS call-back function. 
• stars_mainloop: Starts a call-back sequence. 

 

STARS IO Client in C Language 
A STARS client program that handles hardware is 

called an “IO client.” The IO client waits for commands 
from a STARS server and executes methods on receiving 
such a command. Fig. 5 shows the flow chart of the IO 
client program. 

 

 
Figure 5: Flow chart of IO client. 

 

STARS Perl Client 
The STARS client program written in Perl is also 

available on the F3RP61. If the IO hardware of the FA-
M3 cannot be accessed using the Perl program directory, 
then it can be accessed by the program using the STARS 
IO client written in C. 

EXAMPLE OF APPLICATION 
We have coded a simple example using the F3RP61 as 

a test bench (Fig. 6). A STARS server and an IO client 
written in C are running on the F3RP61 and a GUI is 
running on the PC (Windows 7 Professional). 
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Figure 6: Overview of test bench. 

When the GUI client named “testGUI” sends a 
command to the IO client named “ert3io” through the 
STARS server, the IO client executes the method that 
corresponds to the command and returns a result message 
to the GUI client through the STARS server. 

 The GUI is written in VB.NET and can also run on a 
Linux OS having MONO. Fig. 7 shows a snapshot of the 
GUI. 

 

 

 

CONCLUSION 
In this study, we have successfully run a STARS server 

and STARS clients on the F3RP61. In addition, we have 
verified that the STARS IO client written in the C 
language works efficiently on the F3RP61. Therefore, it 
can be concluded that the use of STARS on a PLC 
represents an effective solution for the integration of the 
BLIS and CCS at the Photon Factory. 
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Figure 7: Snapshot of test GUI. 
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IMPROVEME TS FOR SIMPLE OPERATIO  AT SAGA-LS 
ACCELERATOR 

Y. Iwasaki#, T. Kaneyasu, Y. Takabayashi, S. Koda, SAGA Light Source, Saga, Japan

Abstract  
The SAGA Light Source is a medium-size synchrotron 

light research facility located at Kyusyu Island, Japan. 
The control system of the SAGA Light Source has been 
developed in the early phase of the machine 
commissioning. The application programs were 
developed using PC-LabVIEW. Commercial off-the-shelf 
input/output devices, such as PLC with a MS-Windows 
PC server, compose the input output controller with a 
high cost-performance ratio. ActiveX CA is used for the 
communication protocol between the server PCs and the 
client PCs. All of the components of the accelerator 
except the timing system are now controlled using PCs. 
Although the control system is stable, having many client 
PCs complicated the daily operation. Thus, we developed 
a multi-purpose client program, which is running on MS-
Window 7 with a touch panel display. Furthermore, we 
constructed communication interface between the 
accelerator control system and the radiation interlock 
system to set the interlock mode from the accelerator 
control system. By using the developed multi-purpose 
client program and the interface to the radiation interlock 
system, the numbers of procedures necessary for daily 
accelerator operation have been significantly reduced, 
making the daily operation simple. 

SAGA-LS CO TROL SYSTEM 
The SAGA Light Source (SAGA-LS) is a medium-size 

synchrotron light research facility located at Kyusyu 
Island, Japan, and the accelerator consists of a 255 MeV 
injector linac and 1.4 GeV electron storage ring [1], [2]. 
At this time, all of the accelerator components are 
controlled by a digital system except for the timing 
system. For connectivity to the accelerator hardware, we 
selected commercial off-the-shelf distributed input/output 
(I/O) devices, such as a programmable logic controller 
(PLC) (Yokogawa: FA-M3) and distributed I/O controller 
devices (National Instruments: Fieldpoint). A difficulty at 
the SAGA-LS facility is its tightly restricted budget, 
which limits the number of staff in the facility. Thus, the 
control system for SAGA-LS should be simple and robust, 
yet inexpensive, easy to develop, and easy to maintain. 
One of the solutions to this problem is the use of off-the-
shelf products, including PCs. The off-the-shelf I/O 
device and server PC works as the PC Input Output 
Controller (PC-IOC). Figure 1 shows a schematic view of 
the control layer of the SAGA-LS control system. For 
clarity, many of the accelerator components are omitted. 
We developed applications in the PC-LabVIEW 
environment because accelerator staffs are familiar with 

the PC-LabVIEW.  
The PC-based control system is widely used in many 

facilities because of the high cost-performance ratio of 
using PCs. Especially recent improvements in the 
performance and the cost effectiveness of PCs have made 
them attractive for use in the accelerator control system. 
There are sophisticated and well-established control 
systems based on workstations or PC-UNIX, such as the 
Experimental Physics and Industrial Control System 
(EPICS). However, it is difficult to modify and expand 
the EPICS system with limited accelerator staff. 
Fortunately, the number of control items of the SAGA-LS 
is now approximately 600 and there are very few 
demands for real-time control. The only exception is the 
synchronous operation of power supplies for the four 
minutes of the energy ramping in the storage ring. In this 
case, a PLC with a preloaded ramping pattern is suitable. 
Hence, we designed a MS-Windows PC-based control 
system with off-the-shelf I/O devices [3], [4]. For the 
communication protocol between the server PCs and the 
client PCs, we used ActiveX channel access (CA) [5], 
which emulates the EPICS CA protocol. MySQL was 
adopted as the database system. Recent progress on the 
control system for both the linac and the insertion devices 
are summarized in reference [6]. The feedback control 
system for the magnet power supplies using external DC 
current transformer, feed-forward orbit, tune and coupling 
correction systems have been developed in past years. 
 

Accelerator LAN ActiveXCA

Control Room

CA Client CA Client
Multi-purpose 
CA ClientDatabase

Linac Vacuum

PLCFP-1601

LCW

Linac 
Vacuum&LCW

PLC

Ring Magnet

Ring Magnet
CA Server

Control/Monitoring Objects

Figure 1: Schematic view of the control layer of the 
SAGA-LS. 
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 MULTI-PURPOSE CLIE T 
APPLICATIO  

Design Concept 
As the accelerator improving, the numbers of client 

PCs have been growing, since each client application is 
created in each PC independently. Although good stability 
and a rigid framework of the accelerator components do 
not require complicated manipulation of the machine 
parameters in daily operation, increasing the number of 
client PCs increases the complexity to the operation. The 
necessity of setting many control knobs sometimes causes 
human errors. In our facility, during the injection 
operation, we have to carry out more than 20 processes. 
Although a small number of machine staff is enough for 
stable and safe operation in the SAGA-LS accelerator, 
only one accelerator staff and one assistant are actually 
assigned as machine operators. Thus, to avoid human 
errors and to simplify the machine operation, we recently 
constructed a multi-purpose client application program. 
Figure 2 shows the front panel of the application. Several 
operation procedures are automatically processed by the 
multi-purpose client application. The design concepts of 
the application program are as follows: 

• Development in the LabVIEW environment. 
• Inclusion of the major functions of each CA client 

program in one application program. 
• Switching to these client functions by selecting the 

relevant tab keys.  
• The application procedures are sequentially 

processed in the operation scheme. 
• Use of MS-Windows 7 and the touch panel display.  

Implementation 
We have started the machine commissioning of SAGA-

LS in 2004, and we used MS-Windows 2000 on the 

control PCs. The client programs were constructed as 
single-task programs for robust operation.  

The construction of the multi-purpose application was 
made possible by recent improvements in PC CPU power 
and memory size. The multi-purpose client program runs 
on an Intel (R) Core (TM) i3 3.07 GHz CPU with 2.0 
Gbyte memory and treats more than 110 EPICS CA 
process variables. The CPU usage is less than 10%. The 
application includes the electron gun, linac klystron 
modulator, ring power supply, global closed orbit 
distortion (COD) correction program, two undulators, and 
injection magnets (septum and kicker magnets). These 
client functions are switched between using tab keys, as 
illustrated in Figure 2. The original CA clients were 
constructed as “multi-stand-clients”; in other words, 
simultaneous and multiple runs on different PCs are 
possible. Such a performance is realized by using “set 
value” and “read back value” in ActiveX CA with 
LabVIEW programming [5].  Due to the “multi-clients” 
structure of the program, translations of the CA client 
programs to the multi-purpose application have become 
straightforward. Both the multi-purpose client program 
and the original client programs can be used 
simultaneously.  In the multi-purpose application program, 
the “Event Structure” and “Stuck Sequence Structure” are 
mainly used for the automation operation processes. 

The touch panel display is supported formally by 
Windows 7. Actually, the touch panel and the touch panel 
PC capability existed before Windows 7. But, with 
Windows 7, the high-resolution touch panel display can 
be used without any device driver and at low cost. We use 
iiyama ProLiteT2250MTS (1920x1080) for the multi-
purpose client touch panel display. The resolution of the 
touch panel display of the system is sufficient for creating 
such accelerator application program. Though the touch 
panel display is not necessary device, it significantly 
increases the intuitive manipulation of the machine 
control.  

 
Figure 2: Front panel of the multi-purpose application program on MS-Windows 7 with touch panel. Each client 
function is displayed by selecting the relevant tab keys.  
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The ring RF system, the RF-knockout (RF-KO) system 
for the bunch filling pattern, and the master trigger are not 
yet contained in this application. The master trigger 
system will on-line in 2011, and the RF-KO system will 
be added to this application in the near future. The ring 
RF control system will be contained with slight 
modification of the original ring RF CA client program.  

I TERFACE TO THE RADIATIO  
I TERLOCK SYSTEM 

The radiation interlock system was originally 
constructed independently of the accelerator control 
system for rigid operation. The radiation interlock system 
only produces permission signals for operation of the 
accelerator control system at injection and ramping up. 
Due to the independency of these systems, the operation 
has become stable and the maintenance is easily 
performed. But, for easy accelerator operation, it is better 
to have an interface between the accelerator control 
systems and the radiation interlock system. Hence, the 
next five signal interface to the accelerator control system 
and radiation interlock system were constructed: 

• Injection Mode Set/Off. 
• Beam Switch On/Off. 
• Acceleration of the storage ring and Accumulation 

Mode Set/Off. 
• Acceleration Permission for the storage ring. 
• Experimental Operation Permission. 
• Monitoring of each status. 
For constructing interface, a new PLC is installed in the 

accelerator LAN. By sending a signal from the multi-
purpose client application to the accelerator PLC, the PLC 
produces the prescribed pulse to the PLC of the radiation 
interlock system. The status signals from the interlock 
system are also captured using the accelerator PLC. 
Figure 3 shows the communication interface between the 
accelerator control system and the radiation interlock 
system. For secure communication, the signals are 
hardwired and not directly connected with the Ethernet 
LAN. 
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Figure 3: Interface between the accelerator control 
system and the radiation interlock system. 

TOTAL PERFORMA CE 
Before installing the multi-client application program, 

we had to carry out more than 20 steps from the injection 
to the user’s experimental operation. Using the new multi-
purpose application program, following eight steps for 
injection operation are eliminated:  

I. Set Injection Mode.  
II. Beam Switch ON. 
III. Set Linac Klystron Shutdown. 
IV. Set Ramp up Permission. 
V. Set Acceleration and Accumulation Mode.  
VI. Set Ring PS Tuning and Feedback ON. 
VII. Set Global COD correction. 
VIII. Set Insertion Devices to their home position. 
In the injection processes, we only use three PCs 

(multi-purpose application, RF-KO, and ring RF system) 
and a switch (master trigger). The manipulation of the 
radiation interlock system is completely automated in the 
injection processes. Furthermore, the shutdown process 
was partially automated by setting the insertion device to 
the full open position and by setting the interlock mode of 
the acceleration and the accumulation to off. 

By including the master trigger and the RF-KO systems 
on the multi-purpose application, a total of 10 steps will 
be reduced. We are intending to achieve “one-touch” 
accelerator operation by the multi-purpose client 
application near future. 

SUMMARY 
We constructed a multi-purpose client program and 

interfaces between the accelerator and radiation interlock 
system. In the multi-purpose client program, many tasks 
for injection are sequentially processed step by step. By 
developing this multi-purpose client application, the 
complexity of daily operation has been significantly 
reduced. In addition, adopting a touch panel display with 
MS-Windows 7 allows intuitive accelerator operation. 
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CONTROL AND TIMING SYSTEM DESIGN OF CPHS * 
Qiang Du#, Hui Gong, Xialing Guan, Jie Wei, Jianmin Li, Beibei Shao 

Department of engineering physics, Tsinghua University, Beijing 100084, China

Abstract 
The Compact Pulsed Hadron Source (CPHS) in 

Tsinghua University is designed as a university based 
comprehensive hadron research and application platform. 
This paper describes the control and timing system of 
CPHS.  

 

INTRODUCTION 
The project of CPHS in Tsinghua University consists of 

an accelerator front-end—a high-intensity ion source, a 3 
MeV radiofrequency quadrupole linac (RFQ), and a 13 
MeV drift-tube linac (DTL), a neutron target station—a 
beryllium target with solid methane and room-
temperature water moderators/reflector, and experimental 
stations for neutron imaging/radiography, small-angle 
scattering, and proton irradiation. [1,2] 

The control system of CPHS consists of an EPICS 
(Experimental Physics and Industrial Control System) 
based distributed run-time database and control system, a 
timing and event distribution system, and a digital low 
level RF control system.  

The timing and event distribution system defines the 
global system time frame as well as specific events that 
trigger local devices by an event generator and receiver 
framework, so that the time delay of each event could be 
controlled in 10ns resolution, and the timing jitter of 
trigger signal is below 0.1ns. The hard-real-time machine 
protection system is also integrated in the event system so 
that a fault event could be responded within 50 micro-
seconds. Field control signals such as water temperature, 
vacuum level, magnetic current, beam diagnostics, and 
low level RF (LLRF) phase and amplitude are monitored 
and controlled via the EPICS database through Ethernet. 

 

EPICS BASED CONTROL SYSTEM 
Control System General Layout 

As shown in Fig 1, the EPICS control system uses 
several input/output controllers (IOC) to manage local 
process variables and establish a distributed database. The 
IOCs are running Linux/RTEMS kernels with device 
support of different local bus interfaces (serial, GPIB, 
stepper motor, DAQ modules, etc), communicating with 
local instruments monitoring and controlling water 
temperature, power supply, vacuum status, and LLRF 
status. All EPICS records are accessible from control 
room via Ethernet by Channel Access protocol, and are 
managed through Operator Interfaces (OPI) for 

monitoring, data logging, alarm handling, and some 
interlocking control. The application server and 
development server are responsible of providing 
dhcpd/bootp/nfs services for net-booting IOCs and 
maintaining IOC kernels, IOC applications, bootup scripts 
and EPICS records. 

Figure 1: EPICS control system for CPHS 

 

TIMING AND EVENT DISTRIBUTION 
SYSTEM 

Timing System General Layout 
CPHS timing events are generated, encoded and 

distributed through optic fiber at 108.3MHz rate 
(325MHz divided by 3), and then decoded by different 
local receivers. (Fig 3.) 

Figure 2: Event frame [3] 

The event generator (EVG) is responsible of creating 
and sending out timing events to an array of event 
receivers through a fanout module. The event transfer rate 
is derived from the linac RF master frequency at 325MHz. 
The EVG is also capable of synchronizing to the AC line 
at 50Hz and phase delay to adjust the triggering position 
relative to the main voltage phase. 

 
 

 ____________________________________________  

*Work supported by “985 Project” of the Ministry of Education of 
China, CAS Sciences Hundred People Initiative (KJCX2-YW-N22) 
#duqiang@tsinghua.edu.cn 

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan WEPL025

Accelerator Controls Development and application frameworks

79



 

 

EVG accepts input from external RF clock (325MHz) 
with no PLL, while each EVR has a PLL tuned with 
±20ppm precision to the master clock.  

The event receiver (EVR) is responsible of receiving 
and decoding event frames. A global time stamp is also 
distributed as 32-bit unsigned integer to EVRs. The EVR 
includes a prescaler and delay counter to adjust local 
trigger pulse delay. The controller of EVR is integrated 
with an EPICS real-time IOC so that event encoder, 
sequence, local delay, local trigger frequency are able to 
be managed through any EPICS OPI. 

Events are encoded and queued by EVG, and then 
distributed by a fanout module to local EVRs through 
fibre link as event frames which consists of a 16-bit frame: 
eight bit event code and eight bits of distributed bus bits 
as shown in Fig 2. The event bit rate is 20 times event 
code rate, which is 2.16GHz in our case. 

 

Figure 4: Downstream/Upstream event link 

Besides the downstream event link, there is also an 
upstream from EVR to EVG with the same frame bit. 
This mechanism could be used as the interlock scheme for 
machine protection systems. (Fig 4.) 

 
Hardware 

The EVG and EVR are selected using commercial 
products from Microresearch Finland, which was 
conceptually based on event systems of ANL APS and 
Swiss Light Source. The hardware module is PXI 
compatible, and the firmware is configured with modular 
register mapping. 

EVG and EVR are installed in separate PXI chassis 
with embedded controllers from National Instruments. 
The controllers are connected to the EPICS control 
network for remote access. A 12 way fanout module is 
used to distribute fibre signals from EVG to multiple 
EVRs.  

The picture of EVG and EVR module is shown as Fig 5. 
 

Software and EPICS support 
There already are EPICS support for MRF hardware in 

use at SLS, SLAC, Diamond, etc, but the support of 
modular regster mapping cPCI hardware is just under 
development by the project mrfioc2[5,6], which also 
follows the regime of devLib-pci, the operating system 
independent device support of EPICS.[7]  

Every EVG and EVR module has a separate controller 
running Linux or RTEMS 4.9.4 with an EPICS 
application. The controller is configured to be net-booted 
from the application server with gPXE[4] boot-loader. 

Figure 3: Framework of CPHS event distribution system 
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The EPICS application is built on EPICS base 3.4.11 with 
mrfioc2 support, which containing the common devPCI 
driver module, MRF common PCI API, EVG/EVR device 
support module, and a set of EPICS records with interface 
of Channel Access protocol.  

 

 

Figure 5: Picture of PXI event generator/receiver. 

 
CONCLUSION 

The prototype of CPHS control and timing system is 
developed with EPICS support. The timing system is built 

based on MRF event distribution devices, and the OS-
independent EPICS device support module for EVG and 
EVR are tested on Linux 2.6 and RTEMS 4.9.4.  
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TINE/ACOP STATE-OF-THE-ART VIDEO CONTROLS AT PETRA III 

J. Bobnar, I. Križnar, T. Kusterle, Cosylab, Ljubljana, Slovenia 
D. Melkumyan, S. Weisse, DESY Zeuthen, Zeuthen, Germany  

P. Duval, G. Kube, J. Wilgen, DESY, Hamburg, Germany

Abstract 
The TINE/ACOP video system is a complete state-of-

the-art solution for streaming beam video, featuring live 
analysis and live beam image display inside ACOP video 
component, which can be placed in any Java Swing panel. 
After a number of iterative improvements and 
embellishments, the system has matured to stable 
production quality in the beginning of year 2010. The 
system consists of the following components: a TINE 
device server captures a video image [1] and encodes it to 
the standard TINE IMAGE format. The TINE transport 
layer streams the IMAGE objects to clients as it would 
any other data chunk [2]. The Java TINE client passes the 
IMAGE object through the analysis Java bean, which then 
performs fast statistical analysis of beam position and 
size. The streamed image plus analysis data are displayed 
in the Java video component, which is part of the ACOP 
components. Additional capabilities are background 
subtraction, automatic or manual threshold subtraction, 
enhanced coloring and saving snapshot as PNG file. 
Optionally, the analysis bean can be used standalone as a 
common service and results are further distributed via an 
intermediate TINE server written in Java. 

INTRODUCTION 
The origin of the TINE Video System goes back to the 

design of the Photo Injector Test Facility Zeuthen (PITZ), 
which is a test facility for research and development on 
laser driven electron sources for Free Electron Lasers and 
linear colliders [1]. The optimization of an electron gun is 
only possible with the help of an extensive diagnostic 
system, including the video system. 

The whole video system includes a rich set of 
components, covering the low level hardware integration 
and image grabbing, to the transport protocol and data 
visualization tools.  

In this article we will focus on the upper level of 
components, which have recently been upgraded and put 
to use also at DESY Hamburg. 

DATA ACQUISITION AND TRANSPORT 
The image acquisition is implemented in a grabber 

server written in C++. The main purpose of this server is 
to acquire grayscale images from the image source and 
pre-process the data (e.g. compression).  

The transfer of the high resolution image (up to 2 
megapixels) is done using the TINE transport protocol. 
TINE allows various choices of data transport including 
multicasting, unicast UDP and TCP. Combining this with 
compression algorithms the TINE video system easily 
achieves updates at 10 frames per second. 

The image transported by TINE is packed into a 
dedicated IMAGE data type, which is composed of an 
image header providing meta information about the image 
(frame size, bit depth etc.) and the actual image data of 
variable size – TINE is not limited to the transport of a 
fixed size image, but can be used to transfer any size one 
desires (within the limits of the network traffic). The 
IMAGE data type can also be embedded within TINE 
structures and is used as a standard method of exchanging 
image data between video system components. 

IMAGE VISUALIZATION AND ANALYSIS 
Java has been selected as the target 

platform/technology for the video system clients. The 
client side is responsible for visualization of the image as 
well as performing the data analysis and processing of the 
image data. In some respects we might expect Java to 
reduce the execution speed of the software, which would 
be a trade off for platform independence.  This does in 
fact play a role regarding for instance graphics or low-
level networking functionality. However, due to the high 
processing power of today’s desktop computers, this is no 
longer a serious drawback and Java has proven to be very 
powerful and easy to use for writing the video clients. 

A dedicated AcopVideo bean has been implemented, 
following the conventions and standards of the ACOP 
framework [3]. This automagically provides some 
common functions and tools (e.g. connection selection, 
drag and drop), as well as makes it easy for other 
developers to provide rich-clients that deal with the video.  

The AcopVideo bean was implemented in pure Java, 
which means that it doesn’t use any native resources 
(besides the standard ones provided by JVM) and is 
completely platform independent. The AcopVideo bean 
was designed with performance in mind, which drove the 
architecture and implementation of the drawing 
algorithm. The performance of the video bean today 
easily satisfies the requirements of the operation control. 

In addition to high performance, the video bean 
provides much functionality, which is not available in the 
older native or commercial video clients. The AcopVideo 
can display any TINE video channel or still image, which 
can be either loaded from several standard image files 
(JPEG, PNG, etc.) and quality (8 to 24 bits per pixel), or 
provided through the TINE channel (using the event 
notification system in order to minimize the necessary 
network traffic). The AcopVideo also offers several other 
options for image visualization and enhancements, such 
as different color modes for luminosity data, histogram 
equalization, aspect ratio changes and zooming, display of 
meta information etc. 
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IMAGE PROCESSING AND ANALYSIS 
For better understanding and easier interpretation of the 

image additional analysis is required. From the image of 
the beam one can extract the emittance as well as other 
properties, which the control operators are interested in. 
However, the extraction of such data requires a deep 
analysis and statistics calculation on the image data on the 
fly while the image is streamed from the server. Such 
analysis can by itself be extremely time consuming, and it 
can be also very difficult to perform if the beam does not 
have ‘regular’ shape (round or at least elliptical). 
Consequently much effort has been put into finding the 
most reliable and fastest analysis solution. 

Statistical Analysis 
The basic analysis of the image is done by calculating 

the statistical parameters of the beam. Using simple 
statistical algorithms (assuming that the beam has a non-
sparse approximately elliptical shape) the mean value and 
standard deviation of the beam profile are calculated. The 
2-dimensional analysis of the image also provides the 
rotational parameter of the beam ellipse.  

In addition to this analysis, a side-view projection of 
the image is also analyzed. The pixels in a single row (and 
column) are summed together, what leads to two 1-
dimensional profiles – one for horizontal axis and one for 
vertical. Similar as for the 2-dimensional analysis, the 
statistical parameters are also calculated for the side 
projections.  

The calculated parameters can be used for the first 
approximation of the image interpretation. They provide 
reliable information when the image has low noise and no 
additional artifacts such as side light or camera pixel gain 
defects, split beam etc. AcopVideo bean provides 
functions for easy display of these parameters together 
with the live image; crosshair marker is used for display 
of the mean and standard deviation, while the side 
projections are plotted at the bottom and side of the image 
(see Figure 1). The calculated parameters can also be 
extracted separately and displayed for example in a 
dedicated table or used in further analysis. 

Analysis Improvements 
When the image is noisy (or generally not regular), 

additional algorithms have to be used to obtain better 
results. Thus, a Region of Interest (ROI) was introduced. 
When the beam is localized to a small part of the total 
image one can select a narrow area around the beam peak 
to reduce the size of the image that needs to be analyzed. 
Usage of the ROI significantly improves the statistical 
parameters, since it eliminates the contribution of the 
noise or other artifacts in the distant regions from the 
beam peak (see Figure 1). 

Another improvement is the usage of a threshold value, 
which defines the minimum values that a pixel has to 
have in order to be included in the calculation. This 
eliminates low amplitude noise in the dark areas and puts 
more weight on the bright area, where the beam is 

located. The threshold value can be either explicitly 
specified by the user or calculated automatically. In the 
former case the threshold value is a constant in time; in 
the latter case the user specifies a region within the image 
(usually the dark region) and that region is used to 
calculate the mean pixel value. The mean value is then 
used as the threshold value during the analysis. In this 
case the value changes at each image update. 

Next round of improvement introduced the use of the 
background image subtraction. A still image representing 
the background (the image area the beam turned off) is 
subtracted from each frame in order to eliminate 
permanent artifacts of image background. User can 
choose between a pre-stored image from the file system 
or grab a live image from the TINE channel (in the latter 
case the beam has to be turned off during that time in 
order to obtain the only background). The selected image 
is then subtracted from the original live image, which 
produces an artifact-free image used for further 
processing. 

Further improvement of analysis was achieved by 
introducing a smoothing algorithm. When the image is 
extremely noisy, smoothing can be used to average out the 
noise. For each pixel the new value is calculated as the 
average value of a few points around the particular pixel. 
This can lead to more stable and reliable statistical 
analysis results. 

Best Fit Analysis 
In certain cases it turned out that even with all the 

aforementioned improvements, the statistical analysis still 
does not provide good enough results. While the mean 
value is approximately correct, the standard deviation 
might overshoot. To overcome this problem an additional 
algorithm has been implemented, which calculates the 
beam properties more precisely.  

Least square curve fitting algorithm was implemented 
to find the best fit for the beam image side projections. 
We decided to use a Gauss function with linear 
background: 
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 are the fitted parameters. To find the numerical solution 
to these parameters we have implemented the Levenberg-
Marquardt algorithm [4]. In most cases the algorithm 
converges to the proper solution, but to guarantee better 
stability good starting values should be provided. For the 
first guess the statistical analysis results posed as a good 
guess and after the curve is fitted for the first time all 
consequent fits can be obtained starting with the previous 
results, since the beam changes are usually very slow 
(two consequent frames do not differ much).  

This algorithm has proven to be much more reliable 
and trustworthy than the statistical analysis already 
without the use of improvements discussed in the 
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previous sections. If combined with the background 
image and threshold calculation, the algorithm produces 
very stable and accurate results (see Figure 1). 

The drawback of the least-square fitting algorithm is 
that it consumes significantly more time than the 
statistical analysis. On a desktop PC it is still possible to 
observe the live image up to about 2 fps, which is in most 
cases enough for normal operations, but at higher rates 
frame drop might occur. Therefore, the user has the option 
to turn on or off each individual feature in order to display 
only the values he is interested in. 

Figure 1: AcopVideo bean displaying a live beam and its 
profile. A region of interest is chosen around the peak of 
the beam (blue rectangle). Red curve is the result of 
statistical analysis; green curve is fitted gauss function. 
The table is used to show the numerical values of the 
analysis results. 

Modularity and Analysis Server 
The image analysis has been implemented 

independently of the video bean.  This allows its usage at 
any level on which someone is interested into the beam 
analysis. The analysis bean can simply be used as an extra 
layer between the source of the image and the destination. 

The modularity of the analysis has been used by the 
general analysis server, which can be used to perform the 
analysis instead of a desktop computer. The analysis 

server is written as a regular TINE server, which is 
registered in the TINE Equipment Naming Service and 
can be used as a source for the AcopVideo. All that the 
server requires is the TINE channel which supplies the 
live image and the output of the server is a dedicated data 
object, holding the original image and all the calculated 
parameters. The use of the analysis server lowers the CPU 
usage on the client PC, which is particularly useful when 
one wants to observe the analysis by several different 
clients (on the same or on multiple computers). However, 
the downside of the server is that it generates a bit more 
network traffic since it has to send more data (including 
the side view profiles etc.). 

AcopVideo bean is designed in a way that it can use 
both the local analysis (on the client computer, where the 
AcopVideo is running) and the remote analysis 
(connected to a remote server). User is able to switch 
between the two options in run-time and use the one that 
is more appropriate at any given time. 

CONCLUSION 
Much progress has been done on the video system since 

the beginnings. A lot of effort has been put into 
development of high performance tools, which can be 
used in day-to-day operations in the control room. The 
recent image analysis implementation made the video 
applications much more than just a simple visualization 
tools – it became a powerful diagnostic tool for online 
emittance diagnostics at PETRA which tremendously 
helps the operators in the control room to achieve full 
accelerator performance. 

Nevertheless, there is still a lot of room for 
improvements. The next step is the optimization of the 
transport and compression of the image, which might 
consequently require the optimization of the analysis 
algorithms. The analysis itself also leaves options for 
further development, such as for example 2-dimensional 
Gaussian fit.  
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Abstract 
XAL is a Java-based application framework, developed 

at the Spallation Neutron Source (SNS). The framework 
is designed to provide an accelerator physics 
programming interface to the accelerator, and it allows 
creation of general-purpose applications dedicated to 
various parts of the accelerator.  

The backbone of the XAL framework is an XML-based 
description of the accelerator. The XML file provides the 
list of all devices, their properties, and relationships 
between devices within the system. Since the accelerator 
structure is defined in the relational database, XML can 
be generated directly from the database using appropriate 
adapters. This allows the framework to be more generic 
and enables it to run on different sites using various 
configurations. 

The generality of XAL and the rich set of applications 
and tools provided by SNS make the framework very 
appealing for use at other accelerator sites. The European 
Spallation Source (ESS) is being built in Sweden, and is 
similar in complexity to the SNS. XAL has therefore been 
considered for use at ESS for high-level applications. The 
applicability of XAL and prototyping for ESS are 
discussed in this article. 

INTRODUCTION  
The XAL framework was developed by SNS as a part 

of their accelerator physics activities. It was designed to 
provide a common set of tools and applications used in 
machine physics and accelerator control. Today the 
framework includes a vast set of applications such as 
Orbit Correction, Wire Scanner Analysis, Scanning 
Application etc. These applications are all used in day-to-
day activities in the SNS control room. 

XAL was designed from the start to be as independent 
from machine details as possible. Therefore a specific 
model was defined which provides a detailed description 
of the accelerator. At start-up the model is parsed and 
used by the framework to gain access to various parts of 
the accelerator. The model allows XAL use at different 
accelerator sites without changing the code, since the 
model is supplied as a set of configuration files and is the 
only part of the framework that needs to be adapted. 

Recently XAL went under major restructuring in order 
to make the code even more transparent and to allow 
easier development of site specific applications and 
components. ESS, being a similar machine to SNS, 
appeared as a potential heavy user of this framework 
(now named Open XAL). 

ACCELERATOR MODEL 
The backbone of the XAL framework is the accelerator 

model. The model describes the layout of the accelerator 
and its parameters as they are used by the applications. 

The XAL model is defined in a hierarchical structure 
within an XML file. This XML file is composed of 
several different accelerator sequences, which consist of 
other sequences or components each describing a 
particular segment of the accelerator. Combined together, 
they form a hierarchy of the complete accelerator down to 
every particular device that can affect the beam path. In 
addition, the XML file also provides all the necessary 
pieces of information required for the control of a 
particular physical device. For example, the magnet 
description includes the strength of the magnetic field, its 
position within the accelerator, the power supply 
associated with it etc. [1]. 

XAL uses EPICS as the underlying control system to 
communicate with the accelerator hardware. EPICS 
communication uses a single “Process Variable” (PV) as 
the fundamental unit for communication with high-level 
software via a protocol called Channel Access. Therefore, 
in addition to the physical description of the devices, the 
XML model also carries information about associations 
between EPICS PVs and accelerator devices. A single 
device can have several different PVs, each assigned to 
one particular device attribute. 

Based on the information in the XML file, a Java model 
is constructed by the XAL upon start-up of an application. 
Each component within the XML structure is mapped to a 
Java device object and can be treated as such in XAL 
applications. Users can set or read the attributes 
associated with any of those devices simply by changing 
the value of a particular field in that object, and changes 
are immediately reflected in the real system through the 
PV registered for that particular attribute. 

Though XAL currently supports only EPICS control 
system, the underlying mechanism is abstracted so 
Channel Access can be replaced by other communication 
protocols. This permits some aspects of XAL to be truly 
portable between accelerator sites. 

Taking into account all the aforementioned pieces of 
information, one can end up with an enormous XML 
model, which might be very difficult to maintain. 
Therefore, XAL works together with the central database, 
which stores all the required information. A dedicated 
XAL application gathers the information from the 
database and generates the XML file. This ensures that 
the model is always consistent with the accelerator and 
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makes it very easy to implement the changes that were 
introduced to the physical machine, if those are registered 
in the database. The structure and type of the database are 
not prescribed, since an XML generator can be written 
specifically for each system. This increases portability by 
only requiring site-specific adaptors to extract database 
contents to XML. In addition, the same database can also 
be configured to be used as a save/restore point for 
control system variables allowing users to save current 
state of the machine and restore it at any time later or any 
other feature, which might need to store or load 
information. 

ONLINE MODEL 
A critical component of many beam commissioning 

activities involves comparison of measured quantities 
with model predicted values. To facilitate this, XAL 
includes an “online” model, which is a simple envelope 
tracker designed for use in applications. This model 
implements on-the-fly calculation of beam parameters 
based on the machine settings [2-4]. 

The online model is loosely coupled with other parts of 
the XAL framework. The main components are the lattice 
(constructed from the aforementioned accelerator model) 
and a probe (describing the beam and how it is to be 
modeled). The lattice is generated via a set of rules from 
the accelerator node device information (generated from 
the XML model) and probe information is supplied via 
another configuration file. 

Based on this information one can use XAL to perform 
simple simulations of the beam behavior inside the 
accelerator and tweak simulated machine parameters to 
achieve a desired response, then use the same framework 
to send the desired settings to the accelerator. The online 
model can also be used outside of XAL, as long as the 
lattice and probe information are provided. 

APPLICATION FRAMEWORK 
The XAL Application framework is a framework for 

rapid development of applications with a common look 
and feel, which provides many features that users expect 
from modern applications [5].  

The application framework provides a set of classes 
that the applications extend to use common XAL features. 
The framework is based on Java Swing GUI components, 
and provides a simple GUI builder called Bricks, which 
can be used to build XAL applications even by developers 
who are not experienced Java programmers. 

Through the framework, developers can access various 
common parts such as the accelerator model, the online 
model etc. Putting it simply, the framework provides a 
complete user interface to the accelerator.  

Using the XAL framework has several advantages. The 
most important is a consistent look and feel of all 
applications used by the operators and therefore, 
minimization of the troubles that could appear if each 
application had slightly different layout, menu orders, 
toolbars etc. Furthermore, many features (such as copy, 

cut & paste, printing etc.) are automatically provided, 
easing the load on the developer. Those features can 
simply be turned on or off and the developer can focus 
more on the application content and less on 
implementation details. 

In addition, the Open XAL project will support 
localization. Each application will provide an externalized 
text file where all the text (menus, buttons, labels etc.) 
will be located. By replacing the file with a translated 
one, users will be able to tailor the applications to their 
needs. This will contribute to easier use of XAL at sites 
where English is not the primary language. 

EUROPEAN SPALLATION SOURCE 
The European Spallation Neutron Source (ESS) is a 

project to design and construct a next-generation facility 
for research with beams of neutrons. At 5 MW beam 
power, The ESS will be the brightest source of neutrons 
in the world, enable scientists across many disciplines to 
perform experiments and investigate materials. The ESS 
will also retain and strengthen the current European 
position in the neutron science [6]. 

The ESS will be composed of a high-current proton 
linac, which will deliver 5 MW of power to the target at 
2.5 GeV, with a nominal current of 50 mA [7]. With 
respect to the controls conceptual design, the machine 
will be similar to SNS. ESS has therefore planned to take 
advantage of experience and expertise developed at SNS, 
including standardization of a Controls Box environment 
for distributed R&D and development among partner 
laboratories [8], and use of the XAL framework as a 
solution for high-level applications and accelerator 
physics tool development. 

XAL AT ESS 
An XAL Workshop was held at SNS in May 2010, 

where current and potential future users of XAL 
discussed future goals and framework development. 
Attendees represented 11 organizations, including ESS, 
SNS, FRIB, BNL, TRIUMF, and CSNS [9]. Part of the 
outcome of the workshop was the previously mentioned 
plan for refactorization of the XAL libraries and 
structures. This refactorization should encourage 
development by users other than SNS. It will introduce 
much more modularity and easier maintenance; 
cooperation and sharing among users will also be easier.  

Open XAL will be split into several different parts, 
each responsible for a particular group of functionalities 
(e.g. separating the core from the devices model, fully 
detaching the database access layer, etc.). Each user of 
XAL could then decide what modules to include in their 
distribution, which devices implementations are required 
by the machine, and so on.  

At present, ESS has a partially constructed lattice 
database. Multi-particle beam dynamics for the linac has 
been studied using the TraceWin code [10]. The results of 
these studies and simulations have been entered into the 
MySQL database. A dedicated Java application has been 
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written to gather the data from the lattice database and 
constructs the accelerator model from the Java objects. 
This model can be serialized to an XML file, using the 
document definition specified by XAL. All the devices 
and other data that are required by XAL (e.g.. power 
supplies for magnets, epics channel names), but are yet 
missing in the lattice database are filled with dummy data 
to enable XAL model use at the earliest development 
stages.  

Because there is no available ESS EPICS database yet, 
the model can only be used in simulation mode. A 
dedicated application called Virtual Accelerator is 
provided by XAL, which loads a specific accelerator 
sequence and simulates EPICS channels using the 
Channel Access Server (CAS) [11]. The values simulated 
by the CAS are calculated by the online model. Due to the 
nature of the CAS, the simulated channels can be used as 
any other EPICS PV and therefore, XAL can also connect 
and use those channels directly without the need to 
modify any part of the code. 

The virtual accelerator feature will play an important 
role during the development and commissioning period of 
the ESS accelerator. It permits tests of features and the 
design of the accelerator without the need to connect to a 
fully implemented control real system. Users will be able 
to develop software without concerns about early 
integration problems. 

The next step in adaptation of XAL for ESS is the 
addition of new devices and potential adaptation of the 
existing devices. ESS will use certain types of physical 
devices that are not used at SNS and are therefore non-
existent in XAL. These new devices will have to be 
implemented and added to the XAL model. The optical 
properties of the new devices will also have to be 
implemented to allow use of the devices in the online 
model to perform beam dynamics simulations. 

CONCLUSIONS 
XAL has been a collaborative project from the 

beginning with roots in Brookhaven’s Unified 

Accelerator Libraries, with contributions and interest 
from other labs around the world [12], though the main 
effort of the project has been to deliver applications for 
SNS. This has resulted in fragmentation of the code 
among various contributors. There has been a recent 
effort to organize and coordinate the project. XAL’s 
position as a useful accelerator application framework 
will be strengthened by new laboratories joining the 
collaboration. The use of a well-developed framework 
and tested applications will improve early adoption of 
control application standards, and should ease the 
commissioning period of the ESS. 
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CCCP - COSYLAB COMMON CONTROL PLATFORM 

Miha Rescic, Cosylab, Ljubljana, Slovenia 
Ziga Kroflic, University of Ljubljana, Ljubljana, Slovenia

Abstract 
Cosylab common control platform (CCCP) is a 

lightweight hardware control platform designed to 
provide a simple interface to various types of hardware 
components and fast and simple integration of such 
hardware into control systems. The core of the platform is 
the scripting language lua. This lightweight and flexible 
scripting language provides software real-time control of 
hardware modules over all provided connections (RS232, 
Ethernet, USB, SPI, CAN, I2C, GPIO) as well as fast and 
simple ways of implementing modules for more complex 
structures (FPGA). The platform provides various levels 
of control with an embedded GUI or full remote control 
over an embedded web server, archiving capabilities with 
a database back-end and different device simulator 
modes. The platform's small footprint, high degree of 
flexibility and high level of hardware abstraction make 
the CCCP an ideal control platform for more complicated 
hardware instruments and at the same time a perfect main 
control board for devices that incorporate various 
complex hardware elements. The design and possible 
implementations of this platform will be discussed in this 
article. 

INTRODUCTION 
Development of a control system is never an easy nor a 

straightforward task. With the complexity of today’s 
technologies, if we’re speaking of technologies in general 
or of technologies applied in specific fields, the number 
of different components or building blocks of the control 
systems and the complexity overall grow rapidly. 

Within this rapidly expanding field it is very difficult to 
find a common ground and usually much effort is spent 
on developing highly specific solutions capable of 
tackling only a limited array of problems. Thinking of 
common grounds in control systems field brings to mind a 
reusable, as generic as possible platform that would 
represent the base of the control system. This was the 
motivation behind CCCP: minimize the efforts needed for 
base platform development and allow emphasis on more 
specific and complex components development, 
integration, testing and QA. 

ARCHITECTURE 
The crucial element of the platform is the architecture. 

CCCP tries to keep logical entities separated from each 
other as much as possible. This way, reusability and 
efficient design are possible. 

 

Custom Input / Output board

Cosylab Common Control Platform

Device Drivers, HW Support

High Level Device Logic

Low Level Device Logic

Specific Hardware Components

 

Figure 1: CCCP Architecture 

Custom input / output board 
On the lowest level of the CCCP architecture is the 

customized input / output board. Although the board itself 
is not a part of the CCCP platform it provides problem or 
component specific solutions regarding hardware 
connections, specific protocol implementations or more 
advanced logic (see Fig. 2). The custom board 
development is bundled together with the CCCP platform 
development in order to provide the optimum solution for 
the specific problem. 

Some of the IO board’s main purposes are described 
below. 
• Target hardware development away from the 

platform core and towards specific implementation 
needs. 

• Provide advanced logic and (hard) real-time support 
with FPGA. 

• Allow connectivity with existing CCCP IOs or 
implementation of any custom IO required. 

• Minimize the complexity of custom HW 
development. 

• Minimize the amount of redundant development 
efforts regarding non-reusable hardware. 
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Figure 2: Custom IO board 

Device drivers and hardware support 
The layer residing directly over the custom IO board, 

the lowest layer of the CCCP core architecture, provides 

WEPL031 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Control hardware and low-level software

88

Embedded device control



all the needed logic to communicate with hardware. It 
contains two crucial elements: 
• OS specific drivers providing basic system input / 

output functionality. 
• HW modules providing an interface layer between 

the underlying hardware components and higher-
level device logic. 

The HW modules not only allow high level logic to 
easily interact with the underlying hardware but create an 
abstraction layer between the two that can be replaced by 
a mock  layer in absence of actual hardware. A mock 
layer or a simulated layer makes development possible 
without actual hardware and allows more flexible testing 
(without hardware limitations) and much faster 
integration. 

Low level device logic 
The low level device logic incorporates all the services 

and layer logic needed for the CCCP platform to function 
properly. They lay the foundation for the higher layer 
logic and provide the tools that allow developers and 
engineers faster development. 

Some of the main components residing in the low level 
device logic: 
• HTTP server for northbound communication and 

control. 
• Priority task scheduler with support for interrupts 

from HW modules. 
• Lightweight database for storing data, events and all-

purpose logging. 
• Generic FIFO queues for inter-process data 

exchange. 
Most of the low level logic is written in C 

programming language but some segments also use 
components written in the scripting language lua. 

High level device logic 
The highest CCCP architectural layer is where the 

magic happens. This layer, also called the “instrument” 
logic layer, is developed entirely with the scripting 
language lua. 

The choice of scripting language over a programming 
language has at least these advantages: 
• All the complex implementations are done in lower 

layers thus abstracted away from the developer. 
• Because of simpler syntax, robustness and user 

friendliness scripting languages make development 
available to other team members as well, e.g. 
engineers. 

The use of a higher level of logic together with an 
application and UI framework (e.g. Nokia’s Qt) makes it 
possible to further upgrade the device with GUIs and 
other device interfaces (touch screens, ...). 

COMMON CONTROL PLATFORM 
In order to provide a truly common platform there are 

some aspects of the platform that need to taken into 
consideration. 

Customizability 
Common platform must provide enough flexibility to 

allow easy customisation for various implementations. 
Therefore, the core CCCP has no direct IO connectors or 
switches. It only provides a standard TX-DIMM 
connector with standard pinout. In order to connect the 
common control platform to corresponding control 
system components a separate IO board must be 
developed. 

By mechanically separating the logical parts into two 
components (CCCP and the IO board) we achieve a high 
degree of flexibility and customizability. With the custom 
IO board approach the solution can be very problem 
specific but still at the same time very generic since all of 
the core logic is kept on the CCCP platform. The IO 
board merely serves as an interface to hardware 
components whereas the implementation of the logic 
resides on the generic CCCP board and can be further 
reused in other various control systems or subsystems. 

Size and form factor 
One of the first limitations a standard common platform 

encounters is its size and form factor (see Fig .3) but the 
size of CCCP (DIMM200-module standard size: 67.6 mm 
x 26 mm x 3.6 mm) makes is suitable for almost any 
application. 
 

 

Figure 3: CCCP size 

Processor and operating system 
The other important aspect of the common platform is 

the choice of the processor and the operating system. This 
is why CCCP is powered by an ARM9 400 MHz 
processor with the operating system of choice being 
Linux running the 2.6 kernel. 

The combination of ARM processor and Linux OS 
allow users and developers to use a wide range of existing 
tools, from cross-compilers to integrated development 
environments. 

Connectivity 
In order to connect various components to the common 

platform a number of standard IOs must be supported. 
CCCP provides the following possibilities (only the most 
common options are mentioned): 
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• 10 / 100 Ethernet 
• 5 x UART 
• 3 x SPI 
• 3 x I2C 
• 4 x GPIO 
• 3 x 12 bit ADC 
• 2 x CAN 

PRODUCT COMPONENT SIMULATION 
The most important aspect of CCCP is the possibility to 

substitute real hardware components with mock or 
simulated components (see Fig. 4). 

The architectural layering described above, especially 
its Device driver and HW support layer allows a smooth 
interchangeability between real hardware components and 
software-simulated components. Because the hardware 
modules are essentially exposed to higher level device 
logic it is, after all the interfaces have been defined and 
with the use of lua flexibility, quite straightforward to 
make the switch. The simulated device components are 
implemented at a higher level of logic (in the high-level, 
lua logic layer) therefore they are overriding any actual 
hardware components. 

Agile development 
The process of mocking or simulating absent hardware 

components makes it possible to introduce new 
approaches to otherwise rigid hardware development 
field. One of these approaches is agile development. 
Some of the benefits: 
• Difficult and complex tasks can be dealt with earlier. 
• Problems and complications are discovered earlier 

and therefore resolved earlier. 
• Development process can be split into multiple tasks 

from the beginning and therefore modified based on 
completion of and feedback from such tasks. 

Test driven development 
Testing in hardware development is usually the last 

stage of development process. With the introduction of 
simulated components the testing can take place from a 
very early stage onwards. 
• Every step of development can be backed up and 

controlled by matching tests. 
• Tests provide feedback and allow the agile process 

mentioned above to function properly. 
 

REAL-WORLD IMPLEMENTATIONS 
Some of the possible use cases of CCCP control 

platform are described below. 

Remote hardware control 
One of the basic examples of CCCP usage would be 

remote monitoring and control of hardware devices, e.g. 
household appliances. 

 

Figure 4: Household control and monitoring 

Specific instrument interface 
CCCP could also provide an interface to various 

complex instruments and simplify the integration of these 
components into the control system. 

 

Figure 5: Specific instrument interface 

 

CONCLUSION 
 Cosylab Common Control Platform presents a 
different approach to a somehow rigid field of hardware 
development. With the modular approach regarding 
hardware and software architecture, simple input and 
output interfaces, flexible scripting language core logic 
and device component simulation capabilities it gives our 
customers a number of benefits. 
• Faster time to market with lower development costs. 
• Better developer utilization and efficiency. Faster 

hardware integration, validation and verification. 
• Minimized overdevelopment and complexity with 

maximized flexibility. 
• Optimized development process by test driven 

development and task segmentation. 
  
Small footprint, high degree of flexibility and high 

level of hardware abstraction make the CCCP an ideal 
control platform for complicated hardware instruments.
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PROGRAMMING INTERFACES FOR RECONFIGURABLE 
INSTRUMENTS 

Matej Kenda, Hinko Kočevar, Tomaž Beltram, Aleš Bardorfer, Instrumentation Technologies d.d, 
Solkan, Slovenia

Abstract 
Application Programming Interfaces (APIs) provided 

by the manufacturers of the instruments for the 
accelerators are a very important part of the functionality. 
There are many interface standards (EPICS, TINE, 
Tango,...) and even same standard can be used in various 
ways. 

Important features of modern instruments are 
reconfigurability and embedded computing. 

The developers of instruments that need to be 
connected to a control system are facing different 
requirements: adherence to standard protocols and 
support of reconfigurable instruments with diverse 
capabilities with a consistent interface. 

Instrumentation Technologies has implemented a well 
accepted solution with its proprietary Control System 
Programming Interface (CSPI) layer and adapters for each 
standard protocol. 

There are new challenges like reconfigurability, quality 
of service, discovery and maintainability that are being 
addressed with improved Measurement and Control 
Interface (MCI). 

CONTROL SYSTEM AND SOFTWARE 
INTERFACES 

There are quite some 
parameters that define 
environment in which the 
Control System operates. We 
can find heterogeneous 
instruments with different 
levels of complexity. Beside 
that the equipment is distributed 
over large remote regions and 
needs to provide reliable access 
regardless of the distance from 
the control room (see Fig. 1). 
Another characteristic of such 
operating environment is that 
the control is centralized, but 

the data acquisitions is distributed and to some extent also 
the data processing. 

Based on that we can define interface requirements 
from the Control System's point that must cover following 
areas: 

• device discovery, identification and capabilities 
• operation mode control and configuration 

parameters 
• events, alarms and health state monitoring 
• data acquisition and attributes (data type, size, 

offset, time-stamp) 

• error handling 

INSTRUMENT MANUFACTURER'S VIEW 
From the reverse 

point of view, an 
instrument can be 
used in different 
environments (see 
Fig. 2). Requests for 
data can come from 
different sources for 
different purposes. 
 
 
 

• Control System: Different types of control 
system protocols 

• Other instruments: Instrument interoperability, 
multiple instruments working together, 
clustering, shared processing,  

• Development Lab: Development, testing of 
new, updated instruments 

• Maintenance: Diagnostics, repair 
Not all of the access paths are active concurrently. 
A great deal of the information access has a common 

denominator, defined by the type of the information 
requested. 

EMBEDDED COMPUTING 
Using embedded computers in the instruments enables 

instruments to behave as network attached devices with 
built-in control system interfaces. 

Embedded computer can be used to 
• control the instrument's operation 
• perform a part of digital signal processing 
• provide remote access to the instrument 

The embedded computer is one of the important 
components of an instrument, because it provides 
convenient way to bring all of the parts (hardware 
modules, FPGA, software) of an instrument together into 
a working application and perform certain digital signal 
processing. 

Software running on the embedded computer can seen 
as one of the variable parts of a reconfigurable 
instrument. 

RECONFIGURABLE INSTRUMENTS 
 
Physical setup and behaviour of the instrument is not 

completely defined during manufacturing. 

Figure: 1 

Figure: 2 
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Modern trends in development of instrumentation 
encourage modularity with many standards for physical 
dimensions, electrical interconnectivity and data 
exchange protocols (see Fig. 3). 

This leads to the following combinations: 
• Reuse of modules: Hardware module MOD_A 

can be used in instrument INS_A, INS_B, … 
• Behaviour of the hardware module MOD_A can 

be altered by loading different FPGA designs 
• Instrument INS_A can comprise variable 

number of modules MOD_A, MOD_B, 
MOD_C, thus defining different variations of 
the instrument. 

Design of the software, running on such an instrument, 
must be done in a way to recognise and make use of these 
combinations. 

In general, the responsibilities of the instrument 
software can be split in several semi-independent layers: 
managing hardware platform, instrument application 
logic, external interfaces. 

Hardware flexibility influences all of the software 
layers, including external interfaces. 

Semantic Types of Information 
The information 

transferred between the CS 
and the instrument can be 
divided into: digital signal 
acquisition, alarms 
(notifications), monitoring 
and control of the instrument 
state and behaviour (see Fig. 
4). 

Time considerations in the 
data transfers involves data 
rate and frequency. That is 
the time that is needed to 
transfer certain amount of 
data and the repetition speed 
how often that transfer 
happens. 

Every data has its origin 
(data provider, source) and its destination (data consumer, 
sink). Depending on the active or passive involvement of 
either side in the data flow we can distinguish between 
data stream (data provider push) or data on demand (data 
consumer pull) as depicted in Table 1. 

 PROGRAMMING INTERFACES OF 
LIBERA INSTRUMENTS 

Instrumentation Technologies develops families of 
specialised instruments for use in the accelerators. They 
are all equipped with embedded computers and have 
network connectivity. 

Instruments can be divided in two classes: Platform A, 
Platform B. Main difference in hardware is the level of 
modularity, reconfigurability and computing power. 

Modern trends in instrumentation required Libera 
instruments to evolve and become more modular and 
reconfigurable. Platform B instruments comply to 
μTCA, IPMI and other standards and comprise powerful 
embedded computer. Software, developed for these 
instruments had to be modified as well to support and 
utilise new hardware platform. 

The goal of programming interfaces on both platforms 
is similar: implementation of as much functionality as 
possible in a common fashion and converting that 
information to a specific control system protocol as late as 
possible. 

Both types of interfaces provide access to the semantic 
types of information described above (see Table 2). 

Control System Programming Interface (CSPI) 
CSPI is available on Platform A type of instruments 

(Libera Briliance, Libera Brilliance Single Pass, Libera 
Photon, Libera BunchByBunch). These instruments 
contain energy efficient ARM based embedded computer 
with limited computing power. 

The operating system, used on the computer, is 
stripped-down distribution of Debian Linux, running on 
Linux kernel 2.6.20. 

The computer is designated for proper operation of the 
hardware and FPGA from powering the box on to 
shutting it down and to provide network connectivity. 

Hardware configuration of Platform A instruments is 
defined at manufacturing. Available data and the API 
are coupled together. 

CSPI provides interfaces for: 
• Monitoring, controlling the instrument 

through a number of parameters. They are all 
integer numbers and identified by numeric Ids. 
The set of parameters is fixed for a certain 
instrument. 

• Acquisition of the signals. Functions to easily 
access pre-defined number of signals are 
available. 

Figure 3 

Figure: 4 

Table:1

Table: 2 
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• Change notifications. A callback function can 
be registered, which is called with the ID of the 
parameter that was modified. 

Remote access is provided by: 
• Generic server: transparent CSPI API access 

over the TCP/IP. 
• Embedded EPICS driver: EPICS IOC driver 

that utilizes CSPI API. Alternative 
implementation was developed at Diamond 
Light Source that by-passes CSPI and 
communicates with the hardware in more direct 
fashion. 

• Embedded Tango Server, developed by Elettra 
institute. 

• External Tango Server, developed as a 
collaborative effort between Alba, Desy, Elettra, 
ESRF and Soleil institutes. 

• External TINE Server, developed by Desy 
institute. 

Measurement and Control Interface (MCI) 
MCI is the interface of the Platform B instruments 

(Libera LLRF, Libera Brilliance+, Libera Single Pass H). 
Platform B instruments contain various types of i386-

based embedded computers. These computers run 
standard Ubuntu Server edition (Linux kernel 2.6.26 or 
2.6.32). 

Dynamic nature of Platform B instrument required 
different design approach of the software and its API. 

MCI has separated classes and functions of the API 
from the information that they are used to access. MCI is 
networked by design. 

The following concepts have been introduced in the 
API: 

• Registry: tree-structured representation of 
information, used to monitor and control 
parameters of an instrument. 

• The tree nodes are populated by the 
instrument software dynamically, 
depending on the hardware setup and 
type of the instrument 

• Nodes can emit notifications (for 
example: value change). Callbacks 
functions can be registered to nodes to 
receive those notifications 

• Data Streams 
Remote access is provided by 
• Directly by MCI 
• EPICS adapter: lightweight server without a 

database maps MCI registry and signals to 
EPICS PVs 

• Tango, Tine adapter: will be developed when 
needed 

Examples 
Sample command line tool for reading the Libera unit 

environment parameters with CSPI 
$ net-libera -i 10.0.0.100 -l  
         Temp [C]: 45  
       Fans [rpm]: 4590 4560  
    Voltages [mV]: 1489 1782 2439 3233 4892 11865 -12020 -5089 
            

Example of source code: 
// Connect to the Libera unit at IP address  10.0.0.100 
server_connect (“10.0.0.100”, 23271, “224.0.1.240”, 0);  
// Allocate the environment handle 
cspi_allochandle (CSPI_HANDLE_ENV, 0, henv);  
// Prepare variables for environment parameter readout 
CSPI_ENVPARAMS params;  
CSPI_BITMASK mask = ~(0LL);  
// Acquire the parameter 
cspi_getenvparam (henv, &params, mask); 
// Release the envirnment handle 
cspi_freehandle (CSPI_HANDLE_ENV, henv);  
// Disconnect from the Libera unit 
server_disconnect (); 
Structure of MCI registry as presented by a sample 

command line tool. 
$ ./libera-ireg dump -h 10.0.3.40 -l 3  
IP_10-0-3-40  
  boards  
    raf5  
    chassis:0  
    chassis:1  
    chassis:2  
    chassis:5  
    os 
$ ./libera-ireg dump -h 10.0.3.40 -l 3 
boards.chassis:1.board_info  
board_info  
  type = VM  
  status = Running  
  power_status = Mng + Main  
  fpga_revision = 7103  
  ipmi_version = 81 
Example of source code: 

Using namespace mci; 
// Connect to instrument 1 
RemoteNode h1 = CreateRemoteRootNode("10.0.33.1", 5678, 
"libera-platformd"); 
Node r1(h1); 
// Connect to instrument 2 
RemoteNode h2 = CreateRemoteRootNode("10.0.33.2", 5678, 
"libera-platformd"); 
Node  r2(h2); 
// Query specific temperature from ins 1 
Node tempNode = r1.GetNode( {"boards", "chassis:0", "sensors", 
"ID_2" } ); 
float temp = tempNode.GetValue(); 
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EPICS IOCCORE REAL TIME PERFORMANCE MEASUREMENTS ON 
COLDFIRE MODULE*

Shifu Xu#, Hairong Shang, Robert Laird, and Frank Lenkszus   
Argonne National Laboratory, Argonne, IL 60439, U.S.A.

Abstract
Since Experimental Physics and Industrial Control 

System (EPICS) is becoming more widely used in 
accelerator control systems and the EPICS Input/Output 
Controller (IOC) has ported to different operating 
systems, the performance of EPICS IOCcore on different 
hardware and software platforms is crucial. This paper 
will provide real-time performance measurements of 
EPICS IOCcore on a Coldfire module uC5282 and on two 
different OS platforms: RTEMS 4.9.2 and uClinux 2.6.21. 
The most recent EPICS base and extensions are used to 
build the test application. 

INTRODUCTION
As more and more Coldfire uC5282 modules are being 

used at the Advanced Photon Source (APS) and other 
sites, it is of interest to know the EPICS IOCcore real-
time performance on this platform. Similar performance 
measurements were done on the MVME2100 [1]. Based 
on the measurement software [2], a few changes have 
been made to measure on the Coldfire uC5282 module. 
These real-time parameters are measured on both RTEMS 
4.9.2 and uClinux 2.6.21 platforms: interrupt latency, 
context switch latency, and total response latency. Two 
more parameters are measured on the uClinux 2.6.21: 
interrupt top half to bottom half, and interrupt bottom half 
to user space interrupt service routine (ISR). 

MEASUREMENT PLATFORM 
All measurements were performed on a Coldfire 

uC5282 module from Arcturus Networks [3]. The module 
has a MCF5282 Freescale Coldfire microprocessor with a 
64-MHz Coldfire RISC core. It has a 16-Megabyte 
SDRAM, 4-Megabyte flash memory, and 512-k byte on-
chip flash. In order to generate an external interrupt for 
the module to measure the latency, an APS custom-made 
Coldfire bridge board and Altera Stratix II development 
board were used. Figure 1 shows the hardware platform. 

The development host machine is an x86-based Linux 
PC running Fedora Core 10, with a tftp client and an NFS 
server running on it. The target module’s bootloader has a 
tftp server to receive the OS image. 

Two OSs are evaluated on the Coldfire module target: 
RTEMS 4.9.2 and uClinux 2.6.21. uClinux 2.6.21was 
downloaded from Arcturus Networks with the non-
preemptive kernel. This version includes built-in board 
support packages (BSPs) for the Coldfire modules.  The 
cross-compiler tools for the uClinux 2.6.21 and 

applications were also provided by Arcturus Networks. 
Because of the resource limitations of the Coldfire 
uC5282 module, efforts were made to optimize the 
uClinux kernel in order to get better performance.  

Figure 1:  The hardware platform. 

The most recent EPICS base 3.14.11 was used for the 
test. A few new EPICS base configuration files were 
created for the Coldfire uC5282 module on the uClinux 
platform.  

MEASUREMENT SOFTWARE 
The software from [2] is generic EPICS IOCcore 

performance measurement software for target OSs such as 
vxWorks, Linux, and RTEMS. Figure 2 shows  the 
software structure. 

Figure 2:  The measurement software structure. 

 ___________________________________________  

* Work supported by U.S. Department of Energy, Office of Science, 
Office of Basic Energy Sciences, under Contract No. DE-AC02-
06CH11357. 
#xusf@aps.anl.gov 
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For each target platform, a specific interrupt generation 
method is needed for the interrupt latency measurement. 
An external interrupter, which includes an APS custom-
made Coldfire bridge board and Altera Stratix II 
development board, was used for the latency 
measurement on the Coldfire uC5282 module. A parallel 
I/O (PIO) component was used as an Avalon slave in the 
Altera FPGA design to generate interrupts to the Coldfire 
module. The interrupt generation code resides in the 
RTEMS-dependent driver rtemsSampler.c. For uClinux, a 
kernel module was created, which has an interface 
function to generate this interrupt. A Linux-dependent 
driver, linuxSampler.c, in the user-space is used to call 
this interface function. 

Due to the limited memory resource on the Coldfire 
uC5282 module, only 1000 EPICS records were loaded. 
There are two Channel Access clients that put a load on 
the IOC: performCaget and performCaput. The 
performCaput puts values to the records on the IOC.  The 
performCaget monitors the value changes. 

USER INTERFACE 
A MEDM display was created for operation and 

showing measurement results. It can configure the 
number of samples to take with each scan. It can display 
the minimum, median, maximum, and percentage of 
samples over some value for each latency parameters. 
Figure 3 shows the user interface. 

Figure 3:  The user interface. 

MEASUREMENT RESULTS 
The IOC is heavily loaded in all the tests. Four different 

values of each parameter are collected: minimum, 
median, maximum, and percentage of samples over some 
value. Tests on the private network were conducted for 
one hour. To look for network interference, some tests 
were run for two hours on a public network. Another test 
was run to measure user-level interrupt latency. Tables 1–
5 show the results. All the units are in units of μs. 

Table 1: Interrupt Latency 

OS Minimum Median Maximum >100 μs(%)

Private  
Network

uClinux non-preemptive  12 14 1822 0.05 

uClinux non-preemptive with user level ISR  14 16 852 0.083 

RTEMS net task has higher priority  18 19 142 0.006 

RTEMS net task has lower priority  18 19 131 0.008 

Public
Network

uClinux non-preemptive  14 14 1926 0.056 

uClinux  non-preemptive with user level ISR  14 16 1604 0.101 

RTEMS  net task has higher priority  18 19 165 0.006 

RTEMS  net task has lower priority  18 19 132 0.006 

Table 2: Interrupt Top Half to Bottom Half Latency 

OS Minimum Median Maximum >100 μs(%)

Private  
Network

uClinux  non-preemptive 20  22  1934  0.144  

uClinux non-preemptive with user level ISR  20  22  1656  0.615  

Public  
Network

uClinux non-preemptive    20  22  1932  0.125  

uClinux non-preemptive with user level ISR  20  22  1828  0.605  
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Table 3: Interrupt Bottom Half to User Level Interrupt Latency 

OS Minimum Median Maximum >500 μs(%)

Private Network uClinux non-preemptive with user level ISR 338 342 1499818 2.543 

Public Network  uClinux non-preemptive with user level ISR 338 342 1264560 2.703 

Table 4: Context Switch Latency 

 OS Minimum Median Maximum >100 μs(%)

Private 
Network

uClinux non-preemptive  28 30 121464 0.482 

uClinux non-preemptive with user level ISR  30 638 1389820 0.932* 

RTEMS net task has higher priority  44 46 1934 0.077 

RTEMS net task has lower priority  44 46 158 0.032 

Public
Network

uClinux non-preemptive  28 30 113374 0.481 

uClinux non-preemptive with user level ISR  30 638 1440814 0.914* 

RTEMS  net task has higher priority  44 46 2013 0.152 

RTEMS  net task has lower priority  44 46 161 0.056 
* over 1000 μs(%)  

Table 5: Total Response Latency 
OS Minimum Median Maximum >100 μs(%)

Private 
Network

uClinux non-preemptive  80  84  121518  0.81  

uClinux non-preemptive with user level ISR  378  380  1499856  36.001**  

RTEMS net task has higher priority  63  65  1954  0.19  

RTEMS net task has lower priority  63  65  177  0.229  

Public
Network

uClinux non-preemptive  80  84  113580  0.799  

uClinux non-preemptive with user level ISR  378  380  1264638  37.531**  

RTEMS  net task has higher priority  63  65  2033  0.264  

RTEMS  net task has lower priority  63  65  181  0.171  

** over 500 μs(%)  

MEASUREMENT RESULTS ANALYSIS 
The results show that RTEMS has better real-time 

performance than uClinux.  Compared with the real-time 
performance results on MVME2100 [2], it seems that the 
MVME2100 has better performance than the Coldfire 
uC5282 module, though the RTEMS and Linux versions 
are different. Measurement on the uClinux with a 
preemptive kernel should be conducted in the future for 
further comparison. 
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HIGH LEVEL MATLAB APPLICATION PROGRAMS FOR SPEAR3§ 
J. Corbett et al,  SLAC, Stanford, CA  94309 

 
Abstract 

The SPEAR3 control system nominally operates with 
the EPICS toolbox on top of VMS hardware. The 
simultaneous use of Matlab Middlelayer (MML) and 
Accelerator Toolbox (AT) allow for parallel, high-level 
machine control and accelerator physics applications that 
communicate with the control system via EPICS Channel 
Access (LabCA). While the majority of the MML and AT 
software is machine independent, site-specific high-level 
applications are also required to control the accelerator. 
This paper describes several such high-level application 
programs that have been developed for control and 
diagnostics at SPEAR3. Examples include a time-
dependent waveform display gui, beam steering 
applications, transport line optics correction, SR beam 
diagnostics and add-ons to the main MML routines. 

INTRODUCTION 
The SPEAR3 light source came as the result of a Basic 

Energy Sciences committee recommendation following a 
review of U.S. synchrotron radiation facilities in 1997 [1]. 
Before formal DOE/NIH funding arrived in 1999, 
preliminary lattice design and system engineering 
specifications were developed on project seed money. 
During this time, it became clear that the historical, yet 
dated, SPEAR control system would need to be largely 
replaced [2], in particular the high-level application 
programs. The new system would utilize EPICS operating 
on a VMS platform which opened up the possibility for 
Channel Access communication with external programs. 
In order to consider options for modern application 
development platforms, a satellite meeting was arranged 
at the 1998 International Computational Accelerator 
Physics Conference in Monterey, CA. Presentations 
included options for SDDS, TCL/TK and X-Windows 
software.  

At the time of the Monterey conference, Matlab was 
already in use at SSRL for data processing and off-line 
accelerator physics calculations. Matlab had also been 
used extensively at the SLC for data acquisition, data 
reduction and to some degree machine control. At the 
ALS in Berkeley, Matlab was in use for command-line 
driven machine control and data processing [3], and had 
the interesting feature that the top-level language closely 
mimicked accelerator simulation programs such as 
TRACY [4]. At the same time the first versions of the 
Matlab Accelerator Toolbox [5] utilizing TRACY 
transport physics were available for simulation studies at 
SSRL. 

During the Monterey meeting, a proponent of IDL 
made an interesting observation – since recent versions of 
Matlab contained graphical interface commands why not 
use it to develop high-level application programs [6]?  

 
With Channel Access connectivity embedded in Matlab 
(LabCA) [7], a complete solution was available with 
control system communication, gui capability, user-
friendly data reduction software and accelerator 
simulation tools that  could be integrated into a single, all-
in-one software package. The gavel fell and a new project 
was born – high level application programs at SPEAR3 
would be developed and written in Matlab†. 

In a stroke of luck, the main author of Matlab Middle 
Layer (MML) [8] was finishing work on an SBIR grant at 
SLAC and was available to consult with SSRL on 
application development for SPEAR3. The first project 
was to convert the FORTRAN version of the Linear-
Optics-Closed-Orbit (LOCO) program to Matlab [9]. It 
was then recognized that SPEAR3 needed a ‘middle 
layer’ to provide easy connectivity between the 
accelerator physicist and storage ring. By introducing 
Matlab code utilizing accelerator modeling syntax 
developed at the ALS, a straight-forward database-drive 
system was devised for simulation and control.  

As more of the ALS software was integrated into the 
system, the functionality of higher-level programs such 
as, orbit, tune, dispersion and chromaticity measurement 
expanded. In order to retain the ability to pass the new 
software back to the ALS, programs were written in a 
‘machine independent’ format driven by simple MML 
initialization files to associate accelerator elements and 
their indices with girder locations, database channel 
names, hardware limits, conversion factors and specific 
locations within the AT lattice file.  

First tests of machine independence were made in trials 
at the Canadian Light Source and then again at the ALS. 
Interestingly, machine-independence also created a 
structural rigor within the software that ultimately 
simplified high-level program development and 
streamlined switching between on-line and simulation 
control modes. Hardware-to-physics conversion factors 
also  enabled the user to ‘switch’ between hardware (e.g. 
amps) and physics (e.g. m-2) units with a single command. 
Similarly, the AT lattice pointers automate switching 
between on-line and simulation modes with a single 
command. File directory specifications were then 
incorporated to automate data file look-up and data 
storage needs for machine control and simulation.  

In the sections to follow we describe high-level 
application program developments at SPEAR3 in the 
areas of waveform variable display, main ring and 
transport line machine tuning and optical diagnostics. 

 
 
†the philosophy was, and still is, ‘anything that can be 

written in EPICS will be written in EPICS’.  
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 CONTROL/DISPLAY APPLICATIONS 
One of the first high-level MML application programs 

was a real-time orbit monitor program intended to 
compliment a manual orbit control program. It was soon 
recognized that the x- and y ‘orbit’ families were only two 
instances of a larger class of ‘families’ defined in the 
MML initialization files. By simply redefining the 
‘family’ and the associated axis coordinates within the 
display, a broad selection of  accelerator hardware 
families could be displayed in the same graphical 
interface. ‘PlotOrbit’ was converted into ‘PlotFamily’ 
including a complete set of options to display data in 
terms of absolute or relative values, and with interactive 
axis scaling features. By utilizing the built-in functionality 
available in the MML, ‘saved’ and ‘golden’ family data 
could be easily recalled into the graphical display.   

 

     
  Figure 1: PlotWaveform graphical interface. 
 
To further expand the PlotFamily interface, callbacks 

from main pull-down menus at the top of the display were 
programmed to execute other high-level MML code. This 
feature gave machine operators the capability to load and 
save entire machine configurations, measure and save 
machine parameters (dispersion, tune, chromaticity, 
LOCO data), and a means to control global accelerator 
properties (orbit, tune, etc). Graphical data could also be 
exported to the main Matlab workspace for further 
processing. The resulting PlotFamily application was 
machine-independent and could operate at any accelerator 
configured to run MML. 

As an extension of the built-in functionality, PlotFamily 
has an added file execution option that executes at run 
time. This feature is used at SSRL to generate SPEAR3-
specific menu options for transport line control, orbit-
interlock checks, machine-specific diagnostic controls and 
links to hardware documentation. 

A further development undertaken at SSRL was to 
incorporate the PlotFamily display features into a new, 
high-level ‘PlotWaveform’ graphical interface. As shown 
in Fig. 1, PlotWaveform provides a means to display real-
time EPICS ‘waveform’ variables. Most of the ~50 
EPICS waveform variables at SPEAR3 are supplied by 
the Pulse Signal Monitor (PSM) system which consists of 
a distributed set of analog signal amplifiers and digitizer 
boards to monitor pulsed RF data (few μs), fast-kicker 
data (few μs) and booster ramp signals (few ms). Similar 
to the MML initialization concept, PlotWaveform is based 
on a machine-specific initialization file that identifies 
common waveform names with Channel Access names, 
physical units and time base parameters.   

MACHINE CONTROL APPLICATIONS 
    An early Matlab application program developed for 
SPEAR3 was the SVD-based orbit control interface 
‘OrbitGUI’ [10]. The control interface utilized Matlab 
graphic features such as select-and-drag for beam position 
monitor icons while the underlying software utilized the 
MML library to open the corrector-to-bpm response 
matrix file, measure the beam orbit and load both RF 
frequency and corrector setpoints. The OrbitGUI program 
was nearly machine-independent with local specifics 
related to the fact that the code pre-dates MML. 
 

        
        Figure 2. OrbitGUI graphical interface. 
 

The main processing algorithm within OrbitGUI was 
then transferred to a slow orbit-correction feedback 
application (SOFB), which uses a Matlab timer object as 
the internal clock. The SOFB interface is more compact 
than the OrbitGUI interface allowing only timer on/off 
and RF correction on/off control. The internal SOFB orbit 
correction algorithm was updated to allow eigenvector-
by-eigenvector mode discrimination. In this case, at each 
correction cycle SOFB calculates the inner product 
between the orbit vector and each orbit basis vector in the 
linear algebra sense. The correction is only applied if the 
inner product exceeds a pre-specified threshold for each 
mode. Operationally the discrimination algorithm better 
rejects BPM noise and results in a quieter beam orbit at 
the user beam lines. 

A similar interactive orbit control program was 
developed for the linac-to-booster transfer line (LTB). In 
this case the response matrix is for ‘open’ as opposed to 
‘closed’ beam orbits and the BPM data requires averaging 
for accurate results. In order to reliably steer the beam 
through the LTB, the initial launch conditions 
(x,x’,y,y’,dp) must be measured and held constant to 
minimize mis-steering and dispersion generated upstream. 
LTBOrbitGUI and the associated response matrix 
measurement software utilize MML commands are fully 
integrated into the MML file directory system. 

For the booster-to-storage ring (BTS) transfer line, a 
more complex software system was developed to calibrate 
the beam line quadrupole optics using LOCO-style 
response matrix calculations [11]. The BTS software also 
contains a steering package designed to optimize beam 
injection efficiency into SPEAR3 . 

The RF bucket select software was originally 
implemented in Matlab but then converted into an EPICS 
control panel. The conversion was consistent with the 
philosophy that straight-forward machine-critical software 
should be written in EPICS where possible. 
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DIAGNOSTIC APPLICATIONS  
The Matlab middle layer and Channel Access 

connectivity are also utilized for SPEAR3 optical 
diagnostics. The x-ray pinhole camera, for instance, 
acquires the beam image with a PointGrey CCD Flea 
camera [12] routed through IEEE-1394b Firewire to a 
standard PC. A software link to the PointGrey camera 
control library maps the image into Matlab memory for 
processing and display [13]. The Accelerator Toolbox is 
used to compute relevant betafunctions at the x-ray beam 
source point. In the nominal beam monitoring mode the 
measured beam parameters are written to EPICS using 
LabCA. During periods of machine development, MML 
scripts are used to manipulate electron beam position, 
coupling and emittance as measured by the pinhole 
camera. A Matlab script developed at the CLS calculates 
spectrally-integrated Fresnel diffraction integrals to 
characterize beam propagation from source to screen [14]. 

 

     
  Figure 3: PlotWaveform graphical interface. 
 
A similar, more sophisticated application program was 

developed for the visible-light interferometer [15]. As 
shown in Figure 3, a second Matlab-linked Flea camera 
acquires the raw, 2-slit interference pattern and a 
graphical interface is used to establish user-defined 
boundaries for the line-out. A Levenberg–Marquardt 
numerical fitting algorithm written in Matlab [16] applies 
a least-squares fit of a sinc/sine function to the 
interference data to extract the incoherent beam visibility. 
MML is again used to control insertion device parameters, 
x-y coupling and emittance for machine characterization. 

For the fast-gated and streak cameras, direct links are 
not available to the internal camera software so raw 
camera images are saved to disk and re-opened in Matlab 
for processing. Moments of the transverse and 
longitudinal beam distribution are fitted to extract data 
relevant to emittance, machine impedance and instability 
thresholds. In cases where time-dependent phenomena are 
recorded, images are pre-processed and then sequenced 
together in Matlab to generate ‘movies’ that display non-
linear features of the beam distribution that are otherwise 
difficult to characterize with scalar quantities. 

 
 
 
 
 

SUMMARY 
The Matlab middle layer has provided a relatively user-

friendly software package for machine commissioning, 
operation and accelerator development. Key components 
include the Accelerator Toolbox, Channel Access 
Toolbox and a wide range of accessory tools. High-level 
application programs built largely on the MML allow for 
scripted data acquisition, data processing and graphical 
display that are difficult to implement using standard 
accelerator control system software. To date, over a dozen 
synchrotron light sources have adopted MML and many 
have gone on to develop high-level application programs. 
High-level application programs at SPEAR3 include 
waveform analysis, beam tuning and orbit control and 
optical diagnostics. Another important feature of MML 
and high-level application programs is the ability to 
provide teaching tools for students and interns. 
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A NOVEL APPROACH FOR BEAM COMMISSIONING SOFTWARE USING 
SERVICE ORIENTED ARCHITECTURE* 

G. Shen, BNL, Upton, NY 11973, U.S.A. 
P. Chu, J. Wu, SLAC, Menlo Park, CA 94025, U.S.A.

Abstract 
A novel software framework is under development, 

which is for accelerator beam commissioning and 
operation. It adopts a client/server based architecture to 
replace the more traditional monolithic high level 
application approach. A minimum set of commissioning 
and operational services has been defined such as 
simulation server service, directory service, magnet 
service, and bpm service, etc. Most of them have been 
prototyped. Services can use EPICS pvData as its data 
container and pvAccess as communication protocol. This 
paper describes conceptual design and latest progress for 
some services. 

INTRODUCTION 
Traditionally, an accelerator application needs to deal 

with many functions such as connection to various 
signals, data from physics modelling, data plotting, 
complicated program flow and error handling.  If all such 
computation is built in a single standalone program, the 
complexity level of the program may result poor 
performance, unreliability and code maintenance 
difficulty.  Also, if any application needs a new feature 
which is not provided by an easy interface, it is hard to 
implement the feature without major restructure of the 
existing program. 

On the other hand, if heavy computation functions can 
be distributed as running modules residing on various 
servers and serving up data via proper service protocol, 
the Graphical User Interface (GUI) application itself can 
be a simple thin client receiving the data from the servers.  
This service oriented architecture (SOA) approach can in 
general improve both performance and reliability of 
applications.   

In this paper, some preliminary result for simulation or 
model service, Linac energy management (LEM) service 
and possible communication protocols such as EPICS 
pvAccess are reported.  Work plan for the SOA is also 
described. 

SERVICE ORIENTED ARCHITECTURE 
One can identify some essential services for accelerator 

operation by surveying the functionalities of existing 
applications.  The granularity of services depends on 
functionality shared by clients, performance, robustness 
coding complexity, and maintenance.  On one hand, too 
narrow of a service means many more services in total 
and could cause maintenance trouble.  On the other hand, 
a single service providing too many functions could 

reduce its performance and reliability.  Figure 1 shows a 
typical top level SOA diagram with a few services. 

Furthermore, services can be distributed to multiple 
servers with virtual machines technology.  A distributed 
system can avoid one service bringing down others.   One 
can also add a redundant server for any critical services. 

Advantages for SOA approach are described in detail 
below. 

Easy Application Development 
Coding an application with many functions can be 

tedious.  On the other hand, some functions can be shared 
by several applications.  A well-designed SOA approach 
can greatly reduce the burden on end developers.  
Applications can then become “thin” clients without 
much inline computation. Only simple “get/set” data 
communication with the service providers will be needed.  
Coding up a complicated application such as controlling 
an experiment will require much less time and effort.  
Yet, all the high quality of supporting functionality is 
fulfilled because the complication is maintained on the 
server side.  This means that even a program written in 
scripting language such as Matlab script can still have the 
same high quality of error handling and message logging 
without additional coding efforts. 

Data Control 
Because the services are centralized control, i.e. 

typically only one particular service instance running at a 
time.  This approach can avoid conflict among multiple 
clients accessing the same device; for instance, feedback 
and Linac Energy Management (LEM) program might 
change the same corrector at the same time but magnet 
server can shedule the two requests properly. 

Better Application Memory Management 
For individual applications, SOA can avoid large 

memory and CPU consumption due to heavy computation 
and data process.  Therefore, it can also reduce the chance 
of client application program crashing. 

Service Swappable 
It is not necessary to replace all traditional functions 

with services overnight.  One can implement a service at a 
time.  If an old service is replaced by a new one, the 
application programming interface (API) should remain 
the same so the client application can pick up the service 
seeminglessly.  This also means the SOA work is highly 
scalable depending on the available resources.  
Furthermore, a new service should go through rigorus test 
before any client application in production can actually 
use it.   

 ___________________________________________  

*Work supported under auspices of the U.S. Department of Energy 
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SERVICE EXAMPLES 

Simulation (Model) Service 
Running model within an application is one of the most 

expensive operations in terms of CPU and memory use.  
Simulation or model service runs physics model 
periodically and makes up-to-date model data available 
for any subscribed clients.   

The model server can be expended to cover not only 
online modelling but also other beam dynamics modelling 
such as start-to-end simulation, which can provide more 
detailed beam dynamics simulation information, with a 
set of uniform APIs.  Various simulation codes can be run 
continuously to supply data to the model server with 
extant hardware set values.   

Figure 2 shows a schematic diagram for the Simulation 
Service.  The core part of the service is a model run 
control program which manages input data and file 
preparation, job submission, run status monitoring, run 
forced quit and output data management.   

A prototyped run control program with Fortran based 
IMPACT-T [1] modelling code using Java and Python 
has been written and under test.  Java part of the program 
is mainly for data display such as tables and plots while 
Python is excellent for file I/O and communication with 
the modelling code and the underneath operating system.  
The run control program dynamically generates a set of 
IMPACT-T input files based on user’s input via GUI.  For 
each run, a new directory named with the run start time is 
created and all files are saved under the directory. 

 
Figure 2: Data flow for model engine and service. 

Linac Energy Management (LEM) Service 
Any linear accelerator can change its energy from time 

to time. In order to maintain the same lattice all the time, 
a program so called LEM which continuously updates the 
energy information has to run regularly.  LEM requires 
RF data and model tracking; therefore, it is most efficient 
that it is running periodically on a server and updating all 
data for clients such as LEM application and control room 
continuous update display (CUD). 

 
Figure 1: Top level SOA functional diagram.  The arrow direction shown in the figure indicates the data flow direction.  
For instance, Model Service can provide model data to Linac Energy Management (LEM) Service. 
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A prototype LEM Service posting calculation result on 
EPICS Process Variables (PV) has been implemented.  
Preliminary result shows that the service has been running 
for over a month even with the accelerator itself being up 
and down.  In contrast, the standalone version of the LEM 
program crashes easily due to various causes such as data 
acquisition failure, memory management issue and so on. 

Directory Service 
This service is prototyped under a sourceforge project 

so-called epics-pvdata [3,4]. The epics-pvdata consists of 
4 modules: (1) pvData, which defines and implements an 
efficient way to store, access, and transmit memory 
resident structured data; (2) pvAccess, which is a new 
generation of EPICS Channel Access protocol. It is used 
to deliver data over the network and fully supports 
pvData, and depends only on module pvData; (3) 
javaIOC, which is a processing engine. All behaviours are 
defined by JavaIOC engine, and user has only to develop 
his own support for all desired behaviours. It depends on 
the pvData and pvAccess; (4) pvService, which is a 
combination of all services under this project. All generic 
services or facility specified services should locate here.  

The Directory Service, so-called itemFinder, is one 
particular example under pvService module. It provides a 
basic function to get a list of physics elements and its 
associated properties such as EPICS PV names for read-
back, set-point, temperature, and so on if they apply. It is 
designed and prototyped against MySQL relational 
database (RDB). The RDB schema consists of two (2) 
tables: (1) item table, which stores the physics names for 
all elements installed in a facility; (2) property table, 
which stores all properties associated with each element.  

A client application gives search criteria by calling a 
client API. The search command is passed to a daemon 
record and the record is processed inside the JavaIOC, 
and a RDB query is performed to get an item name list 
with properties, which satisfied the search constrains. The 
value is returned back to the client through a dynamically 
created pvRecord.  

One use case of this service is to get a list of EPICS 
channel names. Since a channel name is an entry of 
properties for an element, by getting the list back to 
client, user can retrieve the element’s channel names 
easily. 

Gather Service 
The Gather Service is another service under pvService 

module. Basic idea of this service is that a client sends a 
PV list with a string to this service; the service then 
creates a pvRecord dynamically with the string name 
given by the client.  

Here we have to mention that the type of each PV in the 
PV list should have same data type, and pvService does 
not check it. Also the client has to make sure that name 
string is unique and did not exist in the Gather Service. 
Otherwise, it will use existing pvRecord instead of 
creating a new one. This has to be improved later. 

After a client ships a PV list to the gather service, the 
gather service creates a pvRecord as mentioned above, 
and connects to  low level hardware IOCs for example 
BPM IOCs, and update its value every time a PV in a low 
level IOC changes.  

Client can customize the Gather as desired service such 
as a BPM orbit server, or a magnet server. 

COMMUNICATION PROTOCOL 
An adequate communication protocol is indispensable 

for SOA architecture. There are many protocols available 
such as HTTP, XML-RPC and so on. A new generation 
of EPICS Channel Access protocol, pvAccess, is a better 
option to deliver accelerator data over the network. The 
main advantages are as below: 

 It fully supports pvData, and depends only on 
project pvData. We can integrate our servers 
seamlessly with pvData. 

 It is developed against current Channel Access, 
and inherits the advantages of EPICS Channel 
Access. For example, it is data stream oriented 
protocol, and can be expected to have good 
performance for an accelerator control system. 

The performance benchmarking is undergoing, and a 
preliminary result shows a good performance. For 
example, on a local office network, when we feed 1000 
PVs to the Gather Service, it can update the 1000 PVs’ 
value with a frequency large than 100Hz. 

PLAN 
Some service such as Simulation Service, itemFinder, 

and gather service are being prototyped.  They all are in 
the stage of choosing a good communication protocol for 
production and EPICS pvAccess shows a good 
performance as communication protocol. Some more 
development and benchmarking are necessary for a 
production server. 
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synApps: EPICS APPLICATION SOFTWARE FOR SYNCHROTRON 
BEAMLINES AND LABORATORIES* 
T. M. Mooney#, ANL, Argonne, IL 60439, U.S.A.

Abstract 
synApps[1] is a collection of EPICS [2] application 

software originally intended to support the needs of 
scientists performing experiments at synchrotron-
radiation beamlines.  The collection contains general- 
purpose software that extends or exploits capabilities of 
EPICS base, and a large amount of instrument-specific 
software that uses EPICS to control and provide a user 
interface for off-the-shelf electronics.   

This paper will provide an overview of synApps, 
describe how the software is deployed at the Advanced 
Photon Source, and highlight recent additions.  

OVERVIEW 
synApps is a collection of  EPICS modules that 

supplement the record types, device support, and other 
software infrastructure included in EPICS Base.  Because 
it was written to support scientists conducting a wide 
variety of experiments, most of the software in synApps 
is general in purpose, and was engineered to serve many 
needs at once, by abstracting from specific sets of 
requirements general solutions for classes of problems.  

But this focus on general solutions does not distinguish 
synApps from other EPICS-application software.  Most 
EPICS software is general purpose, in part because 
EPICS is a collaborative effort. synApps differs from 
mainstream EPICS-application software in three ways: it 
contains a small amount of synchrotron-specific software, 
it provides infrastructure to support run-time 
programming, and it provides infrastructure to support 
data acquisition. 

synApps consists of the following modules, grouped 
according to the kinds of applications they support.  

General-Purpose Modules 
• autosave – Saves the values of EPICS process 

variables, and restores them after a reboot. 
• busy – Extends EPICS’ execution tracing to include 

client software. 
• calc – Provides variations of the EPICS calcout 

record for systems of expressions (transform 
record), string expressions (sCalcout record), and 
arrays (aCalcout record). 

• sscan – Supports scans (systematically set 
conditions; acquire and store data). 

• std – Supports scalers, sequences of operations, and 
PID loops. 

Hardware Specific Modules 
• areaDetector – Supports multidimensional 

detectors. 
• camac – Supports CAMAC hardware. 
• dac128V – Supports an IndustryPack digital-to- 

analog converter. 
• delayGen – Supports delay generators. 
• dxp – Supports DXP digital-signal processing 

spectroscopy systems. 
• ebrick – Supports the EPICS Brick, a PC104-based 

computer running Linux, as an EPICS IOC 
(Input/Output Controller). 

• ip – Supports various message-based (e.g., serial, 
GPIB) devices. 

• ip330 – Supports an IndustryPack analog-to-digital 
converter. 

• ipUnidig – Supports an IndustryPack digital I/O 
module. 

• love – Supports Love controllers. 
• mca – Supports multichannel analyzers and 

multichannel scalers. 
• modbus – Supports Modbus devices. 
• motor – Supports stepper and servo motors. 
• quadEM – Supports a four-channel electrometer. 
• softGlue – Provides user-programmed digital logic 

and I/O. 
• vac – Supports vacuum-related devices. 
• vme –  Supports VME hardware. 

Synchrotron-Radiation Specific Modules 
• optics – Supports X-ray monochromators, slits, 

optical tables, and other synchrotron-radiation 
equipment. 

Other Software in synApps 
• xxx – Provides a template for an EPICS IOC 

directory using synApps. 
• utils – Provides miscellaneous software related to 

synApps, including support for migrating from one 
version of synApps to another, support for a data-file 
format used by synApps scan software, and support 
for rapid EPICS-database programming. 

Software Distributed with synApps 
synApps makes use of the following EPICS modules 

that are not part of synApps, but are distributed with it: 
allenBradley, asyn, ipac, seq, stream, and vxStats. 

 

 ____________________________________________ 

*The submitted manuscript has been created by UChicago Argonne, LLC, 
Operator of Argonne National Laboratory (“Argonne”). Argonne, a 
U.S. Department of Energy Office of Science laboratory, is operated under 
Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and 
others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license 
in said article to reproduce, prepare derivative works, distribute copies to the 
public, and perform publicly and display publicly, by or on behalf of the 
Government.   
#mooney@aps.anl.gov 
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RUN-TIME PROGRAMMING 
Because many synApps users are scientists conducting 

experiments, and because experimental work is typically 
less well understood in advance than are other activities 
supported by EPICS, synApps places a much greater 
emphasis on support for programming at run time than is 
typical of EPICS-application software.  Most synApps 
IOCs load records reserved for run-time programming; 
and most synApps record types are supported by displays, 
online documentation, and autosave-request files for this 
purpose.  Also, many synApps record types check and 
report to the user the states of their link fields, so that run-
time link errors can be recognized promptly. 

In this context, “programming” does not mean code 
development or scripting, but rather the configuration and 
linking together of EPICS records.  A collection of linked 
EPICS records – an EPICS database – can be viewed as a 
program in a very high-level language.  For example, an 
input record linked through a calculation record to an 
output record can implement a feedback loop. 

An EPICS database configured at run time is not 
distinguishable in any essential way from a similar 
database configured at build time: it has the same speed 
and efficiency,  and it can drive or be driven in the same 
ways.  Thus, run-time-programmed databases can be 
layered, sequenced, event driven, or scanned, and the 
result for end users is an extraordinarily powerful and 
versatile capability to diagnose and solve problems as 
they arise during an experiment, and to modify solutions 
to those problems as they become better understood. 

The principal means by which run-time programming is 
accomplished in EPICS is the redefinition of an EPICS 
link.  In early versions of EPICS, links could not be 
changed at run time.  The first programmable links were 
implemented by Marty Kraimer for use by the synApps 
scan and wait records (originally developed by Ned 
Arnold), and they were initially viewed as support for 
scans.  But the wait record quickly came to be applied 
more widely for its run-time programming capability, and 
the result was powerful enough to motivate the 
development (by Marty Kraimer, Bob Dalesio, Jeff Hill, 
and others)  of support for run-time redefinition of all 
EPICS links. 

The impact of run-time-programmable links on 
synApps’ development was profound: most synApps 
record types, databases, and displays came to be 
developed with run-time programming as an objective, 
and the automated saving and restoring of EPICS PV 
values (autosave, originally developed by Bob Dalesio) 
acquired new urgency and purpose. 

Recently, the notion of run-time programming was 
extended to run-time development of digital hardware, in 
the softGlue module. 

Rapid Prototyping 
Soon after support for run-time programming became 

pervasive in synApps, the capability was recognized also 
as a rapid-prototyping tool – a way for EPICS-database 
developers to test and combine database fragments 

without rebooting.  The principle defect in this 
development approach was the lack of a convenient way 
to save run-time programming in the standard form of an 
EPICS database file. 

A wxPython program, snapDb, was written to address 
this problem.  Using snapDb, a user or developer can 
produce a loadable EPICS database from run-time-
programmed fragments simply by using MEDM’s Drag-
And-Drop capability to enter a PV name from each record 
into a list.  snapDb then reads all fields of the listed 
records, and writes an EPICS database file.  snapDb can 
also write an MEDM display file for the database. 

DATA ACQUISITION 
Synchrotron-radiation users spend a lot of time 

scanning – systematically varying conditions, acquiring 
data under those conditions, and storing the data for later 
analysis.  The sscan module is dedicated almost entirely 
to this purpose, comprising the sscan record, which 
performs multidimensional scans; the recDynLink library, 
which manages Channel-Access connections for the sscan 
record; and the saveData task, which writes scan data to 
disk. 

Other synApps modules involved heavily in data 
acquisition are the areaDetector, mca, dxp, and std 
modules.  These modules support specific hardware, such 
as scalers, multichannel analyzers, and two-dimensional 
detectors, and do so in a way that permits EPICS clients, 
including the sscan record, to trigger data acquisition, 
wait for acquisition to complete, and collect the resulting 
data. 

Completion Reporting 
EPICS Base contains support for tracing the execution 

of a linked set of records (i.e., a database), and for 
signaling the completion of that execution to the client 
that caused it to occur.  Within an IOC, tracing is 
performed by the EPICS putNotify facility.  Execution 
spanning more than one IOC can be traced by using the 
Channel Access function ca_put_callback() to make the 
completion of a record in one IOC contingent on the 
completion of execution in another IOC. 

synApps’ data-acquisition strategy relies heavily on 
putNotify execution tracing, and synApps provides several 
record types engineered to extend putNotify across IOCs, 
in addition to serving their primary purposes: 

• sscan – This record performs a one-dimensional 
scan.  Several sscan records can be linked to 
perform multidimensional scans. 

• sseq – This record is a variant of the EPICS seq 
record, which performs a programmed sequence of 
operations.  The sseq record differs from seq in that 
it can read and write strings as well as numbers, and 
it can wait for completion between operations. 

• swait – This record is an early prototype of the 
EPICS calcout record, and is one of the first EPICS 
records whose links could be modified at run time.  
It differs from calcout in that it uses the recDynLink 
library, and its output link waits for completion. 
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• aCalcout – The array calcout record is a variant of 
the EPICS calcout record, and differs from it by 
supporting array fields and expressions in addition 
to scalar fields and expressions.  The aCalcout 
record also can wait for completion of execution 
triggered by its output link. 

• sCalcout – This record is similar to the aCalcout 
record, but it supports strings, instead of arrays. 

• busy – This record functions as a proxy for the 
execution performed by a Channel Access client.  
EPICS putNotify cannot directly trace execution by a 
client, so the busy record (which can be traced) 
pretends to be executing until the client tells it to 
stop. 

Most of the listed record types have links that can use 
the Channel Access function, ca_put_callback(), to 
initiate execution, and that can wait for the resulting 
callback, which indicates that the execution has 
completed.  The busy record is an exception: its purpose 
is to be driven by a ca_put_callback(), and to look busy 
until a client tells it to stop, whereupon its completion 
yields a callback indicating that the client is done. 

Automated testing 
The infrastructure with which synApps supports data 

acquisition by users is also useful to developers, for 
diagnostic and testing purposes.  The sscan record, for 
example, has been used (with other run-time configured 
software) to diagnose race conditions, by systematically 
varying the time between the execution of application 
code, and a simulated response from driven equipment. 

The combination of the sscan record and the softGlue 
module extends this diagnostic and testing capability to 
digital hardware.  

DEPLOYMENT AT APS 
The deployment of synApps at the Advanced Photon 

Source has evolved in response to an increasing number 
of beamlines, an increasing emphasis on computer 
security, and the similarly driven evolution of the EPICS 
module structure.  Originally, synApps modules (called 
“Apps” in those days) were deployed alongside IOC 
directories on a file server to which beamlines had 
read/write access;  there was not a clear distinction 
between support modules and application modules.  

As the number of beamlines increased, and the 
separation between beamline subnets became more 
complete and more rigidly enforced, synApps was split 
into support modules and IOC directories.  Support 
modules (all modules except xxx) are now hosted, along 
with EPICS Base, on a central file server, and both are 
distributed via rsync to read-only partitions on secondary 
servers dedicated to individual beamlines.  The IOC 
directories are now created on read-write partitions of 
those secondary servers, and begin as copies of the 
synApps xxx module, which collects support from all 
other synApps modules and builds loadable executables 
and database-definition files for use by one or more IOCs. 

One effect of this evolution has been the concentration 
of display files and autosave-request files in support 
modules, rather than in application directories.  In turn, 
this concentration led to the development of an include-
file capability in autosave, so that module developers 
could define the PVs needed to restore databases 
implemented in those modules, and IOC directories could 
simply include the request files for the databases they 
needed to maintain through IOC reboots. 

Another effect has been an increasing reliance on 
MEDM’s ability to build displays using Composite 
Objects – display files that can be included within other 
display files and customized using macro substitution. 

RECENT DEVELOPMENTS 
areaDetector 

The areaDetector module provides a general-purpose 
interface for area (2-D) detectors in EPICS. It supports a 
wide variety of detectors and cameras, ranging from high-
frame-rate CCD and CMOS cameras, pixel-array 
detectors such as the Pilatus, and large-format detectors 
like the MAR-345 online imaging plate. 

Among recent improvements in areaDetector is the 
evolution of support for plug-ins, which provide a 
mechanism for device-independent real-time data 
analysis, such as regions-of-interest and statistics. 

softGlue 
The softGlue module provides EPICS users and 

developers with the capability of creating and modifying 
simple digital electronic circuits, connecting those circuits 
to external devices, and controlling or driving the circuits 
– all by writing to EPICS process variables. 
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USING EZCAIDL TO CONNECT TO EPICS CHANNEL ACCESS FROM 
SHADOWVUI FOR DYNAMIC X-RAY TRACING* 

 
Alan Duffy#, Canadian Light Source Inc., Saskatoon, Saskatchewan, Canada

Abstract 

Using the ezcaIDL library, for IDL [1], to provide an 
interface to EPICS [2] Channel Access through the EZCA 
[3] library, a simple XOP [4] extension was written that 
initializes ezcaIDL and thus allows access to a set of 
simplified IDL interface commands to connect to Channel 
Access from within XOP and hence from SHADOWVUI 
(an XOP extension) [5]. The XOP widget-based driver 
program is a commonly used front-end interface for 
computer codes of interest to the synchrotron radiation 
community. It models x-ray sources and characterizes 
optics. Extensions, such as SHADOWVUI, are optionally 
loaded to easily expand its functionality. SHADOWVUI 
is a complete Visual User Interface for SHADOW [6], 
which is an essential tool for x-ray optics calculations and 
ray-tracing. SHADOWVUI is an interactive tool for 
designing an optical system and visualizing results as 
graphs and histograms. The working scheme is to define 
the source and the optical elements by entering their 
parameters. The author has taken the usual 
SHADOWVUI simulation of an x-ray system a step 
further by using ezcaIDL to interface with the EPICS 
control system to access the positions of optical 
components in real life and then run a corresponding 
simulation based upon these. 

INTRODUCTION 
In order to predict the performance of an optical system 

in general and in particular a synchrotron radiation 
beamline, ray tracing methods are used. An essential tool 
for x-ray optics calculations is the ray-tracing program 
SHADOW, developed at Nanotech Wisconsin (University 
of Wisconsin), and has been used in the synchrotron 
community during the last 20 years. A complete Visual 
User Interface for SHADOW aptly named SHADOWVUI 
may be used as a higher level interface with graphics and 
menus to prepare the SHADOW inputs. It is available as 
an extension to another commonly used software package 
called XOP, a commonly used front-end interface for 
computer codes that model x-ray sources and optics. 
Essentially, the SHADOW inputs define the optical 
system as a collection of optical elements (mirrors, slits, 
screens, etc.) placed in sequential order. SHADOW 
generates and traces a beam from the source (e.g. bending 
magnet, wiggler, or indulator) sequentially through the 
system. The important point is that the SHADOW inputs 
define the optical system which usually serves to model a 
real synchrotron beamline. However, the parameters are 
static and do not change until the user enters new ones. 

CONCEPT 
The concept of running a dynamic x-ray tracing 

simulation of a beamline is straightforward (take the live 
positions and put them in the simulation engine), but 
requires some preliminary work creating the model in 
SHADOWVUI and determining the corresponding inputs 
to use from the actual beamline. This involves defining 
the source by supplying its parameters (e.g. energy, etc.) 
and defining the various optical elements with their 
parameters (e.g. mirror types, source plane distances, 
image plane distances, etc.), and how they relate to 
beamline parameters. The ezcaIDL library provides the 
tool necessary to read the beamline parameters that are 
maintained by the EPICS control system. The only catch 
is that one must define how the variables in the model are 
related to the parameters of the beamline. The newly 
developed XOP extension is used in conjunction with 
SHADOWVUI and requires as input a user created IDL 
structure defining the relationship between beamline 
parameters (i.e. process variables) and SHADOWVUI 
variables to make connections between the live position 
of the beamline optics and the variables in the simulation 
model. 

Positioning Optical Elements 
The position of each optical element in SHADOW is 

defined relative to the previous element (or source), not 
the laboratory reference frame. The user inputs the 
incidence and reflection angles of the central ray at each 
optical element as well as source and image distances to 
define the system. In an aligned system the central ray 
coincides with the optical axis, however the user has 
complete freedom of specifying incidence angles that are 
zero, positive, or larger than 90 degrees, as long as the 
user understands how to interpret the results. It is also not 
necessary for the image and source distances to correlate 
to the location of an actual image or object in the optical 
sense either. The sum of the image distance (from the 
previous element) and source distance simply defines the 
separation between optical elements in the SHADOW 
model. In fact, it is advantageous to think of these 
distances not as defining the optical element positions per 
se, but as defining the origins of their coordinate systems. 
Then use the mirror movement option available to place 
the optical components in their proper locations. Using 
this option to place an optical element prevents 
unnecessarily moving subsequent components with their 
positions defined relative to previous components and 
avoids having to recalculate distances and angles. 

 ___________________________________________  
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Beamline Parameters and Model Variables 
The relationship between beamline parameters and the 

SHADOW model variables is of key importance for the 
dynamic simulation. A parameter in the model may be 
determined by one or more process variables, and vice 
versa. The simplest situation would be a one to one 
relationship between a model variable and a beamline 
parameter (process variable). In fact, by creating an 
appropriate EPICS record, one could have a single PV for 
each model variable used in the simulation. In any case, 
the user provides the relationship between the model 
variables and process variables as strings defining the 
equation(s) that relates them as part of a PV_INFO 
structure as illustrated in Fig. 1. 

 

 

Figure 1: Example PV_INFO structure. 

 
All the information needed for the simulation is stored 

in an IDL structure named beamline with a field for each 
process variable containing a nested PV_INFO structure. 
The fields of this nested structure are described in table 1. 

 
Table 1: PV_INFO structure content 

Field Type Description 

pv string EPICS process variable string 

desc string Text to describe process variable 

pv_min float Lower limit 

pv_max float Upper limit 

oe_num int Optical element number (zero otherwise) 

src_num int Screen number (zero otherwise) 

pv_2vui string Equation(s) to convert value of PV(s) to 
SHADOWVUI variable 

vui_2pv string To convert value of SHADOWVUI 
variables(s) to PV value 

vui_val float Stores SHADOWVUI variable value 

 
 

In the example show in Fig. 1, the beamline parameter 
is the energy feedback. The process variable string 
‘BL1606-B1-1:Energy:fbk,’ is stored and retrieved from 
the IDL variable beamline.ENERGYFEEDBACK.pv, and 
so on. A SHADOWVUI workspace stores its parameters 
in a structure in a state variable that includes variables 
one finds in the start.xx files. The start.00 file, for 
example may have the line: PH1 = 5000.00000. The 
corresponding SHADOWVUI variable is the rather 
obtuse looking (*(state.ptrsrc)[state.ifc.src_sel]).PH1. In 
order to simplify things, the ezcaShadowVUI extension 
defines ptrSRC, ptrOE1, ptrOE2… as pointers to the 
source parameters, and optical element parameters. As 
these are pointers, the dereference operator ‘*’ must be 
used as appropriate. For example the bend radius of 
optical element 1 is (*ptrOE1).RMIRR. 

The entire structure with all the information for the 
process variables that are to be incorporated into the 
simulation must be defined. This may be done by creating 
the structure in an IDL session and then saving it to an 
IDL file such as pv_defs.sav, or by creating a file with the 
commands to define the structure and executing it from 
SHADOWVUI using the xop_macro_compact command. 
The former method requires the user to restore the .sav 
file, with the command: restore, ‘pv_defs.sav’. Once the 
variable is created or restored in a SHADOWVUI macro, 
the user can then call: reshadowvui, beamline. This will 
start up a widget similar to the one in Fig. 2. 

EZCASHADOWVUI WIDGET 
The ezcaShadowVUI widget has a tab for the source, 

and each optical element, and sub-tabs for each screen. 
The widget shows live process variable values and the 
equivalent SHADOWVUI value calculated from the 
vui_2pv string field. 

 

 

Figure 2: ezcaShadowVUI widget interface. 

The ezcaShadowVUI extension uses the ezcaIDL 
channel access features to set up process variable 
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monitors so that the live values update once per second. 
The equivalent SHADOWVUI value is shown in an 
editable box with a slider. The user can click a button to 
copy the live value to SHADOWVUI, doing so executes 
the command stored in the pv_2vui string field. After the 
user has finished copying live values and/or editing the 
SHADOWVUI values, the Run Simulation button may be 
pressed to execute the source generation and ray trace 
routines and to show a plot of the beam focus. Also the 
ezcaShadowVUI widget is non-modal, meaning that the 
user can do other things with the main SHADOWVUI 
interface while this widget is running. In particular, the 
user still has access to all the usual features of 
SHADOWVUI, such as running macros. The widget code 
can be modified to allow automatically running a macro 
to be triggered either by the Run Simulation button or a 
process variable event. 

Dynamic Ray Tracing 
The copying of live values to the simulation engine, as 

well as running the source generation and a ray trace with 
a new plot, may be set up to be down automatically for 
true dynamic ray tracing. There is a limitation, however, 
on the rate at which the ray tracing can occur. It is 
possible to decrease the number of rays to increase the 
simulation speed, but this may not be desirable. However, 
a refresh rate of a new trace every few seconds should not 
pose a problem. 

Installation 
The installation of the XOP extension ezcaShadowVUI 

is done by creating an ezcashadowvui folder in the XOP 
extensions directory and copying the ezcashadowvui.sav 
file into it. EPICS should be installed with the extensions 
[3] ezca, ezcaIDL, and EzcaScan so that the appropriate 
libraries are available. Finally, the EZCA_IDL_SHARE 
environment variable should point to the location of the 
libezcaIDL.so file. The ezcaShadowVUI extension will be 
made available in the near future. 

CONCLUSION 
The ezcaShadowVUI extension is in its preliminary 

stage of development, but has proven useful in modelling 
a real beamline, the SXRMB beamline at the Canadian 
Light Source, and should prove useful in modelling other 
beamlines. The most time consuming part of setting up 
the dynamic simulation is determining the relationship 
between SHADOW variables and beamline parameters 
and then creating the structure to contain that information. 
However, it is just a matter of reconciling the different 
coordinates systems of one with the other. The real 
challenge as always is to properly understand the 
beamline and in particular the intricate details of pivot 
points and rotation axis. In order to have a truly accurate 
simulation, it is important to be attentive to these details. 
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A SIMPLE DAQ SYSTEM BASED ON LABVIEW, PHP AND MYSQL

M. Tanigaki∗, K. Takamiya, R. Okumura,
Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494 Japan

Abstract

A tiny and simple DAQ system has been designed and
developed for the application to the control system in our
institute. This DAQ system is based on on LabView,
MySQL and apache, and shows good compatibility with
LabVIEW-based system like the control system for the
FFAG complex in our institute. The current status for the
development, as well as the recent accelerator-related sta-
tus in our institute, will be introduced.

INTRODUCTION

An FFAG accelerator complex[1, 2, 3] has been devel-
oped as a proton driver for the feasibility study on ADS
performed in the research reactor institute, Kyoto Univer-
sity. The control system for this FFAG accelerator complex
has some requirements on the flexibility, simplicity and re-
liability. The control system is required to have a sufficient
flexibility towards major and minor modifications in the
design and equipments of accelerator complex during the
construction, and to achieve a certain level of easiness on
its use and development for the people in our institute, who
are little familiar to accelerator itself. Additionally, high re-
liability and stability from the points of the nuclear safety
and the radiation protection are required since the com-
bined operation with a nuclear fuel assembly is planned in
the feasibility study on ADS.

To meet such requirements for the present control sys-
tem, we have developed a control system [4] based on
LabVIEW, known as its user-friendly GUI environment,
and PLC known as one of the most reliable control de-
vices in the field of factory automation. This control sys-
tem for the FFAG complex has proven itself to have suf-
ficient performance and to satisfy the requirements on the
design through the construction and operation of the FFAG
accelerator complex, in its operation for years. Based on
this success, this control system has been applied to other
equipments and facilities. One of such typical examples is
that the application to the pneumatic transportation facility
in KUR[5].

On contrary to the control system itself, little efforts have
been made for the data acquisition system up to now. In
most of the application cases, a simple data logging feature
is included in VIs by using the functions of LabVIEW such
as the chart VI. As the increasing demand on the systematic
management of the data for the multiple devices and on the
simplified method of DAQ for the users, we have started
the development of a DAQ system for our control system.

∗ tanigaki@rri.kyoto-u.ac.jp

In this paper, the outline and current status of our DAQ
scheme are introduced.

DAQ SYSTEM WITH ODBC DRIVER

At present, the FFAG accelerator complex in our insti-
tute is under modification to the injection scheme using H−

beam. The FFAG injector will be replaced to an 11 MeV
H− proton linac by the end of the fiscal year 2010. Addi-
tionally, the inclusion of the present control system to a new
control system based on EPICS, intending to the inclusion
of this FFAG accelerator to a larger accelerator complex for
the pulsed neutron source. Therefore, the main application
of the control & DAQ system for now is the devices and
instruments equipped to the 5 MW reactor, especially the
pneumatic transportation facility for the neutron irradiation
[5].

The outline of the pneumatic transportation apparatus
and the control system is shown in Fig. 1. The control sys-
tem for this pneumatic transport system is the same archi-
tecture as that for the FFAG complex [4]. The low level se-
quences of PLCs for controlling the pneumatic transporta-
tion system has been implemented in PLCs, and the man-
machine interfaces (MMIs) are developed with LabVIEW
on conventional PCs. In addition to the controlling system
of the pneumatic transportation apparatus and the monitor-
ing system, related external systems such as radiation con-
trol systems and measurement systems for experiments are
integrated. This integrated system might well be able to
realize secure operating and management of the pneumatic
transportation apparatus.

In this pneumatic transport system, a DAQ system based
on the ODBC driver, LabVIEW and MySQL is devel-
oped. So called, a “SQL Command Generator” VI is imple-
mented into every MMI PC as a sub VI of MMI VIs. Since

Figure 1: Outline of the pneumatic transportation apparatus
and the new control system.
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Figure 2: Architecture of the DAQ for the pneumatic transport system at KURRI. The DAQ software is implemented as
a sub-VI to the existing MMI software for the control system. All the parameters are stored in the MySQL database and
these data are available to users through the web server.

(a) Start page of the data browsing.

(b) A typical example of data browsing stored in the
SQL server. In the present data browsing system, the
graphs are generated by “PHP/SWF Charts” available
from maani.us[6].

(c) Registered users are allowed to browse
the status via conventional web browsers.

Figure 3: Screen shots of the web-based data browsing sys-
tem.

all parameters are expanded on the global VIs in MMI PCs
in this control system, each implemented SQL Command
Generator VI obtains the status and information of con-
nected devices by referring via respective Global VIs, and
send the SQL command by use of a MySQL ODBC driver
to pass the data to the remote MySQL database server. The
database server stores and manages various data, such as
the start/stop time of irradiation, the pressure of CO2 gas in
the transport tube and the radiation levels in the pneumatic
transport facilities, on a database constructed on a MySQL
server.

For the access by users to the data stored in the respective
database, Apache, which is the most popular web server
application, is also installed in the server. The stored data
can be accessed through the internet using common web-
browsers installed in PCs or recent mobile phones (Fig.
3). Accessing logged data over the internet and receiving
warning messages by e-mail are enabled in the developed
systems.

DAQ SYSTEM WITH POST METHOD
AND PHP

The present DAQ system for the pneumatic transport
system works quite fine, but the application to other facil-
ities are not straightforward because of the direct imple-
mentation of ODBC drivers into MMI software. This pro-
cedure requires the developers to handle SQL commands
for the DAQ system. For example, once a developer de-
cides to add another parameter to be recorded, they have to
treat additional SQL commands.

In the common web-based services, the parameters in
these services are often send along with their names by
POST method, and processed by php scripts and stored
in databases on SQL servers. In the control systems in
KURRI, allocation tables for the parameters are defined
and each parameter can be uniquely assigned by the names
of the equipment and its respective parameter. Therefore,
we are able to apply such conventional POST method pro-
cedure to our DAQ system.

The architecture of the php-based DAQ system being
currently developed is shown in Fig. 4. This DAQ VI ob-
tains all of the parameters from PLCs in the same commu-
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Figure 4: Architecture of the php based DAQ system developed at KURRI. Unlike the present DAQ for the pneumatic
system, this DAQ system works as a stand-alone software. The web server is used not only for the data browsing by users,
but also for processing the data transfer based on the HTTP protocol.

nication procedure as the communication VI uses. Then the
parameters are converted to a set of chunks, in which the
device name, parameter name and its value are sequentially
listed. This DAQ VI also accesses a web page on an remote
web server, in which the php script for the data processing
is implemented. The data is then transferred by the POST
method, and processed by the php script based on their as-
signed names to be stored in a table on a MySQL database.
One table is usually prepared on a MySQL database for
each device, and the proper tables are selected by the name
of devices given in the is usually prepared by the equipment
base. As long as the developers follows the same allocation
table as used in the control system, the parameters can be
stored without any initial settings except creating a corre-
sponding table on a database with this scheme.

CURRENT STATUS

As for the DAQ systems discussed above, the DAQ sys-
tem for the pneumatic transport system has been served for
the actual experiments of neutron irradiation as soon as our
5 MW reactor resumed the operation in June 2010, and
no troubles arising from the DAQ system are reported up
to now. The php-based system has been almost finished
the evaluation period, and the actual implementation is ex-
pected soon.

As for our institute, another accelerator project may be
expected in near future. Recently, our research project
“Promotion of Leading Research toward Effective Utiliza-
tion of Multidisciplinary Nuclear Science and Technol-
ogy”, which has the construction of an accelerator-driven
neutron source as the key facility, is included in the list of
recommended large projects to the Japanese government.
This means we may have a possibility to build another pro-
ton/heavy ion accelerator with its energy of 30 ∼ 100 MeV
in our institute. We have started the re-organization of the
developed VIs and ladder sequences for our FFAG acceler-
ator complex and other equipment in our institute, as well
as the training of the technicians in our institute for the ex-
pected developments on the control system.
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WEB SERVICES CYBER-SECURITY ISSUES* 
D. Quock#, ANL, Argonne, IL 60439, U.S.A.

Abstract 
The Web’s potential for distributed programming has 

been proven not only in the business realm, but also in the 
accelerator controls domain. Web services describes 
clients and servers that communicate over the Internet’s 
Hypertext Transfer Protocol (HTTP) using predefined 
Internet-based Application Programming Interfaces 
(APIs). It is the uniqueness of Web services transactions 
such as cloud computing, data sharing, and data archiving 
that give rise to the security concerns of Web services 
(authentication, data integrity, non-repudiation, and 
privacy). At Argonne National Laboratory’s Advanced 
Photon Source, Simple Object Access Protocol (SOAP)-
based Web services were implemented into the Integrated 
Relational Model of Installed Systems (IRMIS) as the 
application interface to Oracle’s Content Server document 
management software. This report reviews the basics of 
Web services, cyber-security issues that are inherent for 
Web services, current Web services security 
implementation practices, and future directions of Web 
service security development efforts where the overriding 
goal of Web services security is to focus on managing 
risk and protecting data. 

BASICS OF WEB SERVICES 
In simplest terms, Web services are distributed Internet 

applications that have standard-based interfaces. Web 
services are typically thought of as being divided into two 
main technologies: 
 

1. Big Web Services: This technology uses Extensible 
Markup Language (XML) messages that follow the 
Simple Object Access Protocol (SOAP) standard. 
 

2. RESTful Web Services: The representational state 
transfer (REST) software architecture uses PUT, 
GET, DELETE and POST HTTP methods to 
integrate Web browsers with underlying 
client/server software applications. 

 
Service-Oriented Architecture (SOA) is model-based 

software that is typically constructed from loosely 
coupled Web services. SOA can be broken down into the 
three layers: business workflow, Web services, and 
communication [1]. Table 1 demonstrates that SOA adds 
three layers on top of the standard client-server 
architecture and shows the associated Web services 
standards that are used at each layer. 

 
 

Table 1: SOA Architectural Layers  

Architectural Layer Web Services Standards 

Business Workflow BPEL 
WSCI 

Web Services WSDL 
UDDI 

Communications 
  SOAP 

 
XML 

Client-Server Transports 
      HTTP 
      SSL 
      TCP/IP 

 

 

Web Services Standards 
At the highest level of SOA, Business Process 

Execution Language (BPEL) is used to describe and 
execute the business processes. An alternative to BPEL is 
the World Wide Web Consortium (W3C)’s standard Web 
Service Choreography Interface (WSCI). These two 
standards are currently diverging as industry is divided in 
its support of either business workflow standard. The role 
that BPEL (or WSCI) plays in SOA is orchestrating the 
overall business workflow by providing mapping between 
the services and business processes through documents. 

At the next level of SOA, the standard Web Service 
Description Language (WSDL) provides static interface 
definitions for the software components that are 
accessible to clients. The Universal Description, 
Discovery and Integration (UDDI) is a specification for 
repositories where organizations can publish services that 
they provide and describe the interfaces to their services 
via WSDLs. 

At the communications layer of SOA, messages are 
transmitted through SOAP, which is an envelope 
containing a header and body. The services that are 
communicating with each other can be identified through 
their unique name contained in SOAP messages.  

ADVANCED PHOTON SOURCE WEB 
SERVICES 

The benefits of SOA to organizations is the flexibility 
of implementing business processes on top of Web 
services and the ability to compose and re-compose 
systems frequently. SOA provides a peer-to-peer style of 
architecture with a general statelessness of services. One 
example of how Web services technology was 
implemented at Argonne National Laboratory’s Advanced 
Photon Source is in the interaction between the in-house 
built IRMIS accelerator controls relational database 

 ___________________________________________  

*Work supported by the U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences, under Contract No. DE-AC02-
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software application and Oracle Content Server document 
management software. 

Figure 1 shows an IRMIS Applications Organizing 
Index display that has retrieved general document 
information for documents stored in Oracle Content 
Server (ICMS). The search for documents in Content 
Server was done in IRMIS using a simple PHP SOAP 
client utility that looks similar to: 

 
 $client = new SoapClient($wsdl,                                           

                       
array(‘login’=>$user_name,’password’=>$user_password)); 

 

where $wsdl is the https Internet address of the location 
where the SOA WSDL  file can be obtained. In this 
example, the WSDL file defines the interface to a 
document search software component for Oracle Content 
Server. The search results are retrieved and stored locally 
by using the PHP statements: 
 
 $param = array(“queryText”=>$searchString,”sortField”=>”dInDate”); 
 $retVal = $client->AdvancedSearch($param);  
 $search_results = $retVal->AdvancedSearchResult->SearchResults; 
 

Figure 2 shows the home Web page for Oracle Content 
Server where search options are provided to the user for 
performing a manual search on its document database. 
The same search string can be entered into the Content 
Server’s Comment field to obtain the same set of 
document search results. The benefit of using SOAP Web 
services provided by Oracle Content Server in the IRMIS 
PHP application is that the IRMIS user only needs to 
interface to one software application (IRMIS) to get 
information provided from two separate database 
applications. The IRMIS display provides an Internet link 
to directly launch each document in its native format, thus 
providing even more ease of use and efficiency to the 
user. The implementation shown here for Web services in 
IRMIS is the very simplistic case of client software 
interacting with a server behind the same firewall in the 
same organization. 
 

 
Figure 1: IRMIS display with ICMS search results. 

 
Figure 2: ICMS search home page. 

WEB SERVICES CYBER-SECURITY 
ISSUES 

The trade-off for having software components that are 
defined by their interfaces and can be accessed on the 
Internet is the increased complexity of the systems where 
they are used. This increase in complexity in SOA 
applications is due to several factors including: 

 
• The software used to manage the Web services is 

complex; 
• The boundaries of communication may extend 

outside of an organization’s intranet; 
• Dynamic reconfiguration of a client application 

can be easily obtained through both combination 
and reuse of individual Web services. 

 
This increase in complexity of a SOA application results 
in a wider variety of cyber security threats. Examples of 
such security threats are message alteration, message 
reading, man-in-the-middle attacks, principal spoofing, 
forged claims, message replay, and denial of service.  

WEB SERVICES CYBER-SECURITY 
STANDARDS AND ORGANIZATIONS 

Web Services Organizations 
To effectively deal with cyber security threats that are 

specific to SOA technology, cooperation and coordination 
among the vast number of businesses and other 
institutions using and providing Web service is crucial. 
The Organization for the Advancement of Structured 
Information Standards (OASIS) is a not-for-profit 
consortium that drives the development, convergence and 
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adoption of open standards for the global information 
society. The consortium produces more Web services 
standards than any other organization along with 
standards for security, e-business, and standardization 
efforts in the public sector, and for application-specific 
markets [2]. OASIS sponsors ebXML (Electronic 
Business using eXtensible Markup Language), a modular 
suite of specifications. The World Wide Web Consortium 
is an international community where member 
organizations, a full-time staff, and the public work 
together to develop Web standards. Among the many 
standards developed and supported by W3C are XML 
Encryption and XML Signature [3]. Corporations such as 
IBM, Microsoft, and Oracle also contribute to the 
development of Web services standards. 

Web Services Cyber-Security Standards 
In addition to the Web services standards list in Table 

1, there are several standards specific to addressing cyber-
security issues.  
• Security Assertion Markup Language (SAML) 

defines authentication and authorization assertions. 
SAML assertions can be included in the header or 
in the payload of a SOAP message. 

• WS-* is a general nomenclature used to refer to a 
family of Web services standards supported by 
various organizations.  Common WS- standards 
include: 

o WS-Security  
Defines security tokens that can be used 
for claims of authentication or proof of 
some right. 

o WS-ReliableMessaging 
Describes a protocol that allows SOAP 
messages to be reliably delivered between 
distributed applications in the presence of 
software component, system, or network 
failures. 

WEB SERVICES DESIGN PRACTICES 
For new Web services applications, security 

considerations should be applied to every aspect of the 
software development life cycle: 

 
• Security requirements 
• Security architecture 
• Web services security standards 
• Certification (show that software complies 

with security requirements and security 
standards) 

• Run-time security monitoring 
• Penetration testing 

 
 The possibilities for implementing software security 

practices range from the very simple and well-known 
coding techniques to extremely analytical and involved 
source code analysis methodologies. A rule of thumb for 

designing user interfaces is that simple interfaces with 
few options are easy to test and audit. “Giant APIs require 
giant security measures” [4]. Another commonly used 
practice is SSL (Transport Layer Security) for encrypting 
and verifying the integrity of every client request. Source 
code analysis tools for identifying security weaknesses 
include: 
• Vulnerability databases that are published to the 

general public (e.g., Microsoft publishes one); 
• Pointer and reflection analysis that constructs a call 

graph that allows input data to be traced along 
function calls [1]. 

 
There are many Web services security analysis software 

products available on the market.  The functionalities and 
standards that they typically examine include 
conformance validation, integrity checks, XML schema 
validation, XML encryption, XML signature, WS-
Security, user authentication, audit, alert, Web services 
access control, and content inspection. IBM has 
developed a service-oriented analysis and design process 
for modeling, analyzing, designing, and producing a SOA 
application that is based on Java and IBM WebSphere 
software development tools. Microsoft, Oracle, Sun, and 
various other companies have also developed Web 
services design and Web services manager software tools. 

CONCLUSION 
The complex nature of SOA applications calls for 

governance of SOA and its underlying Web services 
technology. Cooperation among industry and Web 
services standards organizations is crucial to ensure 
reliable Internet-based business and government 
processes, and safeguarding of intellectual property and 
high-security-level government data. Web services 
standards organizations are well established and have 
received widespread support and contributions from 
major computer and IT corporations. Smaller institutions 
benefit from readily available Web services standards and 
Web services security products. Theoretical research in 
Web services security technology is active at many 
universities and continues to advance the software 
security design and monitoring tools available to the 
general public [1]. At Argonne National Laboratory, Web 
services applications have been deployed successfully as 
they make efficient use of disparate software applications. 
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REMOTE ACCESS TO THE VESPERS BEAMLINE  
USING SCIENCE STUDIO* 

D. Maxwell#, D. Liu, E. Matias, D. Medrano, CLS, Saskatoon, Canada 
M. Bauer, M. Fuller, S. McIntryre, J. Qin, UWO, London, Canada

Abstract 
Science Studio is a web portal, and framework, that 

provides scientists with a platform to collaborate in 
distributed teams on research projects, and to remotely 
access the resources of research facilities located across 
Canada.  The primary application for Science Studio is to 
provide scientists with remote access to the VESPERS 
beamline at the Canadian Light Source synchrotron in 
Saskatoon Saskatchewan, and to readily process data 
from this beamline at the SHARCNET high performance 
computing facility in London Ontario. The VESPERS 
beamline is a complex instrument that is composed of 
many devices, such as valves, motors and detectors, 
which are all controlled through the low-level EPICS 
control system. Science Studio implements a simple, 
intuitive and functional web-based interface to the 
beamline for device control and data acquisition. The 
Science Studio experiment management system allows 
the acquired data to be easily organized and shared with 
the research team. This paper will provide an overview of 
the design, implementation and capabilities of the Science 
Studio system, with a focus on remote control of the 
VESPERS beamline. 

SCIENCE STUDIO OVERVIEW 
The Science Studio web portal is mostly implemented 

in Java, and uses server-side web technology common to 
enterprise applications such as Java Servlets, Java 
Messaging Service (JMS), Java Database Connectivity 
(JDBC) and Java Server Pages (JSPs).  In addition, many 
high quality open-source frameworks and libraries have 
been leveraged to build a highly functional web portal.  
The Spring [1] framework is used extensively throughout 
to build very robust and highly configurable servlets 
using the Model-View-Controller (MVC) architectural 
pattern.  The iBATIS [2] Object-Relational Mapper 
(ORM) library is used to easily persist objects to a 
MySQL [3] relational database.  The XStream [4] library 
provides fast object marshalling capabilities in both XML 
and JSON formats.  Security functionality is provided by 
the JSecurity [5] framework using some custom 
extensions.   Other Java libraries and tools include 
Apache Log4J [6], Apache Commons [7], Apache 
Tomcat [8], Apache ActiveMQ [9] and Jetty [10]. 

Data Model 
Science Studio defines and implements a data model to 

capture the metadata associated with scientific research.  
Figure 1 is a data object relation diagram for this data 
model.  The objects belonging to the experiment model 

have been indicated.  A primary objective of Science 
Studio is to allow scientists, and other people, to 
collaborate; therefore an important part this data model is 
the person object.  A person represents a user of the 
system and contains information such as their name, 
affiliation, email address and mailing address. 

Figure 1: Data object relation diagram for the Science 
Studio data model, with the experiment model indicated. 

Research projects are the foundation of experiment 
management in Science Studio.  For that reason, the 
project object is the top-level organizational element for 
the hierarchical experiment model.  A project is 
composed of person, sample and session objects.  The 
collection of persons represents the people collaborating 
on a project, or simply a project team.  A sample 
represents the physical specimen that is the subject of 
investigation for a project team.  A session is composed 
of experiment objects and represents the reservation or 
allocation of resources to the project team for a specified 
time period.  An experiment is composed of scan objects 
and references a sample, instrument and technique object.  
A laboratory is composed of instruments that are 
associated by location or function.  An instrument 
references technique objects and represents a device or 
resource used to conduct an experiment.  A technique 
represents the method or process used by an instrument to 
produce data.  A scan represents the actual experimental 
data produced by an instrument, and contains information 
about its storage location and file format. 

Standard Data Format 
The manipulation of experimental data is a requirement 

for most scientific applications.  Science Studio specifies 
a standard format for experimental data files to facilitate 

 ___________________________________________  
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the sharing of data between applications.  This format is 
an extension of the more general purpose Common Data 
Format (CDF) [11].  The CDF is a self-describing format, 
with both binary and XML versions, used for efficient 
storage of scalar and multidimensional data.  The standard 
format defines an overlying structure for the CDF that 
provides more information about the type of experimental 
data contained within a data file.  Science Studio 
implements utilities for reading and writing files in the 
standard format, as well as, a framework for building 
custom data format converters. 

Security 
Science Studio provides security features such as 

authentication, authorization and session management.  A 
web application implements shared services for user 
authentication such as the login and logout pages.  This is 
indicated in Figure 2 by the Login Servlet.  Security 
session management is handled mostly by JSecurity using 
a customized servlet filter.  A servlet can be easily 
configured to use this filter, which will only allow access 
to authenticated users. 

Authorization is provided using a project-oriented 
permission system.  The members of a project team are 
associated with a project role.  The project role 
determines the permissions that each team member has 
within the project.  Currently only two project roles are 
used: Experimenter and Observer.  Experimenters have 
full access to the project.  They are permitted to create, 
read, edit and delete data objects belonging to the project.  
Observers are only permitted to read data objects 
belonging to the project.  These permissions also apply to 
remote access.  Experimenters are permitted to control the 
remote instrument, and Observers are only permitted to 
view the remote instrument. 

Web Portal 
Science Studio implements an extensible web portal 

that gives users a single, consistent entry-point for access 
to other services.  This rich web interface is built using 
the Ext [12] JavaScript framework.  In Figure 2, the 
server-side of this web application is indicated by the 
Core Servlet.  A primary feature of the web portal is the 
ability for users to browse the data model.  The data 
model is represented as data trees with projects as the 
roots, and scans as the leaves.  Users can navigate to data 
objects using the tree, which will then provide different 
options based on the data object type.  For example, 
selecting a scan allows users to view the experimental 
data, or selecting a session allows them begin remote 
access.  Users can also create, edit and delete data objects, 
provided they have the required permissions. 

VESPERS REMOTE ACCESS 
The VESPERS beamline is located at the Canadian 

Light Source (CLS) synchrotron [13] in Saskatoon 
Saskatchewan. VESPERS is a microprobe beamline that 
operates in the energy range of 6 to 30keV using bending 
magnet radiation.  The experimental station is equipped 
with both a CCD area detector and a four element Silicon 
Drift Detector (SDD).  Together they are capable of 
multiple complimentary techniques such as X-Ray 
Diffraction (XRD) and X-Ray Fluorescence (XRF) 
spectroscopy. 

XRD is a common technique used for determining the 
microcrystalline structure of geological samples.  This 
technique uses the CCD detector to record the diffraction 
pattern produced by a sample when exposed to a focused 
x-ray beam.  The CCD detector image size is 2084 x 2084 
pixels or approximately 8MB.  For an area of interest that 

Figure 2: Science Studio architecture for VESPERS beamline remote access and data processing. 
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is 100 x 100 data points, the total size of the data set is 
approximately 80GB.  A data set of this size requires 
many hours to process using conventional computers with 
standard software.  However, using the computers at the 
SHARCHET [14] High Performance Computing (HPC) 
center, in conjunction with special software, this large 
data set can be processed in minutes.  The SHARCNET 
HPC center is located at the University of Western 
Ontario (UWO) in London Ontario. 

Science Studio allows users to remotely access the 
experimental capabilities of the VESPERS beamline, and 
then to readily utilize the computational capabilities of 
SHARCNET.  Shown in Figure 2 is an architectural 
diagram of the main components, and their interaction, 
for the remote access and data processing systems. 

EPICS Control System 
EPICS [15] is the standard control system at the CLS 

and is used for control and data acquisition of nearly 
every device at the facility.  The Channel Access (CA) 
protocol is used to communicate with EPICS over the 
network. 

Beamline Control Module 
The Beamline Control Module (BCM) is a Java 

application which provides a high-level interface to the 
EPICS control system.  The BCM communicates with 
EPICS using a Java implementation of CA to monitor and 
change the state of devices on the VESPERS beamline.  
The BCM provides a device abstraction so that alternate 
low-level control systems can be used. This is important 
for use of the BCM outside of the CLS. 

Web Application 
The VESPERS beamline web application provides a 

user interface for device control and data acquisition.  The 
Ext JavaScript framework is again used to build a rich 
interface that uses asynchronous requests to provide 
frequent (normally once per second) updates to the device 
information.  This web application allows the user to 
interactively explore the sample, and then define a scan 
area by simply drawing a rectangle on the sample image.  
When the user starts a scan they are prompted to enter a 
name for the scan.  The progress of a scan is displayed 
numerically, as the percentage complete, and graphically, 
as an animated dot that moves across the scan area.  The 
user can also configure and test both the SDD and CCD 
detector.  The web application also gives access to three 
video cameras, with pan, tilt and zoom capability, that 
show various views of the experimental station.  Although 
all members of the project team, who have the 
Experimenter role, are permitted to control the beamline, 
only one user at a time is allowed to be in control of the 
beamline.  In Figure 2, the server-side of this web 
application is represented by the VESPERS Servlet. 

Data Processing Service 
The raw data collected on the VESPERS beamline must 

be transferred from CLS to UWO for processing, and the 

processing results must to be transferred back to CLS for 
presentation to the users.  In order to fully take advantage 
of the CANARIE Lightpath high-speed connection 
between the CLS and UWO, the File Transfer Server 
(FTS) and File Transfer Client (FTC) provide the 
following features: 

● Simultaneous TCP connections.  
● Start transferring multiple files with one request. 
● Asynchronous client using non-blocking I/O.  
● File content compression using gzip [16]. 
● File range transfer over multiple connections. 

The File Monitor Service (FMS) provides file system 
event notification through HTTP.  It is difficult to get I/O 
event notification from the CLS data acquisition system, 
by which experimental data is collected on the VESPERS 
beamline. Providing pseudo-realtime processing of 
experimental data requires that each piece of data be 
transferred to UWO once it is available on the CLS file 
system.  This service can be deployed on any system with 
native support for inotify [17], and that has the 
inotify-java [18] library installed. 

The basic sequence of events for the Data Processing 
Service is shown in Figure 3.  The VESPERS Servlet first 
sends a request to the FMS to initiate monitoring of a 
specified directory.  The notifications for these events are 
sent directly to the FTC, which then initiates the transfer 
of the experimental data files from the FTS. 

Figure 3: Event sequence for the Data Processing Service.
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RESEARCH METADATA MANAGEMENT AT THE AUSTRALIAN 
SYNCHROTRON 

Richard. Farnsworth, Alistair Grant, Andrew Rhyder, Australian Synchrotron, Melbourne Australia 
Nick Hauser, Bragg Institute ANSTO, Sydney Australia.

Abstract 
This paper details the approach the Australian 

Synchrotron [1] is using, in collaboration with the 
Australian Neutron Source, run by the Bragg institute, 
part of ANSTO [2] (Australian Nuclear Science 
Technology Organisation) called OPAL (Open Pool 
Australian Light-water Reactor) for some of the data and 
metadata management issues. It explores the data and user 
policies, describes the quantity and quality of data and 
demonstrates the way forward based on both existing and 
future directions in e-research, network communications, 
user proposal and material databases, portal technologies 
and integration techniques. The role of standards for 
access and metadata creation is also explored. This work 
is funded by an educational infrastructure grant 
administered by Australian National Data Services. 

DATA POLICY 
In order to progress with publicly funded research 

facilities data and metadata publishing the data policies 
must be clear. The answer to the questions who owns the 
data, when can you make it public, what can you do with 
it should be clear. At the Australian Synchrotron twenty-
four months is allowed to the principle investigator to 
publish publicly. The period is thirty-six for Bragg 
institute instruments (ANSTO, OPAL). Either facility 
may choose to process the raw data in order to make is 
accessible or publishable. There is a growing trend 
worldwide towards open technical data. There is also a 
growing trend towards publishing not only a scientific 
paper, but also the raw data that was used to produce it..  
As both the Australian Synchrotron and the Bragg 
institute are publicly funded, technical data created at 
either location should be at some point made available to 
the public. Currently there are some Australian 
mechanisms for achieving  this. One is called the ANDS 
portal. [3] ANDS stands for the Australian National Data 
Service. 

DATA QUANTITY 
The Australian Synchrotron operates nine beamlines 

producing around two to three Terabytes of experimental 
data per day across a wide variety of disciplines from 
protein crystallography, medical, through to the 
conservation and restoration of cultural objects and works 
of art. In 2009 over five hundred groups conducted 
research at the Australian Synchrotron. More are expected 
this year and the next.  The Australian Synchrotron 
expects to be producing at least eight terabytes per day 
when the next round of ten beamlines are installed in the 
coming two to five years. Even if the Australian 

Synchrotron just keep operating the existing beamlines, 
there will be a significant increase in data collection 
because of both the continual improvement in detectors 
and the overall efficiency or “duty cycle” of the 
beamlines. The objective of this project to make that data 
available publicly. The data will be stored in the curated 
archives immediately; however authorisation for access 
will be allowed or otherwise depending on when the data 
can be made available.  Much smaller volumes of data are 
created at the Bragg institute.  

This project is seeking to provide services so that 
researchers and institutions can manage their data. To 
give them the power of something like “Google” over 
their data – that is the ability to search, catalogue and 
access.  This promotes the use and re-use of data and so 
adds to the efficiency of the data generating ability of 
each facility.  

MECAT 
The chosen a name for this project is “MeCAT” [4], as 

a nod to a similar project/product called ICAT. It was a 
requirement to name the project, rather than the 
technology being used. The project is to enhance the 
technology to enable those things aforementioned 
efficiencies.   

COLLABORATION 
It is worthwhile noting the collaboration details. The 

two facilities have decided that if they collaborate and 
pooled resources between the two similar facilities in 
Australia, we could effectively get twice the efficiency of 
the software development dollar in terms of software 
resources.  

It also a major step towards the creating an Australian 
culture of same software in similar institutions. This leads 
to the same experiences for researchers. This is becoming 
increasingly strategically important to both facilities. It 
would be ideal if every institute used exactly the same 
software everywhere such that experimenters trained in 
the use of software one area or instrument could use the 
same skills in another. This is probably never going to be 
completely possible, but this project assists by moving 
toward that philosophical direction.  It also helps with the 
data management, because the software automatically 
moves the data for those researchers that come from 
known institutions to their home institutions.  

OBJECTIVE OF PROJECT  
The objective of this project is to provide services to 

researchers to manage their experimental data and to 
provide data search and access to the broader research 
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community. These services will enable better use and 
reuse of the data. The ultimate aim is to combine these 
services into a common environment to allow project 
teams to interact with the instruments and even allow for 
a data collaboration between ANSTO and AS 

MECAT FOCUS 
The Australian Synchrotron intends to focus this project 
on three of its nine beamlines, because there is a great 
deal of disparity between all nine - too much for the 
project to deal with in the first instance. The Australian 
Synchrotron will be looking at the Soft x-ray 
spectroscopy, Infrared Microspectroscopy, and 
Macromolecular Crystallography beamlines. The 
Macromolecular Crystallography beamline already is 
using parts of the MECAT project software.  The 
Australian Synchrotron is intending to take data from the 
experimental end stations, the proposal database, 
scheduling database and the EPICS control systems. At 
ANSTO, their scope is a little different. The Bragg 
institute is considering all of the neutron beam 
instruments, these instruments are smaller data volume 
producers, although of no less importance. Instead of 
EPICS they use a control system which is a local 
adaptation of the Swiss Spallation Instrument Control 
System (SICS) a collaboration from the Paul Scherrer 
Institute (PSI). The actual implementation at the Bragg 
Institute is nearly identical.  
 Both institutes will produce an ARCS compatible data 
repository, ARCS is the Australian Research 
Collaborative Services. This will then allow a set of 
standards to harvest that data publicly using metadata. 

ARCS 
 

ARCS lets researchers look for data, transfer data and to 
share material. It uses a concept called the “Data fabric” 
which is an overloaded term that has only recently been 

defined more precisely. It’s been used like the “cloud”, 
but aligned for research data purposes and has central; 
data storage, security etc. for facilities across Australia. 
As time goes by, there will be more and more 
experimental facilities using the data fabric provided by 
ARCS.  The following description of ARCS [4] is 
pertinent: 
 
The Australian Research Collaboration Service provides 
tools and services that enable researchers to operate at 
the forefront of their fields. It is intended to allow them to 
securely store large volumes of data for more 
collaboration. These tools and services also enable the 
transfer of data for faster analysis and result, to share 
material for convenience and control and finally to share 
data securely only with authorised  

TARDIS 
 

The MECAT project has chosen to use a particular 
technology to help collect the data for the databases,.  It is 
called TARDIS, and stands for The Australian Repository 
for Diffraction ImageS, Ref [5]  
 
TARDIS is a collaborative venture; coming out of the 
eResearch community. It is Australian and was started at  
Monash University, Australia [6]. It puts data into the 
dataset for various communities. It started off as a 
development for assisting users of the Protein 
Crystallography beamline.  It has been made open source 
and is used for managing groups of files for a given 
experiment.  
TARDIS available at the website ref [5] and is used for 
managing a group of files associated with an experiment – 
as per the following schema. 
 
  

 
 
Figure 1: TARDIS Schema showing authorisation and experiment, parameters, database and data files 
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TARDIS  SCHEMA 
Figure 1 shows how TARDIS [5] looks like in its full 
schema. If we remove the authorisation, the complexity 
reduced significantly. It encompasses an experiment 
which consists of the “Dublin core” type information – 
that is title, author date etc. Then there are the soft 
parameters stored against that. Those parameters will 
generally be unique to the instrument and science being 
used for those experiments. 
 
Now examine at the datasets themselves, there may be 
many datasets associated with a given experiment. This is 
the way that works for the two facilities in question and 
similar intuitions. Finally there are the files themselves 
and where they are located. 
In summary, the schema consists of the experiment, the 
experimental data, datasets and files.  
 

 

 
CONCLUSION 

MeCAT is a joint project between the Australian 
Synchrotron and ANSTO to improve Metadata 
management and publication at the facilities. It is using 
and extending  open source tools called TARDIS and will 
offer Australian Scientists greater capabilities to share and 
reuse data. 
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DIAMOND'S TRANSITION FROM VME TO FIELDBUS BASED 
DISTRIBUTED CONTROL 

I.J.Gillingham, S.C.Lay, R.Mercado, P.Hamadyk, M.R.Pearson, T.M.Cobb, M.T.Heron, N.P.Rees 
Diamond Light Source, Oxfordshire, UK 

Abstract 
The interface layers of Diamond's accelerator and 

photon beamline control systems have predominantly 
been implemented as VME-based systems. Forthcoming 
control systems, for new photon beamlines, have 
requirements necessitating a divergence from Diamond's 
adopted design patterns, including a reduction in available 
rack space, and we also need to consider the management 
of hardware obsolescence. To address these issues, a new 
standard based on PCs and Ethernet field buses to the 
instrumentation has been defined. This paper will present 
the new design, how the design transition is being 
effected and the key benefits to Diamond. 

INTRODUCTION 
Diamond Light Source is a 3 GeV third-generation light 

source with a 561 m storage ring (SR), a full-energy 
booster (BR) and a 100 MeV pre-injector Linac[1]. The 
photon output is optimised for high brightness from 
undulators and high flux from multi-pole wigglers. The 
current operational state includes 19 photon beamlines, 
with a further three beamlines in an advanced stages of 
design and construction. A further phase of photon 
beamlines is now proposed, and subject to funding, 
detailed design and construction of these 10 beamlines 
will commence from 2011. 

 In planning for the next phase of photon beamlines, it 
was timely to consider the control system architecture 
applied to future beamlines, associated front ends and 
experimental stations.  

EXISTING CONTROL SYSTEM 
ARCHITECTURE 

Accelerator and beamline control systems use a 
consistent approach to interface to the hardware, with 
most equipment interfaced through embedded VME 
systems.  To support the interface requirements of the 
equipment, a range of I/O modules based on Industrial 
Pack (IP) modules (ADC, DAC, Serial, DIO) and VME 
modules (IP carrier, motion, scalar and timing) is used.   
The field signals are interfaced via either transition 
modules or front-panel connections. A VME 
microprocessor (MVME5500) runs VxWorks and EPICS 
to serve up the control information to client applications. 
There are in excess of 250 VME-based systems running 
as part of Diamond's control system[2]. In addition, the 
electron BPMs run EPICS IOCs directly on the Libera 
beam processing hardware, and soft IOCs running under 
Linux on PC hardware concentrate and process data or 
interface to network attached devices over manufacturer-

specific protocols. One anomaly to this approach has been 
video cameras which have been interfaced to the VME 
IOC using Firewire and a PMC Firewire adapter located 
on the VME processor board.  

REASON FOR CHANGE 
The existing control system architecture has served 

well for the existing accelerators and beamlines; however 
it was defined nearly ten years ago, so in the context of 
the next phase of beamlines the opportunity to reconsider 
the standards is being taken. In doing so, it is clear that 
not all the hardware capability of VME is required for 
beamline control; neither is the use of a hard real-time 
operating system such as VxWorks.  It is also apparent 
that most I/O functionality required for control of 
beamline equipment can now be realised through 
Ethernet-attached I/O. There is also now good 
infrastructure for developing and managing Linux based 
EPICS IOCs on a PC architecture.  

OUTLINE REQUIREMENTS FOR 
PHOTON BEAMLINES 

In considering the requirements for photon beamline 
control the following technical systems are identified: 
• Motion control 
• Vacuum instrumentation and other serial devices 
• Video cameras 
• Analogue and digital signals  
• Programmable logic controllers  
• Timing signals  
The interface from the IOC to the equipment should 

make use of the installed network cabling, thereby 
reducing I/O-specific cabling and giving flexibility in 
reconfiguration and addition of equipment without the 
need to pull new cables.  

There should be greater partitioning of the IOC 
functionality by technical area, e.g. motion, camera and 
vacuum, by running a greater number of EPICS IOC 
instances, either as separate processes on one Linux 
system or as single processes, each on a virtualised Linux 
system. This would minimise the disturbance to beamline 
operation when making changes that necessitate restarting 
an IOC. 

The I/O associated with the control system should be 
located close to the equipment being interfaced; i.e. for 
signals located in experimental and optics hutches, the I/O 
modules should be co-located in these areas. However, 
this is constrained by the possibility of radiation-induced 
damage to I/O in the optics hutches of high energy 
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(~100keV) beamlines and by the space available in the 
some beamline hutches. 

NEW SOLUTION 
Each IOC will run on a 1U Linux PC located within the 

beamline instrumentation area.   This is not regarded as a 
“soft IOC” as the hardware is connected directly to it. It 
will probably have several physically separate network 
connections to support the different systems, so that 
equipment with limited network stack and CPU capability 
such as PLCs is not affected by high-data-rate devices 
such as cameras operating in multicast mode.  The 
structure is shown in Figure 1. 

 
 

Figure 1: Hardware Architecture 

Motion Control 
For motion control, a standard based on the Delta Tau 

Geobrick LV Ethernet-based motor controller is used[3]. 
This provides 8 axes of motion control and comes 
complete with amplifiers in a 4U rack-mount box.  The 
existing EPICS motor record software, already in use with 
older VME hardware, was modified to be compatible with 
this controller. This was realised by adding an ASYN 
interpose layer, which provides support for the Delta Tau 
Ethernet TCP/IP packet structure, and so avoids making 
changes to the existing PMAC motor controller ASYN 
driver. 

Vacuum Instrumentation and other Serial 
Devices 

Vacuum instrumentation (Gauges and Pump 
Controllers) and other serial devices will be interfaced 
through RS232, RS422 or RS485 serial connections. 
These will connect to a terminal server located in the 
instrumentation rack and the terminal server via Ethernet 

to the IOC. On the IOC most serial devices are handled 
by the EPICS Stream Device module communicating to 
the serial interface over virtual serial connections to the 
terminal server. 

Cameras on Ethernet 
New diagnostic applications will use a range of GigE 

cameras from AVT (formerly Prosilica). 
A video server will run an EPICS IOC using 

areaDetector[4] to control, process and store images from 
up to 10 cameras and ffmpegServer[5] for visualisation. 
AreaDetector is a modular system of EPICS drivers and 
plug-ins that can be "rewired" at run time, allowing a 
flexible image processing chain to be set up. Plug-ins for 
controlling the camera, providing statistics on the images 
that are produced, filtering them and writing them to disk 
are included with areaDetector. FfmpegServer is a 
Diamond-produced plug-in that compresses a stream of 
images to mjpg and serves them over http. 

Programmable Logic Controllers 
Interlocking and protection of equipment is realised in 

Omron CJ1 PLCs. These will be interfaced to the IOC 
using Ethernet and the FINS[6] protocol over UDP. An 
EPICS driver has been developed and provides direct 
read/write access to each PLC's I/O register and memory 
areas. 

The Omron CJ PLC will optionally use remote I/O 
modules called SmartSlice[7] which will be located in the 
beamline optics and experiment hutches. The SmartSlice 
remote I/O comprises a Communications Unit and a 
number of I/O Units providing digital I/O, analogue I/O, 
temperature, counter and positioning interfaces.  

The SmartSlice I/O Units communicate with the host 
PLC over a private Ethernet connection running the 
PROFINET protocol. PROFINET[8] provides flexibility 
so that it is simple to configure additional I/O modules. 
The interface is realised over standard Ethernet 
connections. 

ADCs DACs and DIO 
To interface ADCs, DACs and digital I/O, a range of 

I/O modules from Beckhoff Automation (Verl, Germany) 
has been selected. These use EtherCAT[9], an industrial 
Ethernet-based fieldbus system. This I/O will be used for 
all non-interlocking type applications, and provides lower 
latency from the plant to the IOC than the PLC solution. 
It further minimises the number of I/O points in the PLC-
based interlocking system and so minimises the need for 
changes to the PLC which necessitate revalidation of the 
interlock logic. 

The EtherCAT protocol provides low-latency data 
transfer from the I/O modules into the host computer. It 
operates on the principle of a master that communicates 
with slaves using EtherCAT telegrams that are passed 
around each node and back to the master. The EtherCAT 
master uses standard Ethernet controller hardware and a 
software implementation of the EtherCAT functionality, 
whilst the slaves use a custom slave controller.   

EPICS 
Client 

1U PC IOC 
PCIe EVR 

Camera 

Timing 
System 

PLC 

Terminal 
Server

ADC/DAC 

Pumps 

I/O 

Gauges 

Interlocks 

Motion 
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The custom interface implements a Fieldbus Memory 
Management Unit (FMMU), which allows the mapping of 
logical addresses in the telegram to physical ones within 
the slave. This processing occurs on the fly as one slave 
passes the telegram through to the next slave, introducing 
a delay of a few nanoseconds. Slaves also automatically 
close a communication ring when the outgoing Ethernet 
link (downstream section) is not connected, by returning 
the telegram to the master back through the chain of 
slaves. 

The telegram structure allows several slaves to be 
addressed in a single Ethernet frame. This characteristic 
significantly reduces the overhead in comparison to other 
Ethernet fieldbus protocols, and is well suited to address 
devices that may have a payload of only a few bytes, such 
as digital I/O devices that are typical in industrial 
automation. 

Although the protocol will operate with other Ethernet-
based services and protocols on the same physical 
network, the proposed Diamond Remote I/O solution will 
adopt strict segregation of the EtherCAT bus. 

Because we are using Linux, the hardware supported is 
limited to Realtek and Intel cards, plus a 'generic' 
interface.  

Timing Signals 
The Diamond timing system is applied across the 

accelerators and beamlines[10]. On the beamlines it is 
used to decode orbit and bunch clocks to enable 
synchronisation of experiments to the stored beam 
structure. It provides gating signals which at injection, 
during top-up operation, are used by beamline detectors to 
mask out the stored beam disturbance. The timing system 
also provides time stamps for EPICS record processing. 
To support this functionality in the new architecture, it is 
envisaged that a PCIe version of the Event Receiver 
module will be developed. This will make the time stamp 
information available in the PC-based IOC and will bring 
out the decoded signals on a 1U interface panel. 

SUMMARY OF PROGRESS TO DATE 
Ethernet-based motion control subsystems are already 

implemented and deployed on a number of beamlines 
connected to both PC and VME IOCs. They have proved 
to provide effective control of stepper and servo motor 
systems, e.g. monochromators, slits, mirrors etc. Remote 
diagnostics and configuration are also proving to be very 
valuable. 

Similarly interfacing a range of instruments over 
terminal servers is also actively being used and makes use 
of already developed Streams support modules.  

The FINS interface to the Omron PLC has been 
implemented and deployed to integrate a single PLC 
controlling LN2 distribution. The design of standard 
remote I/O modules has also been undertaken. Given the 
risk of possible radiation damage, SmartSlice remote I/O 
units have been in soak-test for the past two months in 
one of Diamond's optics hutches. The implementation of 
SmartSlice systems is being planned for forthcoming 
beamline control and front-end equipment protection 
systems. 

The EtherCAT based remote I/O has been through 
initial evaluation and testing with a Linux x86 PC as a 
host. Initial tests have been performed using an Intel 
E1000 controller on a standard RHEL5 dual-core Intel 
Pentium 4 Xeon PC. A user-space polling process, fully 
using one of the two available cores, was able to 
reproduce a pulse read from an ADC and to drive a digital 
output with a delay of 200 microseconds. Further effort is 
planned to develop EPICS device support for the various 
EtherCAT I/O modules to be used on Diamond. 
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A DISCRETE HYSTERESIS MODEL FOR PIEZOELECTRIC ACTUATOR 
AND ITS PARAMETER IDENTIFICATION 

Y. Cao and X. B. Chen# 

Department of Mechanical Engineering 
University of Saskatchewan, Canada

Abstract 
Hysteresis is an important nonlinear effect exhibited by 

piezoelectric actuators (PEA) and its modelling has been 
drawing considerable attention. This paper presents the 
development of a novel discrete model based on the 
concept of auto-regressive moving average (ARMA) for 
the piezoelectric-actuator hysteresis, and its parameter 
identification method as well. Experiments were carried 
out to verify the effectiveness of the developed model. 
The result obtained shows that the developed model can 
well represent the hysteresis of the PEA. 

 

INTRODUCTION 
Piezoelectric actuators (PEA) have been widely used in 
nanopositioning applications, such as AFM , STM , DVD 
disc reading and writing [1], diamond lathe machine [2], 
lithography, X-ray imaging [3]. However, the 
performance of a PEA can be significantly degraded   by 
its hysteresis. Hysteresis is a memory effect of 
piezoelectric actuators and, as a result, the hysteresis 
exhibited at an given time instant depends on not only the 
input at the present time but also the operational history 
of the system considered. In order to develop control 
schemes on PEA, modelling of PEA has been drawing 
considerable attention and several models have been 
resulted to describe the hysteresis effect, such as Preisach 
model [4], the ferromagnetic material model [5] and the 
nonlinear auto-regressive moving average model with 
exogenous input (NARMAX model) [6]. However, most 
of the models developed in literatures are continuous and 
the model-based controller design is proceeded in  the 
continuous time domain. With the advance of computer 
technology nowadays, controllers are mostly 
implemented   digitally. Note that not all the continuous 
controllers can work on the sampled digital system as 
desired since the discrete sampling can sometimes make 
the continuous system unstable. Therefore, it is advantage  
to develop a discrete hysteresis model of PEA for its 
digital controller design. Unfortunately, little work about 
the discrete hysteresis model or the digital controller 
design for PEA has been found yet. In this paper, the 
ferromagnetic material hysteresis model is discreted and, 
by combining it with the concept of auto-regressive 
moving average (ARMA), a novel model is developed  to 
represent the hysteresis of PEA. Specifically, the next  
section of this paper is the introduction to the discrete 
ARMA-based hysteresis model, which is followed by the 
experimental identification and verification results by 
using the discrete ARMA-based hysteresis model as  

compared to the general discrete form of hysteresis model 
[7]. The last section gives the conclusions of the paper 
and future work.   

DISCRETE ARMA-BASED 
 HYSTERESIS MODEL 

The ferromagnetic material hysteresis model introduced 
by Adriaens and Koning [5] is illustrated in the following: 

               
[ ( ) ] ( )y x f x y xg xα= − +& & &

    
                 (1) 

where x is the input of the hysteresis and y is the output, 
( )f x

 
and ( )g x

 
are functions of x  with which you can 

“shape” the hysteresis loop. It has been experimentally 
verified that this differential equation is also suitable for 
describing electric hysteresis such as PEA. In theory, PEA 
shows the length saturation. In practise, however, the 
displacement of the PEA stays far away from saturation. 
Therefore, chose ( ) /f x ax α=  and ( )g x b=

 
as the shape 

function, Equation (1) can be rewritten as: 

                         
( )y x ax cy bx= + +& & &                           (2) 

where 1/c α= − . [7] applied the difference equation to 
discrete Equation (1) as follows: 

       ( 1) ( ) ( 1) ( ) [ ( ) ( )]y k y k x k x k ax k cy k+ − = + − +  
                     [ ( 1) ( )]b x k x k+ + −                               (3) 

This paper discrete Equation (1) by integral. 

Discrete form of the ferromagnetic material 
hysteresis model 

When the input signal is monotonically increasing, 
0x >& , take integral on both side of equation (2) in one 

sampling interval, one can derive: 
( 1) ( 1) ( 1) ( 1)k T k T k T k T

kT kT kT kT
ydt a xxdt c xydt b xdt

+ + + +
= + +∫ ∫ ∫ ∫& & & &  

                                                                                     (4) 
where T  is the sampling interval. 

Equation (4) leads to: 

     

( 1)2 2

( )

1( 1) ( ) [ ( 1) ( )]
2

x k

x k
y k y k a x k x k c ydx

+
+ − = + − + ∫  

                 [ ( 1) ( )]b x k x k+ + −                               (5) 
which is the discrete form of the first order hysteresis 
differential equation (2).  

Using trapezoid equation to estimate the integral term, 
Equation (5) yields: 

             
( 1) 2 ( 1)( 1)

2 ( 1) 2 ( 1)
k ky k a b

c k c k
α β
β β
+ +

+ = +
− + − +
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                        (6) 

where 2 2( 1) ( 1) ( )k x k x kα + = + −  , 

          ( 1) ( 1) ( )k x k x kβ + = + − . 
Given the zero initial condition that (1) 0y = ,one can 

derive: 
(2) 2 (2)(2)

2 (2) 2 (2)
y a b

c c
α β
β β

= +
− −  

(3) 2 (3) (2)(3) [ ]
2 (3) 2 (3) 2 (2)

cy a
c c c
α β α
β β β

+
= + ⋅

− − −      

             

2 (3) 2 (3) 2 (2)[ ]
2 (3) 2 (3) 2 (2)

cb
c c c
β β β
β β β

+
+ + ⋅

− − −
L 

Therefore, the output y can always be represented as a 
function of input x by recursion:  

            
1 2( 1) ( 1) ( 1)y k ay k by k+ = + + +               (7) 

where 

1 1
( 1) 2 ( 1)( 1) ( )

2 ( 1) 2 ( 1)
k c ky k y k

c k c k
α β
β β
+ + +

+ = +
− + − +

      (8)    

2 2
2 ( 1) 2 ( 1)( 1) ( )

2 ( 1) 2 ( 1)
k c ky k y k

c k c k
β β
β β

+ + +
+ = +

− + − +      (9) 
When the input signal is monotonically decreasing, 

0x <& , repeating the above process, one can derive: 

            
1 2( 1) ( 1) ( 1)y k ay k by k+ = + + +             (10) 

where 

1 1
( 1) 2 ( 1)( 1) ( )

2 ( 1) 2 ( 1)
k c ky k y k

c k c k
α β
β β

− + − +
+ = +

+ + + +
      (11)    

2 2
2 ( 1) 2 ( 1)( 1) ( )

2 ( 1) 2 ( 1)
k c ky k y k

c k c k
β β
β β
+ − +

+ = +
+ + + +      (12) 

    In order to verify the effectiveness of the discrete form 
of the first order hysteresis differential equation, a 
SIMULINK model was built to generate the simulation 
data. Parameters a, b, c are chosen to be 0.0064, -0.0378, 
0.1144 such that the output displacement of the 
SIMULINK model can fit the measured displacement. 
Meanwhile, another group of output data was generated 
by Equations (3) and (7)-(12). Table 1 shows the 
comparison of the discrete error using Equation (3) and 
Equation (7)-(12). The input is a sinusoidal signal whose 
frequency is set to be 1Hz ~300Hz with 70V magnitude. 
From the result, it can be concluded that the discrete 
hysteresis Equation (7)-(12) is more accurate in 
describing hysteresis than the general Equation (3). 

Table 1: Discrete error by using different methods 

Input Frequency 
(Hz) 50 100 200 300 

By using Equation 
(7)-(12) 0.0167 0.0335 0.0671 0.1010 

By using Equation 
(3) 

0.0171 0.0341 0.0681 0.1022 

Discrete ARMA-based hysteresis model 
The general ARMA model has the form as follows: 

         1 0

( ) ( ) ( )
yz NN

i i
i i

z t a z t i b y t i
= =

= − + −∑ ∑                (13) 

X.B. Chen, Q.S. Zhang et. al. [8] have made a 
conclusion that the second order system can be used to 
approximately represent the dynamics of the piezoelectric 
stage if the mass ratio between the stage and the actuator 
increases. Thus, using a second order ARMA model, one 
can derive: 

1 2 0 1 2( ) ( 1) ( 2) ( ) ( 1) ( 2)z t a z t a z t b y t b y t b y t= − + − + + − + −                       
(14) 

Substitute the discrete hysteresis Equation (7) and (10) 
into Equation (14), the discrete ARMA based hysteresis 
model will be derived as:  

1 2 0 1 0 2( ) ( 1) ( 2) ' ( ) '' ( )z t a z t a z t b y t b y t= − + − + +
 

1 1 1 2 2 1 2 2' ( 1) '' ( 1) ' ( 2) '' ( 2)b y t b y t b y t b y t+ − + − + − + − (15) 
It will be used to describe the rate-dependent performance 
of a piezoelectric actuator later. 

PARAMETER IDENTIFICATION AND 
EXPERIMENTS 

Experiments are implemented on a PEA (P-753, Physik 
Instrumente). The actuator can generate displacement in a 
range of 15 μm with a resolution of 0.5 nm. For 
displacement measurements, a capacitive displacement 
sensor of the P-753 PEA is used. It is a built in sensor 
with a resolution of 1nm. Both the actuator and the sensor 
are connected to a host computer via an I/O board (PCI-
DAS1602/16, Measurement Computing Corporation) and 
controlled by SIMULINK programs. All measured 
displacements used in this study   were measured with a 
sampling interval of 0.05 ms. The unit of the measured 
displacements is μm. The mass ration of the stage and the 
PEA is 49.8 which indicates that the dynamics of the 
piezoelectric driven stage can be regarded as a second 
order system approximately according to our previous 
study [8]. 

 
Figure 1: Piezoelectric driven stage 

Online estimation method is applied to identify the 
parameters in the model by giving a bunch of sinusoidal 
inputs with frequency varying from 10Hz to 200Hz and 
amplitude being 70V. Table 2 shows the parameter 
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identification results for discrete ARMA-based hysteresis 
model. The parameter c is identified to be -0.0305 by 
using Box-Kanemasu method. The initial value of the 
hysteresis operator parameters a, b, c are still identified 
from the 1Hz 70V sinusoidal input data using LS method. 

Table 2: Discrete error by using different methods 

Parameters 1a  2a  0 'b  0 ''b  

Value 1.6531 -0.676 -0.00276 -0.0732 

Parameters 1 'b  1 ''b  2 'b  2 ''b  

Value 0.0064 0.174 -0.00353 -0.0976 

Another two types of inputs is applied to the piezoelectric 
actuator and the corresponding output is measured for 
model verification. One is the piecewise continuous 
combination of different amplitude sinusoidal inputs with 
the same frequency. The other one is the superposition of  
four sinusoidal inputs with different frequency, amplitude 
and phase delay.  

Table 3 shows the estimation error according to discrete 
ARMA-based hysteresis model when applied a piecewise 
continuous combination of different amplitude sinusoidal 
inputs. The frequency varies from 10Hz to 400Hz.  In 
order to show the effectiveness of the discrete method 
developed in this paper, the estimation error is compared 
with the general discrete form by using difference 
equation  referred in [7]. 
Table 3: Estimation error for the Piecewise continuous 

combination of different amplitude sinusoidal inputs 

Frequency (Hz) 10 50 200 400 

Discrete  
ARMA-based 

hysteresis model 
0.0943 0.0989 0.1112 0.1603 

General  
discrete form 
 of hysteresis 

0.0946 0.0996 0.1128 0.1627 

 

 

    Compare with the model error corresponding to the 
same type of input data, it can be concluded that as the 
input frequency increases, the estimation error increases 
for both discrete methods. Meanwhile, the discrete 
ARMA-based hysteresis model has a lower estimation 
error than the general discrete model shown in [7], 
especially at high frequencies. 

CONCLUSIONS 
This paper presents the development of a novel discrete 
ARMA based hysteresis model to describe the hysteresis  
of PEA. Online estimation method was applied to identify 

the model parameters. In order to illustrate the 
effectiveness of the ARMA-based hysteresis model, 
experiments are carried out and the results are compared 
with the general discrete model (3). It shows that the 
discrete ARMA-based hysteresis model can better predict 
the hysteresis of PEA. However, the model shows a larger 
estimation error in high frequency application than in low 
frequency application due to the estimation of the integral 
term in the discrete hysteresis equation. Using a higher 
order polynomial equation to estimate the integral term 
maybe helpful to improve the discretization. Therefore, a 
piece of the future work will be on the use of a high order 
polynomial equation to estimate the integral term to 
improve the behaviour of the discrete ARMA-based 
hysteresis model. Moreover, the discrete control scheme 
will be developed to insure the stability of the digital 
control system for the PEA. 
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AUTOMATIO  OF THE MACROMOLECULAR CRYSTALLOGRAPHY 
BEAMLI ES AT THE CA ADIA  LIGHT SOURCE 

M.N. Fodje*, R. Berg, G. Black, P. Grochulski, K. Janzen, Canadian Light Source, 101 Perimeter 
Road, Saskatoon, SK, Canada S7N 0XN.

Abstract 

The Canadian Macromolecular Crystallography Facility 
(CMCF) is a suite of two beamlines 08ID-1 and 08B1-1. 
Beamline 08ID-1, is an undulator beamline for studying 
small crystals and crystals with large unit cells, while 
beamline 08B1-1 is a bending-magnet beamline for high-
throughput macromolecular crystallography with a high 
level of automation. The primary method of access to 
CMCF 08B1-1 will be remote, in what is commonly 
referred to in the field as ”Mail-in” crystallography. We 
are developing a software system for automating both 
beamlines, with modules for beamline control, 
experiment control, data analysis, information 
management, and graphical user interaction. The system 
is developed using the Python programming language and 
makes use of popular open-source frameworks such as 
Twisted, Django and GTK+. Once completed, the system 
will allow automation of the macromolecular 
crystallography experiment from experiment setup to data 
analysis, thereby increasing the efficiency of the CMCF 
beamlines and reducing the need for user travel to the 
synchrotron. 

BACKGROU D 
The growing impact of macromolecular structural 

analysis to pharmaceutical, academic and industrial 
research has resulted in a growing demand for access to 
protein crystallography beamlines. This demand is 
reflected not only in the number of samples available for 
analysis, but also in the increased number of scientists 
from different fields now using structural information in 
their research. As a result, many more users with less 
crystallographic training are demanding access to 
macromolecular crystallography (MX) beamlines at 
synchrotron facilities. Fortunately, the MX experiment is 
highly amenable to automation [1]. It is not surprising 
therefore that there are many on-going efforts by various 
synchrotron facilities to provide highly automated MX 
beamlines to the community of users [1-3].  

The synchrotron MX experiment can be broken down 
into distinct steps (see Table. 1). These include sample 
preparation, beamline setup, sample mounting, sample 
alignment, sample characterisation, data acquisition and 
data processing. The details of each step may vary based 
on the specific sample being examined and type of 
experiment desired With the exception of the first step, 
which is usually carried out by experimenters at their 
home laboratories, the remaining steps can be automated 
to a very high degree. It is therefore possible in principle 
to build a fully automated beamline where experimenters 
simply prepare and send their samples to the beamline, 

data is automatically acquired, and experimenters are 
never needed on-site.  

Table 1: Steps involved in an MX experiment 

Step Description 

Sample 
Preparation 

Samples are frozen in cryogen at the home 
laboratory and couriered to the synchrotron 
by experimenters  

Beamline Setup The beamline is configured and optimized  

Sample Mounting The sample is mounted on a Goniometer  

Sample 
Alignment 

The sample on the Goniometer is 
positioned such that the sample rotates  
within the X-ray beam, for  data 
acquisition 

Sample 
Characterisation 

Initial data frames are collected and 
processed to obtain improved parameters to 
be used for data acquisition 

Data Acquisition Data frames are collected 

Data processing Data frames are integrated and reduced to 
reflection files for further analysis and 
structure determination by the users 

 
Automation of an MX beamline requires tight 

integration of various hardware and software components. 
In addition to the beamline hardware required for delivery 
of a high-quality and stable beam at the sample position, 
robotic sample mounting devices and computer hardware 
for data processing are also required.  The software 
system is a central component of every automated 
beamline and great care has to be taken to ensure that it is 
reliable and enables the acquisition of the best possible 
data. Here, we describe the architecture and 
implementation of the software for automation of the 
08B1-1 and eventually the 08ID-1 beamlines at the 
Canadian Light Source (CLS).  

SOFTWARE ARCHITECTURE 
The software system being developed for automation of 

the CMCF Beamlines is a modular system, layered above 
the low-level beamline instrument control system which 
is based on the Experimental Physics and Industrial 
Control System (EPICS). The main system modules are 
the Experiment Management Module (EMM), the 
Beamline Control Module (BCM), the Data Processing 
Module (DPM), and the Information Management 
Module (LIMS) (see Fig. 1). 
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Figure 1: CMCF Software Architecture for automation, showing the various software modules, cross communication 
between the modules, and provided functionality. 

 
Information Management Module 

The Information Management Module, also known as 
the  Laboratory Information Management System (LIMS) 
is responsible for the storage of information about 
samples, sample shipments, experiment requests,  
experiment results and data sets.  This module provides a 
web-based interface for users to submit sample 
information and review experiment results, and also a 
web-based interface for beamline staff to manage 
beamline sessions. It also provides crystal information 
and experimental requests to the EMM. 

Beamline Control Module 
The Beamline Control Module (BCM) is responsible 

for directly controlling the beamline hardware.  This 
module is a high-level module, which must be 
distinguished from the EPICS based beamline control 
system.  The BCM is an integrated unit which controls the 
beamline hardware through the EPICS Channel Access 
protocol, in order to carry out the following functions 
automatically: 
• Beamline configuration. 
• Beam optimization. 
• Sample mounting and dismounting. 
• Sample alignment. 
• Data acquisition. 

Data Processing Module 
The Data Processing Module (DPM) is in charge of 

integrating and reducing collected data frames into 
crystallographic reflection files. Specifically the DPM 
carries out the following functions: 
• Scoring of samples to assess quality and suitability 

for data acquisition. 
• Determination of sample parameters and an optimum 

strategy for data acquisition. 

• Integration and reduction of diffraction images into 
reflection files. 

• Data conversion into user-friendly formats for further 
processing. 

Experiment Management Module 
The experiment management module (EMM) is at the 

top of the of the beamline software hierarchy. The role of 
this module is to substitute the experimenter in carrying 
out scheduling and coordination of the steps involved in 
the MX experiment.  As a result, the functioning of this 
module is experiment-centric rather than beamline-
centric. This module delegates tasks to the other modules 
based on experiment information received from the 
LIMS. For example, sample mounting is delegated to the 
BCM, while sample characterisation is delegated to the 
DPM.   

IMPLEME TATIO  
The beamline software system is implemented in the 

Python programming language. Python is an interpreted, 
object oriented, high-level programming language, suited 
for rapid application development [4]. The availability of 
several high-quality Python-based frameworks for 
graphical interface development, web-application 
development and network server-client development 
made Python an obvious choice for the implementation 
language.  

The LIMS is implemented using the Django web-
application framework [5]. External interfaces used for 
exchanging information with other modules such as the 
Experiment Management Module, are implemented as 
JSON-RPC (JavaScript Object Notation Remote 
Procedure Call) interfaces [6].  

The other modules, the BCM, EMM and DPM, are 
implemented using a combination of the Twisted 
Framework, and the Glib/GObject system. The 
Glib/GObject system, a part of the GTK+ toolkit [7] is a 
low level library which provides interfaces for event-
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driven programming together with a dynamic object 
system. It is widely used for graphical interface 
development but can be used for non-graphical 
applications. The BCM uses GObject extensively to 
achieve an event driven architecture, where changes in the 
control system are propagated asynchronously to the rest 
of the system as they occur. For example, data acquisition 
is automatically paused when the synchrotron beam is no 
longer available. The GTK+ toolkit is also used for all 
interactive graphical interfaces such as the MX Data 
Collector (MXDC) (used for interactive data acquisition 
at the beamlines). 

The Twisted Framework is a highly flexible, secure and 
stable networking engine written in Python with 
interfaces for inter-process communication, asynchronous 
programming, and web-application development [8]. The 
Perspective Broker modules are used for all 
communication between the BCM, DPM and EMM. This 
includes remote method calls and transmission of data 
objects. Twisted is also used to provide remote 
administrative python consoles for live debugging of the 
modules. 

 The BCM, DPM and EMM also make use of the 
Multicast DNS (Domain Name System) service discovery 
protocols to publish and discover configuration 
parameters of available services to which other modules 
may connect. For example, the EMM automatically 
determines at run-time the host address and port of the 
BCM, and DPM services which can be running on any 
machine within the local network. In addition, services 
can easily be migrated to different hosts and other 
modules will automatically be notified to reconnect at 
run-time without manual reconfiguration. 

The software system relies on existing established 
software packages from the crystallographic community 
for specialized functions. Specifically, the BCM makes 
use of the XREC package [9] for automatic alignment of 
samples. Furthermore, the DPM makes use of the XDS 
[10], CCP4 [11] and BEST [12] software packages. 

CO CLUSIO  
The CMCF Software system will enable remote access 

to the facility in what is usually referred to as “Mail-in” 
crystallography, with a high level of automation. Users 
will prepare their samples at their home labs and ship the 
samples to the CLS. Using information provided by the 
users through the web-based LIMS, data will be 
automatically collected by the EMM delegating to the 
BCM and DPM as appropriate. After review of the results 
by beamline staff, the results will be made available to 
users through the LIMS. When fully functional, this mode 
of operation will increase the efficiency of the beamlines 
and ultimately the number of samples that can be 
analyzed.  
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MECHANICAL VIBRATION MEASUREMENT SYSTEM AT THE 
CANADIAN LIGHT SOURCE  

J.W. Li, E. Matias, Canadian Light Source, Saskatoon, SK, Canada 
X.B. Chen, W.J. Zhang, University of Saskatchewan, Saskatoon, Canada. 

Abstract 
In recent decades, synchrotron radiation has developed 

into a valuable scientific tool around the world. At 
synchrotron radiation facilities, the mechanical vibrations 
in the optics hutch and experimental hutch, especially in 
the vertical direction, enlarges the beam size and changes 
intensity of the monochromatic X-ray beam. To 
investigate mechanical vibrations at the Canadian Light 
Source (CLS), a vibration measurement system was 
developed. This paper presents our investigations on 
mechanical vibrations at four beamlines and endstations 
at the CLS. 

INTRODUCTION 
At synchrotron radiation facilities, the vibration of the 

electron and/or photon beam, especially in the vertical 
direction, enlarges the size and changes its intensity. This 
degrades the performance of the beamline. It is reported 
that the amplitude of floor vibrations at the ATF2 project 
is approximately 50 μm, which is even larger than the 
vertical beam spot size expected at ATF2 [1]. In another 
report related to synchrotron radiation lithography, the 
quality of micro structures fabricated by the lithography 
beamline is greatly affected when the amplitude of the 
vibration is bigger than a quarter of the minimum feature 
size [2].  

Many other factors that are responsible for vibrations at 
synchrotron radiation facilities were reported in the 
literature, such as traffic, human activities, strong wind 
and/or ocean waves, water pipes, and moving mechanical 
components. Thus, careful investigations of vibrations at 
synchrotron radiation facilities are crucial, especially if 
the photon beam size is within a few micrometers.  

Studies of vibrations have been conducted at 
synchrotron radiation facilities worldwide and a brief 
review can be found in [3]. Although the CLS floor was 
carefully designed, we found that beamline developments 
still necessitate carrying out vibration studies. In this 
study, we investigated vibrations in the experimental and 
optics hutches at four beamlines and endstations at the 
CLS: CMCF 08ID-1 beamline, HXMA 06ID-1 beamline, 
REIXS 10ID-2 beamline, and the STXM endstation at 
SM 10ID-1 beamline. This work identified key vibration 
sources. 

INSTRUMENTATIONS 
The Canadian Light Source Vibration Data Acquisition 

system includes a Vector Signal Analyzer (VSA) (Model: 
Hp Agilent 89410A; Manufacturer: HP) and 
accelerometers (Model: 393B31; Manufacturer: PCB 
PIEZOTRONICS). Accelerometers produce a voltage 

proportional to the acceleration of their connected object. 
The VSA converts the output voltage of the 
accelerometers into a voltage power spectral density (Sv). 
Acceleration power spectral density (Sa, unit: (m/s2)2/Hz) 
is obtained from Sv by the following equation [4]: 
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where a is the sensitivity of the accelerometers. 
Displacement PSD (Sd, unit: μm2/Hz) is calculated using 
Sa by the following equation [4]: 
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The RMS displacement over a given frequency band 
(f1, f2) can be calculated using the following equation [4]: 

∫= 2

1

)(
f

f d dffSZ
     

     (3) 
The sensitivity of the accelerometer a=1.02 v/(m/s2). 

The frequency range of the measurement is 0.1 Hz to 300 
Hz. The frequency resolution of the accelerometer is 
better than 0.1 Hz. In this study, we used two indexes for 
vibration evaluation--the displacement power spectral 
density (PSD) and the root mean square (RMS) 
displacement. The displacement PSD shows the strength 
of the displacement variation as a function of frequency. 
The RMS displacement represents the amplitude of 
displacement variations within a specific frequency range.  

IDENTIFICATION OF VIBRATION 
SOURCES 

The experimental set-up is discussed in [3]. 

Fan coil unit 
The fan coil unit is hung on the ceiling in the CMCF 

08ID-1 experimental hutch (SOE). Figure 1 shows that 
the fan coil unit induced vibrations have frequencies of 
25.5 Hz (RMS displacement: 2.0×10-4 µm), 26.5 Hz 
(RMS displacement: 3.1×10-4 µm), and 53 Hz (RMS 
displacement: 4.0×10-5 µm) which is the harmonics of 
26.5 Hz. 

Detector cooling system 
The equipment is used for cooling the detector of the 

MicroProbe endstation and it is approximately 0.5 m 
away from the microprobe endstation in the HXMA 
06ID-1 experimental hutch. The microprobe endstation is 
very sensitive to vibrations since a very small beam spot 
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(3 µm × 5 µm) is required. Thus, three dimensional 
vibrations of the microprobe endstation were 
investigated--particularly, the effects of the detector 
cooling system on the endstation were studied. In this 
paper, however, only vibrations in vertical direction are 
presented. Figure 2 shows the displacement PSD of the 
microprobe endstation in the z-direction (vertical). RMS 
displacements in three dimensions are calculated. We 
found that when the detector cooling system is turned off, 
the total RMS displacements are 0.001 µm in the x-
direction, 0.0013 µm in the y-direction, and 0.0032 µm in 
the z-direction. When the detector’s cooling system is 
turned on, the total RMS displacements increase to 
0.0130 µm in the x-direction, 0.0054 µm in the y-
direction, and 0.0109 µm in the z-direction. This suggests 
that the operation of the detector’s cooling system will 
significantly increase the vibration of the microprobe 
endstation by 1200% in the x-direction, more than 300% 
in y-direction and approximately 240% in the z-direction. 

Vacuum pump 
The Varian TriScroll pumps are widely used as rough 

vacuum pumps on many beamlines at the CLS. Figure 3 
shows the displacement PSD of the floor vibrations in the 
CMCF 08ID-1 SOE experimental hutch when the Varian 
TriScroll pump is turned on (red line) and off (blue line), 
respectively. Figure 3 shows that the TriScroll pump 
induced vibrations with a frequency of 29.7 Hz (RMS 
displacement: 1.5×10-3 µm) and with harmonics of 59.4 
Hz (RMS displacement: 1.2×10-4 µm) and 89.1 Hz (RMS 
displacement: 4.7×10-5 µm). Figure 3 shows that the 
Varian TriScroll pump produces the most significant 
vibrations (in terms of RMS displacement) on the CMCF 
08ID-1 beamline. 

 

 
Figure 1: Floor vibrations when the fan coil unit is turned 

on/off. 

 
Figure 2: z-direction vibrations. 

Chiller 
The chiller is used for water cooling system and it is 

approximately 3 meters away from the monochromator 
outside the optics hutch at the HXMA 06ID-1 beamline. 
Figure 4 shows that when the chiller is turned on and the 
damping material is removed, both floor and 
monochromator vibrations at a frequency of 27.2 Hz 
dramatically increase, compared to the vibrations when 
the chiller is turned off. This means when the chiller is in 
normal operation it causes vibration with frequency of 
27.2 Hz and the vibration propagates from the floor to the 
monochromator. Figure 4 also shows that when the 
damping material is used, the vibration of 27.2 Hz 
disappeared from the monochromator and floor. This 
implies that the used damping material can effectively 
isolate the chiller induced vibration. 

 

 
Figure 3: Floor vibrations when the Varian TriScroll pump 

in SOE is turned on/off. 
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Figure 4: Vibration identification and isolation. 

 
Figure 5: Cryostat system induced vibrations (in 

vertical direction). 

 
Figure 6: Cryopump induced vibration (in the vertical 

direction). 

 

Cryostat system 
The cryostat compressor is placed outside of the REIXS 

10ID-2 experimental hutch and is approximately 1.5 
meters away from the endstation The cryostat system 
includes the cryostat compressor and a cold head inside 
endstation chamber. The cold head and the cryostat 
compressor always work simultaneously and thus they are 
considered as one unit called cryostat system here. Figure 
5 shows that the cryostat system produces vibrations with 
very broad frequency range from approximately 20 Hz to 
80 Hz and many of these vibrations have fairly large 
displacement PSD (over 10-6 µm2/Hz). Similar 
observations were found in the horizontal direction, 
which are not shown in this paper. The cryostat system 
does not affect the REIXS 10ID-2 beamline so far due to 
the relatively large beam spot (200µm × 200µm). 
However, it has been found that its operation significantly 
affects its neighbour SM 10ID-1 STXM endstation, which 
is discussed in [3]. 

Cryopump 
The Helix Cryo Torr 8F cryopump compressor is 

located outside of the REIXS 10ID-2 experimental hutch 
and just beside the cryostat compressor. Figure 6 shows 
that the cryopump produces vibrations with very broad 
frequency range from approximately 40 Hz to 120 Hz, but 
most of these vibrations have relatively small 
displacement PSD (below 10-6 µm2/Hz). Similar 
observations can be found from vibrations in the 
horizontal direction, which is not shown in this paper. So 
far no evidence has been found that the cryopump 
induced vibrations cause problems for operations of either 
the REIXS 10ID-2 beamline or the STXM endstation. 

CONCLUSIONS 
The results demonstrate that mechanical movable 

equipment in optics hutch and experimental hutch can 
cause significant vibrations. The information provided in 
this paper is important to understand and control 
vibrations not only for beamlines at the CLS but also for 
other synchrotron radiation facilities worldwide.  
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REMOTE ACCESS TO A SCANNING ELECTRON 
MICROSCOPE USING SCIENCE STUDIO* 

D. Maxwell#, E. Matias, CLS, Saskatoon, Canada 
M. Bauer, M. Fuller, S. McIntryre, T. Simpson, UWO, London, Canada

Abstract 
Science Studio is a web portal, and framework, that 

provides scientists with a platform to collaborate in 
distributed teams on research projects, and to remotely 
access the resources of research facilities located across 
Canada.  The Western Nanofabrication Facility is located 
at the University of Western Ontario and houses a variety 
of instruments for lithography, deposition and 
characterization. One of these instruments is an Oxford 
Instruments X-ray System fitted to a Scanning Electron 
Microscope. This x-ray system has been integrated into 
Science Studio. This allows users to remotely access the 
system and to upload experimental data into Science 
Studio. Remote control of the instrument is provided 
using a remote desktop, so users have access to the full 
capabilities of the instrument. Through Science Studio, 
access control and session management are also provided 
for this instrument. 

SCIENCE STUDIO 
The Science Studio web portal is an extensible platform 

that allows scientists to collaborate on research projects, 
and provides remote access to scientific resources.  One 
resource that is integrated into this system is the 
VESPERS beamline located at the Canadian Light Source 
synchrotron [1].  Science Studio provides beamline users 
with remote access to this powerful scientific tool, and 
allows experimental data to be easily shared among the 
project team. 

Science Studio is also a framework that can be used to 
more easily enable remote access to other devices.  This 
framework provides session and experiment management 
features.  Session management allows for remote access 
to be allocated or scheduled for a specific project team.  
Experiment management allows the project team to 
organize and share experimental data.  Within the 
framework is a customizable web portal that provides 
users a single consistent entry-point for remote access and 
other services.  This web application allows users to 
manage experiment information and experimental data 
using in a rich web interface.  Security features, such as 
single sign-on and access control, are also included in the 
Science Studio framework. 

X-RAY MICROANALYSIS SYSTEM 
The Western Nanofabrication Facility (WNF) is an 

open user facility at the University of Western Ontario 
(UWO) for the fabrication of micro- and nano-structures.  
This facility has an assortment of equipment and 
instrumentation that provides its users with a wide range 
of capabilities; including lithography, deposition, etching 
and characterization [2].  An instrument of particular 
interest to users is the LEO (Zeiss) 1540XB Scanning 
Electron Microscope (SEM) with an integrated Oxford 
Instruments X-Ray Microanalysis (XRMA) system. 

The SEM is a stand-alone instrument with specialized 
hardware and software for device control and data 
acquisition.  The SEM control software is used for

Figure 1: Science Studio architecture for remote   access to the x-ray microanalysis system. 
 ___________________________________________  

*This work was funded by CANAIRE under R&D project NEP-01; and
performed at the Canadian Light Source which is supported by
NSERC, NRC, CIHR and the University of Saskatchewan. 
#dylan.maxwell@lightsource.ca 
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positioning the sample at the region of interest, focusing 
at the desired magnification and acquiring high resolution 
microscopy images. 

The XRMA system includes an x-ray detector, which 
mounts directly onto the SEM, and the required control 
hardware and software.  This system provides elemental 
mapping and chemical analysis of the sample in-situ.  The 
data acquisition and analysis software for the XRMA 
system is called INCA.  The XRMA system is connected 
to the SEM to enable data acquisition; however, it has 
very limited control of the SEM.  It is this XRMA system 
that is available for remote access through Science Studio. 

REMOTE ACCESS 
Remote access to the SEM control software is not 

required or perhaps desirable as misuse of this software 
could result in damage to the instrument.  An on-site 
operator must be present to mount the samples into the 
vacuum chamber of the SEM.  This operator will also be 
responsible for positioning the sample and focusing the 
image at the desired magnification.  In order to allow the 
remote user to guide this process, using the telephone or 
another communication method, they are able to observe 
the SEM control software.  This is done using a 
VGA2USB [3] frame grabber device that intercepts the 
VGA output of the SEM control computer and converts 
that signal to a video stream.  This device is connected to 
the XRMA control computer using USB, and the supplied 
software is used to view the video stream. 

INCA is a powerful application for both acquisition and 
analysis of experimental data.  This software is a highly 
capable spectral analysis tool, with a well designed, 
user-friendly, graphical interface.  Therefore, it is 
desirable to provide the user will full access to the INCA 
software. 

To meet this objective a Virtual Network Computing 
(VNC), or remote desktop, solution is implemented to 
provide the remote user with direct control of the XRMA 

control computer, and most importantly, the INCA 
software.  The architecture diagram is Figure 1 outlines 
the components of the remote access system, and their 
interaction. 

Remote Desktop 
The TightVNC [4] remote desktop software is used for 

this project because of its open-source license, excellent 
performance and availability of a Java Applet TightVNC 
client.  The TightVNC server supports the use of the 
Mirage [5] video driver, which provides very efficient 
screen capturing for the Microsoft Windows operating 
system. 

The XRMA control computer is only connected to the 
UWO private network.  In order to allow remote access 
over the Internet, an SSH tunnel is established between 
the XRMA computer and the Science Studio server using 
the PuTTY [6] SSH client. 

Special measures are used to ensure the security of the 
VNC server without further action required by the user.  
The VNC server port is protected behind a firewall so it 
cannot accept connections directly from the Internet.  The 
user initiates a VNC session by sending an HTTP request. 
When the server receives this request, a tunnel is 
established to forward network traffic between a random 
port and the VNC server port.  The HTTP response 
contains the random port number, so the VNC client is 
able to connect to the correct port.  This tunnel will only 
listen for a short period of time (normally ten seconds) for 
the VNC client to connect, and it will only accept a single 
connection. 

The screen capture in Figure 2 shows XRMA remote 
access.  In the web browser window, on the right, is the 
remote desktop session.  The INCA software is shown 
with a region of interest defined by a green rectangle on 
an image of the sample.  The video stream from the SEM 
control computer is visible in the bottom right corner. 

 

Figure 2: Screen capture of remote access to the x-ray microanalysis system using Science Studio. 
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Web Application 
The XRMA remote interface has two main components.  

The first component is access to the XRMA computer 
using remote desktop.  The second is a web application 
that provides the integration with Science Studio.  In 
Figure 1, this is represented by the Nanofab Servlet. 

The web application is a rich interface implemented 
using the Ext [7] JavaScript framework.  In Figure 2, the 
web application is shown on the left.  The web application 
serves two important functions.  It allows the user to 
initiate a remote desktop session with either view-only 
access or full access to the XRMA computer.  And 
secondly, it allows the user to upload data from the 
XRMA computer to the Science Studio experiment 
management system. 

When the user acquires data on the XRMA computer 
using INCA, they save the experimental data files to a 
network file share that is hosted on the Science Studio 
server.  Then the web application is used to select the files 
from this share for upload into Science Studio.  This will 
create a scan object within the experiment model.  

Members of the project team can then access these files 
by selecting this scan in the project navigator.  The 
project navigator is shown in Figure 2 on the left side of 
the web application. 
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CLS USER SERVICES WEB PORTAL* 

D. Medrano#, L. Carter, D. Maxwell, CLS, Saskatoon, SK S7N 0X4, Canada

Abstract 
The Canadian Light Source (CLS) User Services Web 

Portal is a collection of web applications that allows users 
and staff to manage experiment proposals, complete 
safety training and submit end-of-run surveys. Each user 
wanting beam time must submit a proposal describing 
their experiment. Once submitted, the proposal goes 
through a peer-review process where it is either approved 
or rejected. All on-site personnel are required to complete 
safety training. Staff and users are provided with training 
modules which are completed online. Most training 
modules consist of two parts: the presentation and the 
exam. The exams are graded automatically and the results 
are stored. At the end of each run, users are encouraged to 
complete an online survey. The survey gives users the 
opportunity to provide feedback on what was good about 
their CLS experience and what can be improved to 
provide them with better service. This paper will give an 
overview of the design, implementation and capabilities 
of web portal. 

INTRODUCTION 
The CLS is an international research facility with a 

large number and variety of visitors, including students, 
scientists and contractors. Access to the facility is based 
on three different roles: users, staff and contractors. Users 
are scientists that come from all over the world to run 
scientific experiments on the beamlines, collect data and 
publish results. Staff operate and maintain the facility and 
support users in their research. Contractors are personnel 
hired by the staff for a certain amount of time to complete 
a task. Contractors can range from labourers to project 
managers.  The goal of the portal is to provide a user 
friendly and maintainable system to store information 
associating people with these roles. 

PORTAL ARCHITECTURE 
Figure 1 shows the architecture of the web portal. It 

consists of six parts. The first part is the Apache Tomcat 
servlet container. It is in charge of hosting the four web 
applications which are the main focus of this paper. These 
web applications include: training, proposal submission, 
end-of-run survery and proposal information Application 
Programming Interface (API). The second part is the 
Microsoft Active Directory (AD) server. Its purpose is to 
store all user, staff and contractor login information. 
Usernames and passwords are authenticated against AD 
when someone logs into the portal. All communication to 
AD is done through the Lightweight Directory Access 

Protocol (LDAP). The third part is the MySQL database 
server. It contains multiple databases for storing training, 
proposal, and end-of-run information. Java Database 
Connectivity (JDBC) is used to communicate with the 
server. The fourth part is the workflow engine. The 
workflow engine is used to create the peer-review process 
a proposal must go through once it is submitted. 
Workflows are created using the Yet Another Workflow 
Language (YAWL) [1] and communication is done 
through the Simple Object Access Protocol (SOAP) [2]. 
The fifth part is other web systems that make use of the 
proposal information API. Communication is done 
through HTTP using Representational State Transfer 
(REST) [3]. The last part is the web browser which an 
end-user uses to access the web portal. 

 

 
Figure 1: Architecture of the web portal. 

TRAINING WEB APPLICATION 
Any person coming to or working at the CLS that 

requires unescorted access must successfully complete 
and maintain their training. There is a standard set of 
training modules everyone must complete depending on 
their role. Users, staff and contractors use the web 
application to complete training and review training 
history. When someone takes an exam, a test is generated 
from a bank of questions in the database. Once a test is 
submitted, it is marked automatically by the system and 
the results are recorded. If a person fails the test they must 
retake it. Staff with the role of administrator use the 
application to create, edit or delete training modules, 
generate training reports, create new logins, manually 
enter training scores and manage training groups and 
roles. 

 The training application is written in Java using the 
Spring Model-View-Controller (MVC) [4] web 
framework. MVC is an architecture pattern that isolates 
domain logic from input and presentation. Figure 2 shows 
the breakdown of the application. 

____________________________________________  

*Work supported by CANARIE under R&D project NEP-01 and 
performed at the CLS which is supported by NSERC, NRC, CIHR and 
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Figure 2: Structure of the training application. 

 
The first layer is the Model. The model is made up of 

the database schema, XML maps, data access objects, and 
Java domain objects. The database schema is 
implemented in MySQL. The domain objects are the Java 
representation of the database tables and they are mapped 
together by XML files called maps. This is done with a 
persistence framework called iBATIS [5]. The data access 
objects use the XML maps to fetch and store domain 
objects into the database. 

The second layer is the Controller which contains 
controllers and backing objects. Controllers are small 
pieces of code that capture end-user input by handling 
HTTP requests and performing tasks. The backing objects 
are Java objects that do not fit in the model but help with 
getting data to and from the end-user. 

The last layer is the View which consists of JavaServer 
Pages (JSP), JavaScript and AJAX. The JSPs use the 
JavaServer Pages Standard Tag Library (JSTL) to render 
Java objects and data in HTML. The JSPs also use 
JavaScript and AJAX to provide the end-user with a more 
rich and dynamic user interface (UI). 

PROPOSAL SUBMISSION WEB 
APPLICATION 

The proposal submission application allows users to 
create and submit proposals. When creating a new 
proposal, the user must fill out all required information. 
Examples of the information they must fill out include: 
type of proposal, name of proposal, funding sources, 
research team, scientific merit, beamline(s) they wish to 
use, safety hazards, and equipment they wish to bring. 
Once the proposal is submitted, reviewers are assigned. 
The proposal goes through a number of reviews. For 
example, a beamline scientist does a technical review to 
see if the experiment is feasible on the beamline. If the 
proposal passes all its reviews, a final grade is assigned 
and beam time is allocated. Administrators use the 
application to manage proposals, beamlines, endstations, 
equipment and cycles. 

The proposal submission application is written in 
Groovy [6] and Grails [7]. Groovy is a dynamic object-
oriented programming language which runs on the Java 
Virtual Machine (JVM). Grails is an open source web 
application framework which uses Groovy. The 
application is divided into three reusable Grails 
components called plugins. These plugins include 
clsDomain, clsAdmin and clsStaff. The clsDomain plugin 
contains the domain model, meaning that it has all the 
Groovy objects and relationships between them. The 
clsAdmin plugin contains controllers and views that 
administrators use. The clsStaff plugin has the controllers 
and views that staff and users use. Both the clsAdmin and 
clsStaff plugins use the domain model from the 
clsDomain plugin. 

Grails uses Grails Object Relational Mapping (GORM) 
to generate the database schema and to map the database 
tables with the domain objects. This is done by Hibernate 
[8] which is an object-relational mapping library and 
persistence framework. Figure 3 shows the database 
schema generated by the GORM. All the views are done 
using GroovyServer Pages (GSP). GSPs are very similar 
to JSPs but use a different tag library. 

 

 
Figure 3: Database schema for the proposal submission 

application. 

END-OF-RUN SURVEY WEB 
APPLICATION 

In order to provide the CLS with feedback, users are 
encouraged to fill out an online survey about how well 
their research went while using the facility. The survey 
consists of a list questions split up into sections. Each 
question is multiple choice, but there are also some text 
fields where additional comments can be made. Once a 
user submits the survey, the feedback is shared with 
beamline scientists, the Director of Research and 
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appropriate departments. This helps CLS staff identify 
areas where improvements can be made to provide users 
with better service. Administrators gather all the feedback 
to generate reports for the Users’ Advisory Committee. 

The end-of-run survey application is implemented 
using Spring MVC. It has the same structure as the 
training application. However, the domain model is very 
simple consisting only of two objects. 

PROPOSAL INFORMATION WEB API 
There are some other software systems at the CLS that 

are interested in having proposal information. The 
proposal submission web application already captures this 
information so it would be beneficial for it to share it 
instead of having each system duplicate and store the 
same information. In order for it to make the information 
accessible, a web API is being developed. 

An example of another system that needs proposal 
information is the Canadian Macromolecular 
Crystallography Facility Laboratory Information 
Management System (CMCF LIMS) [9]. It is a web 
application for managing sample, shipping and 
experiment information related to macromolecular 
crystallography experiments at the CLS. It assists users to 
prepare crystal samples for shipping, request experiments 
to be performed automatically, manage experimental 
parameters, inspect and download experiment results. 

When a user wants to do an experiment on the CMCF 
beamlines, they submit a proposal using the proposal 
submission web application. Once they have been 
allocated beam time they use the CMCF LIMS to manage 
their experiment. The LIMS requires certain information 
from the proposal, such as, proposal ID and primary 
contact person information. Instead of having the user 
enter that information again the LIMS uses the API to 
fetch it from the proposal submission database. 

The proposal information API is implemented in Grails 
as a RESTful web service. The API uses the domain 
model from the clsDomain plugin but implements its own 
controller. When a system wants to fetch data, it sends an 
HTTP request to a resource backed by the controller. The 
controller handles HTTP request, looks up the 
information and formats it in JavaScript Object Notation 
(JSON) and sends it to the requestor. In order to protect 
sensitive data, the requestor is authenticated before the 
request is handled. Currently the API is read-only, 
meaning that data can only be read from and not written 
to the database. 

SUMMARY 
The design, implementation and capabilities of the web 

portal have been discussed at a very high level. Currently 
both the training and end-of-run survery web applications 
are being used in production. The end-of-run survey was 
deployed in January of 2008 and the training application 
in January of 2010. Both the proposal submission 
application and proposal information API are still in 
development. 
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EPICS DATA ACQUISITIO  SOFTWARE AT THE CLS 

G. Wright, R. Igarashi, Canadian Light Source, Saskatoon, Saskatchewan, Canada 

Abstract 
The Canadian Light Source (CLS) Data Acquisition 

library provides a simple scan and store interface for CLS 
beamlines. Originally intended as a tool for testing and 
commissioning, it has been used in QT and GTK+ user 
applications at the beamlines. The current version 
supports dynamic loading of custom output modules to 
allow re-definable data transport methods and multiple 
simultaneous output formats. 

I TRODUCTIO  
During the construction phase of the initial beamlines 

at the CLS, the need for a simple graphical user interface 
to perform simple motion control and record results 
became apparent. An application was written using the 
GTK+ toolkit.  As time progressed, the scanning code 
was moved into its own library, and this library provides 
the building block for a number of applications at CLS 
beamlines. These applications now provide a signification 
portion of the data acquisition toolkit available at a 
number of the CLS beamlines. 

KEY FEATURES 

Configuration 
A simple configuration file defines the scan and data 

collection (events). 
All data acquisition structures can be accessed and 

manipulated by the calling program. Standard 
configuration files can be used to define the initial scan, 
and with simple data structure manipulation the 
acquisition can be modified without requiring a custom 
configuration file. 

All Process Variables and range values for acquisition 
can be specified by macro strings. Again, a standard 
configuration file can be updated for different data ranges 
without dealing directly with the configuration. 

The data output stream is passed to Output Handlers 
to determine where and how the data is dealt with. This 
provides the opportunity for customized handling for new 
data formats or visualization without rebuilding the 
library. 

All scans and events run in independent threads. This 
allows simultaneous collection of data or recording of 
large data sets simultaneously with a positioner update. 

Scans and Events 
The acquisition library has two main components. The 

first component, the scan, is the definition of the control 
for the experiment – typically moving a device, and then 
requesting a detector to detect. A single scan typically 
only controls a single device. Scans can be nested, 
allowing multi-dimensional scans. 

The second component is the event. An event is 
triggered from a scan, typically when a detector has 
finished reading. The event collects data from a list of 
process variables and requests an Output Handler to deal 
with the data. 

Output Handlers 
The section of code that generates the most controversy 

is the part that defines the output data format. In the data 
acquisition library, this part of the code has been 
generalized to a set of function calls that can be set at run 
time. An object-oriented “factory” for creating links to 
different handlers interfaces different data formats and 
different data transports to the acquisition library, 
allowing a great deal in flexibility on the calling 
applications’ part to deal with new display and storage 
requirements, and even allow multiple simultaneous data 
files to be written in different formats. 

The second benefit of using output handlers is that any 
viewer becomes generalized, and can either be integrated 
directly in the application (as was done for the Motor 
Scan screen in IDA (Interactive Data Acquisition, 
described later) or streamed to an independent application 
(such as BLGraph or Grace). 

The output handlers have two components: the data 
format, and the data stream. The data format defines the 
appearance of the data, whether it’s a simple comma 
separated value text output, or a compact binary output. 
The data stream is the destination, such as a data file, a 
named pipe, or a TCP/IP port. 

Each instance of an output handler has a set of 
properties that can be updated through a standard 
application interface. An application can obtain 
information on properties and allow these to be controlled 
directly by the user, so new handlers can be configured 
without needing to update the user interface software. 

Data Visualization 
The primary tool used for data visualization with the 

acquisition library is BLGraph. This ROOT-based 
display tool is highly configurable. Dynamic selection of 
data fields for display, and manipulation of multiple fields 
with functions, as well as customizing configurations for 
quick set up of standard acquisition runs makes this a 
good match for acquisition library. As well, previously 
recorded data can be retrieved and viewed. 

 

APPLICATIO S 

QT Widget Support 
The Qt Widget library from Nokia offers a powerful 

Rapid Application Development tool (designer) and the 
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ability to create new widgets that inherit from existing 
widgets to be used directly with designer. The acquisition 
widget has signal and slot support for the main 
functionality of the acquisition library.  

The Data Acquisition GUI 
The early separation of the acquisition library from the 

GUI has, in many ways, allowed more features to be 
added to the GUI. Initially written as a GTK+ application, 
the GUI was rewritten using QT. 

IDA 
The IDA application was written to handle fairly 

standard synchrotron beamline scans. In addition to 
setting run parameters for data acquisition, it also includes 
simple positioner scans (usually used to position a sample 
before scanning), run time estimates, detector selection, 
and callouts for energy detuning. The application has no 
hard-coded Process Variables: it uses a macro definition 
file to determine Process Variable names. This has 
allowed quick setup of synchrotron experiments at other 
beamlines. 

IDAV 
IDAV is customized for each beamline it runs on 

(currently SGM and SXRMB beamlines at the CLS). This 
minimizes the number of applications that need to be 
running to control and monitor the beamline while data 
acquisition is in progress. 

Science Studio 
The Science Studio project being developed at the CLS 

uses the acquisition library. This is currently in use at the 
VESPERS beamline. 

nD Scanner 
The nD scanner grew out of testing the multi-

dimension scanning of the acquisition library and the 
ROOT support for the acquisition library. The application 
was originally intended as a commissioning tool, but has 
grown into an application for end-user data collection. 

CER  ROOT SUPPORT 
ROOT supports dynamic library loading. By providing 

a C++ class that calls the acquisition library, many of the 
ROOT features – including a C++ interpreter – are 
available when using the library. The rich display 
capabilities of ROOT make for quick work building a 
custom viewer which extends beyond the capabilities of 
existing viewers. 

RECE T DATA CO FIGURATIO  FILE 
CHA GES 

One of the most common pieces of code rewritten in 
each application is an input parser. Using an XML-
compliant configuration file gives greater flexibility in 
input formats, and makes it easier to adapt to future 

changes in file format. The greatest potential is recording 
of property values for output handlers, avoiding separate 
configuration files for the output handlers or having a 
higher-level application need to rewrite the save-and-
restore of output handler properties. 

GOI G FORWARD 
Any system has many opportunities for improvement. 
• Despite the gain of a simple configuration file to 

describe a complex data scan, there are still many 
opportunities for streamlining the configurations. To 
this end, support for partial configuration file 
loading would allow a configuration file per detector 
(or detector type) that would set up and read back 
data without knowing the type of experiment, and a 
partial file that knows how to run a scan for a 
beamline (but not know the type of detector) to 
quickly and easily expand the capabilities of a 
beamline when a new detector is added. The 
possibility exists that multiple detectors could be 
easily used together without an additional 
configuration being manually created. 

• Expanding the possible actions to include calls to a 
language interpreter (e.g. python) would give greater 
dynamic capabilities to scans. 

• Adding a python module to call the library would 
give benefits very similar to ROOT, but 
approachable to individuals who are familiar with 
python but not with ROOT. 

• Scan types that aren’t based on a start and end value, 
but rather some other condition would improve the 
simultaneous scan capability to have a master ‘scan’ 
with simultaneous scans that would recognize the 
completion of the master scan. 

• Creating a ‘sscan’-type EPICS record would allow 
embedding the scan in EPICS applications when 
necessary. 
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CLS LINAC SAFETY SYSTEM UPGRADE 
 

Hao Zhang, Elder Matias, Grant Cubbon, Carmen Britton, Robby Tanner, Carl Finlay          
Canadian Light Source Inc., Saskatoon, Canada 

 
Abstract 
  The Canadian Light Source (CLS) upgraded the safety 
system for Linear Accelerator (Linac) in October 2009. 
IEC 61508 SIL 3 certified components and methods were 
adopted in the development of the new system. This paper 
outlines major aspects of the upgrade. 

INTRODUCTION 
  In the CLS, Access Control and Interlock Systems 
(ACIS) are used in restricted areas to protect personnel 
from radiation hazards. In the Linac area, a legacy ACIS 
was used since 1980’s until October 2009. The system 
was based on early Micro84 Programmable Logic 
Controller (PLC).  Given the age of the system, difficulty 
in procurement of spares as the vendor had discontinued 
support for the platform; a decision was made to upgrade. 
Another reason is the old AICS used 120 VAC whereas 
CLS has adopted 24 VDC for all other control systems. 
The upgrade ensures the Linac ACIS is consistent with 
other systems in the facility. All the old sensors, wirings, 
components, and PLC units were removed. The new 
ACIS was redesigned and built from scratch. 

  The new ACIS adopts a two-level, redundant protection 
mechanism which consists of two independent chains, 
one governed by a safety-rated PLC system providing 
SIL-2 as defined by IEC 61508 [1], and a relay-based 
hardware logic to provide diversity for safety functions. 

  The system controls access to an area divided into 6 
lockup zones [2]. The zone layout was also changed in the 
upgrade. The zones contain the electron gun, accelerator 
sections, switchyard, LINAC-to-Booster Transfer Line 
(LTB), the LTB/Booster Ring (BR1) interface and some 
adjacent areas including the BR1 RF cavities.   

  Fundamentally, all lockup zones operate in the same 
principle, each having its own Emergency Off Stations 
(EOS), Door Interlock Switches (SWDI), Lockup Stations 
(LUS), zone lockup lights (ZLL) and horns (HRN).  

BACKGROUND 

Regulatory Context 
  CLS holds a Particle Accelerator Operating Licence 
(PA1OL-02.00/2012) issued by the Canadian Nuclear 
Safety Commission (CNSC) to operate as a Class 1B 
facility; as a result the definition of internal process is left 
to the CLS with the CNSC providing review, oversight, 
and audition. 
Project Plan/Management 

  The upgrade was carefully planned and documented. 
The plan identifies project objectives and goals, specifies 
the upgrade scope, lists standards and guidelines for the 
development, and defines roles and responsibilities of 
team members. The plan also includes work structure 
breakdown, budget, timelines, and a list of documents 
need to be generated or modified. The plan served as the 
guiding document during the development process. 

Safety System Development Process 
  The upgrade followed a V-model variant for safety 
system development. 

 
Figure 1: Safety System Development Process 

 The process starts with the hazard analysis, based on 
which requirements and specifications are generated, and 
design and implementation naturally followed from there.  
Testing was performed in all stages. Respectively, 
integration and unit testing verify the design meets the 
requirements and the installation is done as the design. 

Hazard Analysis 
  Since the layout of Linac lockup zones was to be 
changed, a Hazard Analysis (HAZAN) [3] was necessary 
to identify the hazards and associated mitigations required 
with regard to the proposed redesign and upgrade. This 
was performed by the Health, Safety, and Environment 
(HSE) department of CLS. The document issued was used 
as input to the following development stage. 

Requirements  
  The hazards which have been identified and allocated to 
the ACIS for mitigation in the HAZAN were then 
examined and refined to generate requirements for the 
ACIS. Other internal or external guidelines, such as 
human factor guideline [4] and Canadian Electrical Code 
were also incorporated as requirements in this stage. 
Operation experience on the old Linac ACIS and other 
ACISs was also taken into consideration.   A design 
manual was generated to document all requirements. 
Linac lockup zone layout drawings were generated to 
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capture detailed requirement and design information. The 
drawings show zone configurations and lockup paths. All 
components were identifies and numbered, which makes 
an IO count possible and  perfect input document for 
wiring diagrams. 

FUNCTIONS 
  The Linac ACIS provides four major functions: secure, 
lockup, annunciation, and interlocking. As mentioned, the 
system consists of two separate chains, each having their 
own inputs and outputs.The PLC chain provides all four 
functions; the relay chain provides redundant functions in 
safety critical aspects of secure and interlocking.  

Secure 
   A lockup zone is secured only when all the doors are 
closed and none of the EOSs is pressed. The secure 
function is implemented independently in both chains. 

  Limit switches are used to monitor door position. Each 
door has two physically independent switches for 
signalling the two separate chains.  

  An EOS consists of an emergency off button, a reset 
button, and three mechanically-interlocked and latching 
contacts - two normally close contacts for signaling the 
two chains and one normally open contact for activating a 
local red LED when the EOS is pressed. If the emergency 
off button is pressed, all contacts remain latched and the 
red LED remains on until the reset button is pressed. 

  Linac is interlocked if any of the zones are not secured. 
The redundant design ensures even component in one 
chain fails, the other still functions to interlock the Linac. 
Lockup 
  A zone is considered locked up only when the lockup 
sequence, designed by the HSE for each individual zone, 
has been performed successfully in this particular zone. 
Two inspectors are required to perform the sequence, 
which involves walking through a prescribed path within 
certain time limit to ensure every part of the zone is 
inspected in a timely manner. 

  LUSs are installed in selected locations to ensure the 
path is followed and the process is timed. Each LUS has a 
lockup button for signalling the PLC chain, and a green 
LED to provide visual indication to the inspectors.  

As an administrative procedure, the lockup sequence is 
performed by inspectors and redundantly verified by the 
PLC. As the complexity of a system increases, so does the 
potential to introduce errors and possibly hazards. 
Implementing the multiple sequences in hardware is more 
likely to introduce error and potential hazards than it is to 
provide extra protection. Therefore, lockup function is 
implemented only in the PLC chain.  

Annunciation 
  Horns and flashing lights are used to provide audible and 
visual annunciations. 

Interlocking  
  Linac is interlocked from both chains through multiple 
permissive channels, such as Linac RF and gun triggers, 
RF source switch, etc., to avoid single failure point. 

Figure2: implementation of secure and lockup functions  

HARDWARE 
PLC Configuration 
  Siemens AS414-4H processor was selected for the CPU. 
With the fault-tolerant run-time license installed on the 
processor, the built-in fail-safe run-time logic is activated. 
Password protection is also activated to protect the 
processor from re-programming. 

  SIL-3 certified modules with internal diagnostics and 
redundant circuitry are used for field I/O.  These modules 
are installed in remote I/O stations communicating with 
the CPU over Profibus using the PROFISAFE protocol. 
Fibre-optic cable is used for data link. This configuration 
is based on accepted practice for SIL-3 applications as per 
IEC 61508. The protocol is deterministic and failsafe 
when used with failsafe hardware.   The use of distributed 
I/O via fibre-optic cable provides electrical decoupling of 
the system, thus avoiding problems associated with 
running signals over long distances. Given potential 
problems with ground loops, EMI noise and signal 
degradation using conventional means, this architecture is 
more reliable and safe. 

Field Wiring 
Most of the field wirings are located in the basement 
Linac hall, where leaking underground water at certain 
locations can cause problem. Proper NEMA type 
enclosures were carefully chosen for PLC panels, junction 
boxes, EOSs, and LUSs to achieve water protection. For 
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the same reason, field instrumentations are wired using 
water-proof multi-conductor armoured instrumentation 
cables, which run in dedicated conduit with distinct color 
and not shared with other systems or equipment. All field 
components are CSA approved. 

SOFTWARE 
  The PLC programming toolset is Siemens SIMATIC 
Manager, using Continuous Function Chart (CFC), a 
graphical language involving interconnecting elementary 
Function Blocks (FB) to implement control logics. 

Program Structure 
  The code is structured hierarchically following the actual 
lockup zone layout. A folder is assigned to each zone, and 
each zone folder has three CFC charts, which can be 
considered as programming logical sections. The three 
charts contain codes to monitor and control EOSs, doors, 
and lockup sequence respectively. Another folder 
assigned to control room and contains charters for zone 
status summation and interlocking. 

 
Figure3: Program hierarchy structure 

Failsafe Code 
  Safety critical codes are developed using TÜV-certified 
function blocks from S7 Fail-Safe Systems Library to 
ensure fail-safe feature. All failsafe codes are assigned to 
Organizational Block (OB) 35 by default and are 
executed cyclically every 100ms in runtime. 

  Siemens allows developers to create their own standard 
or failsafe FBs. In CLS, FBs for typical ACIS functions 
were developed in earlier projects and a CLS ACIS block 
library are created to save them. In the Linac upgrade, 
some CLS made FBs were reused and some new FB’s 
were developed and added into the library.  

Simulation 
  The ACIS program had been tested thoroughly using 
Siemens software simulator, PLCSIM, before it was 
downloaded to the CPU for on-line testing. Since the 
system involves only On/Off variables, software 
simulation is sufficient to test the control logic. 

Version Control 
  For safety system software, it is critical to ensure correct 
version is loaded on the processor. Siemens S7 F system 
provides safety program signature to uniquely identify a 
particular state of the safety program. Generally speaking, 
a 32-bit number known as the signature is generated 
across all the fail-safe blocks of the safety program at the 
end of the compilation phase. 

   In CLS, MKS Source Integrity is used for software 
version control. Versions of the ACIS program at 
different development and maintenance stages are saved 
in the MKS repository. With the signatures as identifiers, 
we can easily locate the correct version for download. 

VALIDATION AND VERIFICATION 
  A Validation and Verification (V&V) procedure was 
developed to examine if the operation of the ACIS within 
specifications as outlines in requirements and design 
documents. The overriding approach to the testing 
methodology is a meticulous and exhaustive series of 
tests to ensure that the system operates as required. The 
V&V was performed by HSE personnel before the system 
was approved for operation. Any modifications to the 
system after the V&V will cause the V&V procedure 
being updated and the V&V has to be performed again. 

CONCLUSION 
  The new ACIS was approved for operation in October 
2009. Couple of lessons have been learned. Thorough 
planning and complete documentation in the initial 
project stage was the key for timely completion. A great 
portion of early development time went on clearly 
identifying, defining, and visualizing requirement details 
in the zone layout drawings and in design manual. This 
turned out increased the efficiency in the following 
phases. In the implementation stage, hierarchical program 
structure provided better readability and made it easier for 
future Siemens WinCC Graphical User development. 
Reuse of ACIS FBs reduced programming time. The 
development of new FBs expanded the block library for 
future projects. The CLS will continue to use a relay-bsed 
chain to backup simple, life-safety functions.  
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FEC IN DETERMINISTIC CONTROL SYSTEMS OVER
GIGABIT ETHERERNET

Cesar Prados Boda, Tibor Fleck, GSI, Darmstadt, Germany

Abstract

Forward Error Correction (FEC) is a technique for re-
covering from bit errors and frame losses in real-time net-
work applications. Classic recovering strategies, like TCP
retransmission, are not suitable due to delay, timing and
bandwidth constraints. In this paper, we introduce the FEC
technique in a novel deterministic fieldbus, White Rab-
bit [1] (WR). WR is developed over frame-based computer
networking technology, Gigabit Ethernet, GbE. WR pro-
vides an effective and resilient way to serve as a determin-
istic data transfer medium and to interconnect large dis-
tributed systems, like Control Systems for Particle Accel-
erators. The reliability of WR falls on the FEC, which pro-
vides the means to guarantee that only one control message
per year will be lost or irretrievable as a result of the Bit
Error Rate of the physical medium (fiber optic or copper).
We propose in this paper a FEC base on LDPC [2], and tai-
lored for broadcast communication in switched networks
over noisy channels without retransmission.

INTRODUCTION

Control systems have distributed nodes that need to be
connected under specific operation constraints: synchro-
nization accuracy, determinism, bandwidth limitation etc...
Besides, the medium over which the communication hap-
pens, is a noisy channel where the bits of the frame could
be erased or modified. Also, the switches used to propa-
gate the information can mislay or dump such information
as a result of collisions in the routing process. So as to en-
sure an adequate performance of a control system, it has to
be endowed with a mechanism capable of overcoming the
errors in the communication. Such mechanism is called
Frame Error Protection (FEP) and among the different al-
ternatives, in this paper the Forward Error Correction will
be discussed. We present the groundwork of an underway
research to provide high reliability to time-critical control
systems based on GbE and switched networks. The paper
is organized in three sections. The first section presents the
framework where the FEC is being developed, WR Project,
and its boundary conditions. The second section presents
how these boundary conditions affect the transmission of
data over GbE. In the final section, we analyze the whole
scenario and present a FEC scheme to ensure the required
reliability.

CONTROL SYSTEMS AND WHITE
RABBIT PROJECT

WR is a solution to the generic problem of transferring
data in a fast, deterministic and safe manner. WR Pro-
tocol (WRP) [4] allows the delivery of timing and con-
trol data over a Gigabit Ethernet LAN. WR can be seen
as an extension of Gigabit Ethernet, which provides syn-
chronous mode, deterministic routing, bi-directional ex-
change of frames between nodes and precise delay mea-
surement.

The synchronous mode is achieved by using Syn-
chronous Ethernet along with IEEE 1588, PTP protocol.
This combination of protocols provide the means to dis-
tribute through the physical layer a common clock within
the entire network up to e.g. 2000 stations, allowing 1ns
synchronization and 20ps jitter. The frame transmission
delay between two stations will never exceed the sum of 64
byte clock cycle plus the propagation time in the longest
communication path of the network.

To distinguish between WR and other possible Ethernet
traffic in the network, two different frames are defined: SP,
Standard Priority frame, which is non-deterministic, and
HP, High Priority frame, which is deterministic. The latter
frame type is specified in the WRP network to transport
messages with the highest priority. HP are frames for time-
critical control data, as a consequence, they are routed with
lowest latency as possible, forcing fragmentation of non-
HP traffic if required. These frames have absolute priority
over SP frames and non-WR traffic to maintain low and
deterministic transmission delay.

Coming along with the protocol, compliant hardware is
being developed in order to support the protocol’s features.
There are three essential devices: White Rabbit Master,
which generates the HP frames and is master clock as well,
White Rabbit Switch and White Rabbit Receiver. As a con-
sequence of the device’s role and application requirements,
the number of units needed in a standard network will con-
sist of one WR Master, M WR Receivers, and NWRSwitch

with P downlink ports each.
WR allows different approaches to organize the topology

of the network depending on the specific requirement of the
applications. The strategy for data transmission is based on
the distribution from the master to all the other nodes of the
network, directly or indirectly according to a Star or Tree
topology. The HP frames will be broadcasted from the top
of the network, where the WR Master dwells, to the bottom
of the network reaching all the WR Receivers.

One of the principal features of the protocol is the notion
of determinism, used to guarantee the execution of events
within a certain period time. On account of the differential
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nature of the time, it is possible to create a slice of time
in which everything is perceived as deterministic, what it’s
called in WR jargon, Granularity Window, GW, [3]. Once
we define the span of determinism, size of the GW, WRP
provides the means to the transportation of the HP frames
and the execution of the events in the very same GW.

Table 1: Granularity Window for 100 μs

G
ra

nu
la

ri
ty

W
in

do
w ≈ 5μs Info Frame Preparation

t1 Coding
≈ 12μs Transmission

t2 Decoding
≈ 12μs Info Frame Interpretation
≈ 12μs Fail-safe time

GbE AND SWITCHING NETWORKS

Gigabit Ethernet [5] uses as a physical medium opti-
cal fiber or twisted-pair cable for sending Ethernet frames.
Such frames can be altered due to noise, interference, dis-
tortion or bit synchronization errors. The Bit Error Rate or
Bit Error Ratio (BER) is the number of bit errors divided
by the total number of bits transferred. If a bit error in
a frame leads to the complete loss of the frame, the Fig-
ure 1 illustrates that a frame would be lost in every 8 104

frames sent. It can be also deduced from the figure that
small frames are less susceptible to interference, as they are
statistically more likely to miss noise caused by internal or
external sources.

Figure 1: Bit Error Rate in GbE.

The BER can be considered as an estimation of the Bit
Error Probability (BEP) in a channel. The sample space
Ω of BER will be defined by the collection of all possible
outcomes, which means for a single bit:

Ω = E, NE , Error, Not Error (1)

and it is determined by the experimental results of the
physical medium.

Broadcast communication is a non thrifty method to con-
vey information in a switched wired distributed system, but
terrible effective for simple communication networks. As
we presented in the first section, the frames with control
events, HP frames, will be broadcasted from the Master
throughout the network in order to reach all the WR Re-
ceivers, even though the information is not relevant for all
receivers. The downside of this approach is a higher global
BER. The transport medium that physically consists of a
number N of wires, can be considered as an equivalent sin-
gle cable with a higher BER, as many times as wires are. In
other words, the BEP of the system as a whole, is the union
of all the probabilities of every single medium path. Since
the events defined by the BEP are not mutually exclusive,
the union of their probabilities is:

BERsystem = BEP (BEP1 ∪ ... ∪ BEPn) (2)

WR protocol is thought to be a full compliant extension
of Ethernet, therefore Cyclic Redundancy Check algorithm
is calculated and introduced into the HP frames according
to the standard IEEE 802.3 [5]. This field allows early de-
tection of header corruption during HP frame routing. If
the header is corrupted, it will be detected and this frame is
immediately dropped.

FORWARD ERROR CORRECTION

In the previous sections we presented the scenario for
which we are developing a FEP system for data transmis-
sion. In short, the master codes the information, adding
redundant bits to the frame. This allows the receiver to de-
code the frame, which implies the detection and correction
of errors. In addition the error control has to be able to deal
with the following requirements:

• Time constraints due to Granularity Window.
• No feed back channel and not retransmission.
• Stream of HP events within a Granularity Window.
• Recovery of lost and flawed frames.
• Small length of the frame .
• Fully Ethernet compliant.
• One lost frame per year.
• Code Hardware implementation.

The time constrains for WR disqualifies a great number
of slow FEC, like Reed Solomon,of which decoding time is
proportional to θ(k3), with k number of bits in the frame.
As can be seen in the Table 1, in a GW of 100 μ, the total
time available for coding and decoding is ≈ 70μs. Not only
the limitation of time, but also the limitation of upstream
traffic, rules out the possibility of positive/negative feed-
backs from receivers to sender and the retransmission of a
lost o flawed frame, like TCP. This fact reduces drastically
the range of suitable strategies. To some extend the GW
may limit the length of the frames as well. This reduces the
performance of some FEP algorithms that find their optimal
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operation with a minimum length. Moreover, the compati-
bility of WR with Ethernet forces the frame structure, dis-
allowing other suitable organization of the information in
the frame. Also, CRC introduces frame losses in the case
of an error in the header, disqualifying all the FEP based
on one frame transmitted and redundant date on it. The
only suitable strategy for WR, capable of overcoming and
achieving one lost HP frame per year, is the Forward Error
Correction in combination with a repetition strategy.

So as to reckon the magnitude of the problem, we
present a case where a WR network is made up of 2000
WR Receivers, WR Switches (1 up-link port and 15
down-link ports each) and one WR Master. There are
deployed 144 16-ports WR Switches, 1 up-link port
and 15 down-link ports. The connection among WR
Switches - WR Switches, and WR Master - WR Switches
is established by fiber optic with a BER of 10−12. The
connection among WR Switches - WR Receivers is
established by fiber optic as well, or copper cable, CAT-5
with a BER of 10−10. The frame consists of 23 bytes in the
header and 1000 bytes in the payload. The GW of the sys-
tem is 100μs, and in every GW only one frame will be sent.

The numbers of cables and global BER of the network is
detailed in Table 2.

Table 2: Global BER
No. FO . No. CAT-5 BER FO. BER CAT-5

FO 2144 – � 2.144 10−9 –
FO & CAT-5 144 2000 � 1.44 10−9 � 2 10−7

Hence, the probability of getting at least one bit error in
the header of the frame P (be header), is expressed by:

P (be header) =

bits header∑

n errors=1

(
bits header

n errors

)
BERn errors

· (1 − BER)frame length −n errors (3)

The probability of getting at least one error in the header
of the frame and not in the body can be fairly understood
as the Frame Loss Ratio, since a frame with a single error
in the header will be always dropped. Through the course
of one year, according with the wording of the case, there
are 3.145 1011 windows. It leads to assume that within one
year the system will suffer 12.4 104 losses using fiber optic
and 11.5 106 using fiber optic and CAT-5.

Table 3: Lost Frames in One Year
P At least one Error in Header Frame Lost per Year

Fiber Optic 3.94 10−7 12.4 104

Fiber Op. & CAT-5 3.67 10−5 11.5 106

This scenario shows that the coding scheme has to guar-
antee that a control information frame reaches the receivers
even if during the routing the header is been corrupted and

dropped. The quick and first answer to this quandary would
be to use a repetition scheme. Repetition code repeats bits
across a channel to achieve error free communication. Rep-
etition generally offers a poor compromise between data
rate and bit error rate. The main attraction of the repetition
code is the ease of implementation and straightforward de-
coding process in case of free errors communication , oth-
erwise, the Maximum Likelihood algorithm has to be used
to determine which symbol was transmitted. We have per-
formed simulations where it has been proved that this strat-
egy alone is not suitable. Furthermore, we have evaluated
others codes, without success, like Convolutional, LT or
Raptor Code. The first code doesn’t fullfil our time require-
ments and the last two codes are protected under patent, or
Therefore the current research is aimed to develop a clever
scheme of repetition in combination with the codes Low-
Density Parity-Check (LDPC) to protect the information as
well. LDPC codes is a class of linear block code and are
defined by a sparse Parity-Check matrix, Hmxn, the en-
coded bit string, Ym and a given bit string Xm . This sparse
matrix is often randomly generated, subject to the sparsity
constraints, which contains only a few 1’s in comparison to
the amount of 0’s.

Yn = Hm,n ∗ Xm (4)

The main advantage of LDPC is the close performance
to the capacity for a lot of different channels and linear
time complex algorithms for decoding. Furthermore they
are suited for implementations that make heavy use of par-
allelism. The algorithm used to decode LDPC in our case
is the belief propagation algorithm.

The testing implementation of the FEC is developed in
VHDL and integrated on the nodes. The test-bed is set
up with several WR Switches, providing the networking
infrastructure, the WR Master prototype will generate the
encoded frames and a WR Receiver prototype will decode
and check the integrity of the data. In order to alter the
normal behavior of the channel, the cable and nodes will be
subjected to artificial noise and errors. From this research
is expected to find out and tune up the best parameters for
the repetition strategy and the best structure of the Parity-
Check Matrix.
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LLRF CONTROL SYSTEM UPGRADE AT FLASH 
V. Ayvazyan, K. Czuba, Z. Geng, M. Grecki, O. Hensler, M. Hoffmann, M. Hoffmann, T. Jezynski, 

W. Koprek,  F. Ludwig,  K. Rehlich,  H. Schlarb,  C. Schmidt,  S. N. Simrock,  H.-C. Weddig 
DESY, Hamburg, Germany

Abstract
The Free Electron Laser in Hamburg (FLASH) [1] is a 

user facility providing high brilliant laser light for 
experiments. It is also a unique facility for testing the 
superconducting accelerator technology for the European 
XFEL and the International Linear Collider. As a test 
facility, the accelerator undergoes a constant modification 
and expansion. The last upgrade was started in autumn 
2009 and has finished recently [2]. The beam energy is 
increased to 1.2 GeV by installing a 7th superconducting 
accelerating module. The new module is a prototype for 
the European XFEL. In order to increase the free-electron 
laser (FEL) radiation intensity by linearization of the 
beam phase space the 3rd harmonic superconducting RF 
cavities are installed in the injector. The old DSP based 
LLRF control system [3] has been completely upgraded 
to latest generation controller boards, down-converters for 
higher intermediate frequency, algorithms like beam 
loading compensation, feed-forward waveform 
generation, etc. are improved. In order to improve the 
reference frequency signals the master oscillator and 
frequency distribution system has been upgraded as well. 

INTRODUCTION
The FLASH injector consists of a laser-driven 

photocathode in a 1.5-cell RF cavity operating at 1.3 GHz 
with a peak accelerating field of 40MV/m on the cathode. 
The electron injector section is followed by a total of 
seven TESLA type 12.2 m long accelerating modules 
each containing eight 9-cell superconducting niobium 
cavities.  The accelerating gradients of the cavities are 
typically between 20 MV/m and 25 MV/m. Four cavities 
of sixth module and seventh module are providing 
gradients above 30 MV/m. The accelerating modules are 
powered by four RF stations consisting a klystron (tree 5 
MW klystrons and one 10 MW multi-beam klystron), a 
high voltage pulse transformer and a pulsed power supply 
(modulator). In addition, the RF gun has its own RF 
station with a 5 MW klystron. The gradient and phase 
accelerating field (vector sum) of the RF gun and the 
accelerating modules are controlled by dedicated LLRF 
regulation system which has been completely upgraded 
during shutdown period.  The FEL radiation is provided 
by 30 m long undulator section. The undulator consists of 
periodic structure of permanent magnets which have a 
fixed gap of 12 mm. The wavelength of the FEL radiation 
depends on the energy of the accelerated electrons. It can 
be tuned between 4.3 nm and 120 nm.   

After the upgrade a successful operation of FLASH at a 
wavelength of 4.45 nm has been achieved [2]. For 4.45 
nm radiation wavelength the accelerator provides beam 
energy of 1.207 GeV.  

PRINCIPLES FOR LLRF CONTROL 
The RF system signal flow is shown in figure 1. The 

cavity probe signal is converted from the cavity frequency 
of 1.3 GHz to an intermediate frequency (IF) of 250 kHz 
for superconducting modules and 54 MHz for 3rd

harmonic module. This lower IF holds the original 
amplitude and phase information of the field inside the 
cavity.

FLASH/XFEL
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Figure 1: Architecture of the LLRF system. 

It is digitized with ADCs (sampling rates of 1 MHz or 81 
MHz are used). The digitized signal is going to the digital 
field detector which extracts the I and Q components out 
of the input stream. We use two different methods: IQ-
sampling and so-called non-IQ-sampling or IF-sampling. 
The resulting field vector of each cavity is multiplied by a 
rotation matrix to calibrate amplitude and phases. Finally 
the field vectors of 8 cavities are summed up for the 
vector sum of a whole cryogenic module, and those of 2 
cryogenic modules are summed up to the vector sum of 
the RF station which is driven by single klystron. The 
vector sum of the 16 cavity fields represents the total 
voltage and phase seen by the beam. This signal is 
regulated by a feedback control algorithm which 
calculates corrections to the driving signal of the klystron. 
The measured vector sum is subtracted from the set-point 
table and the resulting error signal is amplified and 
filtered to provide a feedback signal to the vector 
modulator controlling the incident wave. A feed-forward 
signal is added to correct the averaged repetitive error 
components. Beam current information (measured by 
toroids) is used to scale the feed-forward table to provide 
fast feed-forward corrections if the beam current varies. 
The cavity detuning is determined from forward power, 
reflected power, and probe signal and is used to control 
the fast piezo tuners to reduce cavity detuning errors to 
less than a tenth of the cavity bandwidth.  
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DIGITAL FEEDBACK HARDWARE 
After upgrade RF Gun and all accelerating modules are 

controlled by similar modern FPGA based controller 
boards with unified firmware and software. The digital 
feedback hardware consists of Simcon-DSP board (figure 
2) which has a VME interface, 10 ADCs to read the 
intermediate frequency signal from the field probe 
signals, FPGAs (Xlinnx Virtex II Pro) and DSPs (Tiger 
Sharc) to execute the control algorithms and 8 DACs, 2 of 
them drives the vector-modulator for field control. Other 
components include a timing and synchronization 
module. The field detection hardware consists of a down 
converter which converts the cavity field frequency of 1.3 
GHz to an intermediate frequency. Additional features 
included variable input attenuators for level adjustment, 
an input for a calibration signal and a local oscillator 
distribution system. The challenging requirements of the 
down converter are low noise, good linearity over large 
dynamic range, and small crosstalk. 

Figure 2: Simcon DSP board. 

DIGITAL FEEDBACK SOFTWARE 
The cavity field controller algorithm consists of the 

field detection scheme (figure 3), calculation of the 
calibrated vector sum, the field error measurement, the 
controller filter, a feed-forward signal, and the drive 
signal generation.  

FLASH/XFEL

Waldemar Koprek, DESY
FEL2010, 23-27.08.2010, Malmö

Field
Detection

Vector 

Sum
+- Feedback

Controller
Error

Signal

Control Tables and Registers

ADC DAC
Cavity

Probes

To

Klystron

Set 
point

VME Interface
FPGA

CPU

DOOCS Server

FSM Control Algorithms

Figure 3: Controller firmware and software architecture. 

Beam loading compensation through feed-forward and 
real time beam measurements are supported. The LLRF 
control system is integrated with FLASH control system 
DOOCS [4] by a development of device and middle layer 

servers. During the shutdown one DOOCS front-end 
server was developed for all 5 RF stations. Furthermore 
the DOOCS standard server is used for automation, like 
simple state machines, and the FLASH data acquisition 
system for bunch-to-bunch monitoring tasks, e.g. quench-
detection.  

The control system for the cavities which are driven by 
a single klystron is considered as a functionally complete 
unit of the RF system. The feedback algorithm is 
implemented in the FPGA system. The digital signal 
processing in turn gets its parameters from the controller 
server. The controller  server software handles: generation 
of set-point, feed-forward and feedback gain tables from 
basic settings, rotation matrices for I and Q of each 
cavity, loop phase constant, start-up configuration files, 
feedback parameters and exception handler control 
parameters. The interrupt service routines are used to start 
the data reading from the controller board. The 
parameters of the feedback algorithm are modified by the 
FPGA programs in the time slot between beam macro 
pulses. It allows a save changing of the parameters of the 
control algorithm. The functionality of the server gives 
the user the opportunity to down/upload data into the 
FPGA (feedback algorithm parameters) and download 
and start the controller firmware. The server calculates 
and adjusts the set of the feedback algorithm parameters 
in accordance with the required field gradient and phase 
value. 

PIEZO CONTROL 
The cavities operating with high gradient are deformed 

due to Lorenz force that causes detuning of the order of 
the cavity bandwidth from resonance frequency.  Detuned 
cavity reflects the supplied RF power that requires 
excessive RF driving. For the compensation of Lorenz 
force detuning (LFD) the piezo actuator is used to excite 
the cavity mechanically. Each cavity in new accelerating 
modules (1st, 6th and 7th) is equipped with double piezos 
that allow compensating of LFD and measurement of 
cavity vibrations simultaneously.  

Figure 4: LFD compensation in 6th accelerating module 
(green – detuning with piezo compensation, red - without) 

The piezo control system is able to compute detuning in 
each cavity basing on RF signals and calculates the 
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parameters of compensating piezo excitation pulse. The 
signal from programmable generator is amplified by high 
power piezo driver. The amplitude of voltage applied to 
piezo can be up to 70V and current up to 1A. The results 
of LFD compensation in 6th module is presented in figure 
4. Using piezos the dynamic and static detuning was 
compensated to only few Hz during flattop in all cavities 
except the 5th one where piezo is not fixed properly. 

APPLICATIONS 
A set of generic and especially devoted programs 

provide the tools for the operators to control the RF 
system. Some of them are created based on the 
MATLAB, others, for example, vector sum calibration 
are implemented as a DOOCS middle layer servers. The 
adaptive feed-forward is implemented on a front end 
server, to allow pulse to pulse adaptation. 

The application software includes automated operation 
of the frequency tuners, calibration, phasing of cavities, 
and adjustment of various control system parameters such 
as feedback gains, feed-forward tables, and set-point 
correction during cavity filling. Extensive diagnostics 
inform the operator about cavity quenches, cavities 
requiring tuning, and an excessive increase in control 
power. 

Adaptive Control 
The RF field regulation is subject to various, random 

and deterministic disturbance sources. Both disturbance 
contributions are reduced in closed loop operation by 
applying a feedback compensator. However repetitive 
disturbances are particularly suppressed by adaptation of 
the system input drive, using the known system response 
from previous pulses.  The reference for the RF field is in 
general not changed very frequently, so the control task 
can be seen as a repetitive process for the pulsed 
operation mode of this accelerator. The basic update 
algorithm [5] is given by 

uk+1(t) = uk(t) + L(t) ek(t)
where uk and ek are defined as the system input and the 
deviation of the measured RF output to the given set-point 
for the pulse number k, respectively. L(t) is a linear, non-
causal, time varying filter based on the identified system 
model. The current implementation of the system allows 
changes of all controller tables inside the FPGA between 
two consecutive pulses. With the minimum computation 
time necessary for this algorithm, as well as fast data 
transfer is fast enough, the adaptation can be performed 
synchronized to the repetition rate of FLASH. Therefore 
three steps have to be performed between two pulses: 
Read from previous pulse the error and feed-forward
signals e and u, compute the feed-forward signal of next 
pulse, and write the feed-forward signals to FPGA tables. 

MASTER OSCILLATOR AND 
FREQUENCY DISTRIBUTION 

LLRF system provides stable phase reference signals 
for diagnostics and experiments. The Master Oscillator 

(MO), which has been upgraded at 2008 already [6], 
generates various RF frequencies required for accelerator 
operation. The phase reference system distributes these 
signals to various locations in the accelerator with low 
phase noise and very low phase drift. The local oscillator 
signal is distributed to all of the down converter channels 
for cavities probe, forward and reflected signals. Typical 
stability requirements are: 100 fs for short term (few 
minutes) and 1 ps for long term (several hours). 

During this upgrade several MO system components 
have been improved. The new 1.3 GHz signal generation 
hardware was installed with improved phase noise and 
drift performance. The short term stability of about 45 fs 
was achieved (phase noise integrated from 10 Hz to 1 
MHz) directly at the MO output. The temperature 
coefficient of phase changes demonstrated by the new 
device does not exceed 200fs/oC, which significantly 
improved the long term phase reference stability. 
Additionally, new power amplifier with increased output 
power and several signal sub-distribution boxes were 
installed in order to provide the reference signal to bigger 
number of accelerator devices. 

SUMMARY 
The FLASH LLRF system regulating amplitude and 

phase of the accelerating fields has been upgraded to 
latest generation controller hardware. All modules are 
controlled by similar modern FPGA based controller 
boards with unified firmware and software. In addition 
beam diagnostics signals are in use for fast intra pulse 
feedback [7]. Algorithms are improved: beam loading 
compensation, feed-forward waveform generation, etc. 
For cavity frequency control piezo control has been 
implemented. In order to improve the reference frequency 
signals the master oscillator and frequency distribution 
system has been upgraded as well. FLASH achieved 
beam energy above 1.2 GeV and lasing below 5 nm with 
a remarkably improved LLRF control performance. 
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Abstract 
Scripting tool capabilities are a valuable help for 

beamline commissioning and for advanced user operation. 
They are the perfect complement to static Graphical User 
Interfaces allowing one to create different applications in 
a rapid way. A light middle-layer for scripting support has 
been foreseen for the EMBL structural biology beamlines 
at the PETRA III synchrotron in Hamburg, Germany, to 
provide 'controlled' rather than 'direct' access to the 
control system devices. This prevents conflicts with the 
control system and allows control of the supported 
operations. In order to account for the wish of different 
scripting languages by the beamline scientists an 
extension of the scripting capabilities of the TINE control 
system has been implemented. To the existing shell 
support, a Python extension (PyTine) has been added and 
a Perl wrapping has been also prototyped (tine4perl). An 
explanation of these implementations and the different 
wrapping possibilities is also described in this paper. 

INTRODUCTION 
The EMBL-Hamburg outstation is commissioning three 

beamlines at the new PETRAIII light source at DESY 
(Hamburg). In addition, two beamlines at the DORIS 
storage ring are available for testing and prototyping the 
arriving instruments. 

The control software is based on a client/server 
architecture integrated with the TINE control system [1]. 
Each device exports a TINE server that allows its remote 
operation. Flexibility has been a key feature since the 
design phase. For this reason different kinds of 
programming languages like C/C++, Python and 
LabviewTM are supported.  

The client side is mainly represented by Graphical User 
Interfaces (GUI) that connect themselves to the existing 
device servers. Two kinds of GUIs are available 
depending of the application. On one side there is an 
advanced control GUI that allows the operation and 
tuning of the entire beamline. This is mainly used by the 
beamline operators and experienced personnel. On the 
other side there is a GUI for visiting scientists with 
limited functionality with the main purpose of performing 
the data collection. 

Some procedures, not even supported by the advanced 
GUI, need to be executed during the commissioning. 
Moreover, advanced users have the requirement of 
executing different strategies that are not foreseen at the 
user GUI.  

In both situations the availability of a flexible and rapid 
way of executing this set of actions is very desirable. For 
this reason a scripting layer has been introduced at the 
software architecture allowing one to “glue” calls to the 
device servers. For gluing and system integration a 
scripting language can be 5-10 times faster than a system 
language [2] and the strong typing makes the programs 
easier to manage. 

It is not desirable to the overall operation of a beamline 
that a user, not familiar with the installed hardware, is 
allowed to freely execute server functions. Of course, 
there are control system security measures, but overlaying 
the servers with a light scripting interface makes the 
system safer. Thanks to this scripting layer, the naming 
convention of the functions can be freely chosen.  

SCRIPTING REQUIREMENTS  
On the basis of our experience with beamline operation 

and after evaluating the specifications given by the 
beamline scientists, a list of requirements for the desired 
scripting environment was compiled:  
• Easy to learn (for the developers and for the users) 
• Easy to maintain 
• Flexible (possible to refactor) 
• Dynamic (does not need variable declarations) 
• Well defined syntax  
• Well documented 
• Possible to control the accessible functionality 
• Separated from the device specific layer 
• Command-line support 
• Sequencer support  
• Reliable 
• Secure 
• User proof 
• Multi-platform 
• Open-source 

TINE FOR SCRIPTING 
The TINE control system originally supported a set-up 

of shell commands meant to build shell scripts both in 
Linux and Windows. Examples for these are the ‘tget’ (to 
receive data from a server) and the ‘tput’ (to send data to 
a server) commands. These functions are implemented in 
C and make use of the TINE C API. They receive as an 
input the necessary information (address, property, data 
type and data size) to make a call to a server.  
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At first instance, they have been extensively used for 
commissioning and currently are used for setting up 
initialization scripts. For experienced users and 
developers, they allow efficient operation. . However, for 
users not familiar with the shell environment they might 
appear cumbersome.  

Considering the defined requirement list and adding 
some extra valuable points (listed bellow), Python [3] was 
selected as the main supported scripting language.  
• It has object oriented possibilities. 
• Is getting more popular inside many scientific 

communities.  
• It is also a powerful programming language. 
• There are multiple open source libraries available. 
• It is also possible to compile and to create 

executables. 
• It is extendable and embeddable. 
• There exists graphical support (PyQT [4] and 

others). 
• There is  already experience in our group. 
• The GUI used at our MX beamline (MxCube [5]) is 

based on Python. 

PYTINE 
Initially there was no API for accessing the TINE 

control system from Python. First ideas where shown at 
the TINE Workshop, 2007 [6] demonstrating the 
possibility and the ease of performing such a task. With 
this starting point an evaluation of the different 
alternatives was performed.  

Native implementation 
A native implementation of the TINE control system in 

Python was evaluated. This would have meant a long term 
project with complex network implementations. It also 
would imply a big effort for maintaining and keeping it up 
to date. This possibility was beyond the scope of the 
project, having a TINE C API and taking into account that 
the most-widely used implementation of the Python 
programming language is written in C.  

Python Bindings 
The idea was to wrap the TINE C library, implementing 

Python bindings on top of this (see Fig. 1).  
 

 

Figure 1 – PyTINE implementation overview 

This concept had been successfully used for giving 
support to other programming languages, such as 
LabviewTM and MatLabTM. The use of the TINE Java 
library was discarded because of better experience of the 
developers with the C API. The desired outcome was a 
Python library totally transparent to the C interfaces. 

The possibility of using a translator library was also 
tested. The most popular systems were installed and 
evaluated: Boost.Python [7] and Swig (Simplified 
Wrapper and Interface Generator) [8]. The Boost libraries 
turn out to support more functionality for Python and to 
be more extended than Swig, but in both cases the 
translation was not a fully automatic process. For this 
reason, a native binding inside the C code, without 
dependencies on a third part library, was decided. This 
was based on the direct use of the Python.h library and 
generated with a standard gcc compiler.  

All the TINE client functionality was wrapped and a set 
of new functions was implemented in order to provide a 
generic friendly interface. This collection constitutes the 
PyTINE API and its main characteristics are:  
• Callback capabilities. 
• Support for the TINE data types.  
• Data structures available. 
• Tested in Linux and Windows.  
• Plot functionality integrated, thanks to the use of the 

PyPlot library [9].  
• Integrated inside Labview applications using 

LabPython [10]. 

Scripting Middle Layer 
As mentioned in the previous section, the PyTINE 

library is not meant to be invoked directly by the user 
scripts. It is imported by a set of Python modules, 
provided by the developers, which create the available 
functions for implementing scripts. Each of these modules 
have a specific functionality attached to one or more 
device servers. They are implemented following an object 
oriented approach.  

In order to perform for example a non-standard data 
collection, a user can easily implement a Python script. 
This will call the supported methods of the dataCollection 
class, which internally take care of the correct operation 
(see Fig. 2). 

 
import dataCollection 
 
//set the exposure parameters 
prefix = tst1 
dir = /home/marccd/images 
run = 1 
distance = 320 
startphi = 0 
phirange = 1.0 
exposure = 1.0 
frames = 10 
 
# move distance to start synchronous 
dataCollection.moveDistance(325) 
 
# start data collection 
i = 1 
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while i <= frames: 
  status = dataCollection.exposeFrame(PHI, 
exposure, startphi, phirange, run, dir ,prefix) 
 print “Exposing frame ”, i , “ result: “, 
status 
 i++ 
 

print “Data Collection Finished” 

Figure 2 – Script to set parameters like rotation angle, 
starting angle for the phi axis of a diffractometer, detector 
to crystal distance and initialize a rotating crystal data 
collection with Xrays recorded by a CCD area detector 

TINE4PERL 
After the implementation of PyTINE the possibility of 

interfacing TINE with Perl [11] was also tested. The 
target was to get and put synchronous data of the basic 
data types. Making use of the flexibility and extensibility 
of the control system it is possible to accommodate 
different developer’s flavours regarding programming 
languages.  

Thanks to the experience acquired with the prior 
implementations, this turned out to be a minor task. 
Because only the basic functionality was needed and the 
good support provided for Perl [12], the Swig translation 
library was selected. To do this, a SWIG interface file 
(with the extension .i) had to be written. In this file, the 
ANSI C prototypes that have to be accessed from Perl are 
listed. In addition, some SWIG directives had to be 
included. In our case, some specific functions to treat 
arrays and strings were implemented.  Invoking the SWIG 
command two files are produced: the tine4perl_wrap.c, 
which contains the C wrapper functions and the 
tine4perl.pm, which contains the supporting Perl code 
needed to load and use the module. As last step, the 
wrapped file has to be compiled and linked into a shared 
library (see Fig. 3). 

 
INCL = /usr/include/tine/  
LIBS = /usr/lib 
 
CPP = g++ -fPIC -shared  
CC = gcc -g -fPIC -Wall -I${INCL} -c 
CCL = cc -g  
LM = -lm 
LD = ld -G 
SWIGPERL = swig -perl5 
CCPERL = gcc -I${INCL} -c  
 
tine4perl.so: tine4perl.o  
 ${LD} tine4perl.o tine4perl_wrap.o 
${LIBS}/libtinemt.so -o tine4perl.so 
 
tine4perl.o: tine4perl.c  
 ${SWIGPERL} tine4perl.i  
 ${CCPERL} tine4perl.c tine4perl_wrap.c 
`perl -    MExtUtils::Embed -e ccopts` 
 

Figure 3 – TINE4PERL ‘make’ commands. It uses a 
standard gcc compiler and the generated objects to the 
multithread tine library 

CONCLUSION AND OUTLOOK 
A scripting language is suited to perform different tasks 

than a system programming language. We have seen in 
our applications that if they are used together they can 
create very powerful programming environments 
fulfilling complementary  requirements.  

A scripting language should be as simple as possible. In 
some occasions it is beneficial not to provide a direct 
access to the system but to use a middle layer controlling 
the access to the device servers.  

It is important to evaluate very carefully the existing 
wrapping solutions, including automatic converters, in 
order to support a new scripting language. Depending on 
the desired functionality it might be better to use one 
method or the other. On the one hand, the use of an 
automatic converter for complex implementations, that 
possibly include pointers and data structures, it can prove 
to be a tedious task, making it necessary to learn a special 
syntax. On the other hand, an automatic converter can 
create fast bindings for simpler wrappings.  

In our environment, where all the software is integrated 
in a control system, flexible and open systems allow us to 
extend their functionality and to support new 
programming languages.  

This scripting concept and architecture developed to 
control synchrotron beamlines could be extended and 
applied to different instrumental environments and 
integrated with different control systems. 
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THE ANKA B-FIELD TEST FACILITY CONTROL SYSTEM, BASED ON A 
SPEC MACRO PACKAGE ENHANCED SETUP* 

Karlheinz Cerff, Thomas Spangenberg, Wofgang Mexner, Institut for Synchrotron Radiation, (ISS)-
ANKA, Karlsruhe Institut of Technology, (KIT)-Campus North, Germany.

Abstract 
The ANKA B-field test facility provides users with a 

flexible tool to investigate magnetic field distributions 
of different setups of coils or permanent magnets, 
optimal sensor types, geometrical alignments of probes 
and the possibility to change the independent physical 
stimuli to generate and alter magnetic field 
distributions [1]. From the point of Software 
development it is taken as an example of a straight-
forward device implementation with a recently 
introduced type of macro based ‘building block 
system’ for devices in SPEC, [2]. This macro package 
provides the C-like SPEC with an object orientated 
framework with a namespace and class concept to 
represent the power supplies of different brands, probe 
positioning devices and measurement amplifiers. 

INTRODUCTION 
The B-Field Test facility provides measurement data 

of magnetic field distributions of coils or permanent 
magnet structures, within the range of um spatial 
resolution, over positioning ranges up to meters, 
devices in use are, 
• a stepper motor driven, encoder monitored linear 

positioning probe, equipped with a variable 
geometrical arrangement of Hall-sensors to measure 
B-field induced voltage gradients. 

• Two power supplies, consisting of a main and a 
second, multiple power supply, driving individual 
shaped I-current ramping functions for corrector 
coils. 

• A Digital Multi-Meter (DMM) of Keithley, type 
‘k2700’ to read out, up to n Hall-probes. 

The control software package should also generate a 
raw data fit for a polynomial of variable degree i (i< 
=9), for up to n Hall-probes. At last the control system 
monitors the safe operation of the Test facility, for 
example it shuts down the main power supply when a 
superconducting coil under test is quenching. 

IMPLEMENTATION  
In the context of the ‘Macro package based Enhance-

mend of SPEC controlled Experimental Setup’[3], this 
means that the device properties are stored as elements 
of data structures (SPEC global associative arrays). 
The task of the software development is, to 
• set up an abstract model of the B-Test Facility 

hardware devices. 
• write the device drivers for B-Test Facility motor, 

power supplies and digital multi meters. 

• linking the resulting SPEC macro functions to the 
Interface generated by enhanced macro package. 

The introduction of a set of interfacing rules minimizes 
the risk of damage to existing SPEC-structures, 
furthermore it opens the possibility to port in this way 
generated SPEC-‘classes’ to other experimental facili-
ties. 
Table.1: B-Test facility, list of realized implementation 
of functions, devices, SPEC ‘-instances’ and –‘classes’. 

physical  
function 

device SPEC-
‘instance’ 

SPEC–‘class’ 
(macro) 

motor controller, 
one channel 

OMS-Maxv ‘m0’ Motor.mac 

main power sup-
ply, 1 channel. 

FUG NTV-
1000 

‘fugbig’ Fug.mac 

power-supply 
small, 8 channels 

FUG NTV- 
100 

‘fug’ Fug.mac 

Digital multi-me-
ter 
Hall-probes 

Keithley, 
K2700/7703 

‘k2770’ 
‘Hall n’ 

Anka-
Keithley.mac  

 
 Setting up the B-Test Facility, the two power supplies 
are defined as members of the ‘class’, represented by 
FUG.mac. They are both instantiated as objects ‘fug’ 
and ‘fugbig’ in the declared global associative array 
‘FUG’, writing a set of device dependent standard-
values to it. SPEC-associative Arrays offer as possible 
arguments arbitrary strings or numbers instead of 
integers [2]. In the ‘class’-macro keithley_anka.mac, 
the Keithley DMM is instantiated as object “k2700” 
and the connected Hall-probes as objects “Hall-1”-
“Hall-15. The minisetup class’ macro contains the 
‘standardvalues’ declarations and a data fit object to fit 
raw data to a polynomial up to the order of nine. 

Benefit 
• Two FUG devices, representing nine power supply 

‘objects’ can be accessed by 11 (for the main power 
supply) and 73 (for the corrector power supply) 
standard-function calls obeying the naming rules 
introduced by the macro package.  

• Up to fifteen Hall-probes have to be addressed by 
255 standard function calls for the Hall-probes plus 
three functions for the K2770. 

The advantages using the object oriented approach is 
clearly visible, there is no need to write, a set of 84 
nearly identical conventional SPEC-functions for 
power supplies and additional 255 functions to handle 
the output, in addition existing  ANKA-beamline driver 
modules for motors can be used. 
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Figure 1: Macro Package generated structures (blue), driver software to be written (green and cyan),  
SPEC-built in functions (grey), interface function calls (white) 

 
BUILDING THE B-TEST FACILITY 

DEVICE MODELS 
Loading and executing, the blnamespaces-macro, 

which is the heart of enhanced setup, submits the 
functionality for setting up the namespace and global 
array structures: 
beamline_define_state (“x”,”default”) 
beamline_init_namespace (“x ..”) 
Both function are processed only once, because all 
devices are instantiated in one state “default” and 
namespace “x”. In principle the concept allows 
multiple state definitions “others” which could be used 
for example to define different arrangements of Hall 
sensors The functions below instantinate the device-
objects given in the first column: 
beamline_setDRV(“fugbig . ”,”FUG”) 
beamline_setDRV(“fug . ”,”FUG”) 
beamline_setDRV(“k2700a . ”,”KEITHLEY”) 
beamline_setDRV(“hall n . ”,”KEITHLEY”) 
The  power supplies are abstracted by:  
status, ramping behaviour, address, type, set/get/ 
voltages, I-currents, I-current-rates. The device models 
are stored as sets of object variables in the associative  

arrays “FUG” and “KEITHLEY”, generated by the 
macro package init functions, s. Fig.1: 

devn  . property = “value” structure: 
 
FUG["fug"]["$active"] = 0 
FUG["fug"]["$adress"] = "192.168.4.4:23" 
FUG["fug"]["$fugtype"] = "FUG-NTV 100" 
FUG["fug"]["$maxcurrent"] = 10 
FUG["fug"]["*current1"] = 0 
FUG["fug"]["currentrate 1-n"] = 0.2 
FUG["fug"]["dcpower 1-n"] = 0 
FUG["fug"]["readout 1-n"] = 1 
The prefix in the second array elements marks the state 
of properties: “private”, “read only”, “read/write” or 
“command “. 

B-TEST FACILITY DEVICE DRIVERS  
The program code which has to be written are the 

device driver macros for power supplies “fug” and 
“fugbig” and the digital multi meter with connected 
Hall- probes.  
The functions can be grouped in :  

dev–N hardware 
calls  
sockets

blnamespace 
stmacs-function 
mapping Macro 

Macro Package for Enhanced Setup  Device Drivers  Data Structures 

bl._States_n 
bl_state _1= „ default “ 

namespace „x“ 

glob. array dev.N 
FUG[ ][ ]          

glob. array dev.1... 
[state.device.prop]       
 

blnamespaces-macro 
 
init functions: 
beamline_define_state ( ) 
beamline_init_namesp
ace() 
beamline_setDRV ( ) 
 
setvalue functions: 
beamline_setdefaultvalues () 
devicename_standardvalues() 
device_sync ( ) 
user functions: 
blset_devname_property( ) 
blread_devname_property () 
blcmd_devname_cmdname [] 
blstate_devname 
blct 
blget_devname_property( ) 
blshow_devicename 
blinit_devicename( ) 
blreset_devicename 

user-functions in external 
applications 

SPEC-Session 

implements : 

dev-1hardware calls, 
sock_put /get 

driver -macro for 
device-N object 

driver-macro for 
device-1  object  

is programmed de-
vice dependent 
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• internal functions, like socket functions to set/get 
specific hardware register values, to reset or 
initialize devices, to address sub device and 
functions to process data strings received. 

• Functions for data synchronisation with the pre-
defined standard values in associative arrays or with 
the ongoing  values of the hardware device of 
interest, 

•  functions to set /get device parameters by calling 
external measurement devices used at ANKA-beam 
lines 

• functions, which are ‘built in’ SPEC, here used for  
the linear motor drive with encoders to position 
Hall-probes. 

FUNCTION-MAPPING  
A set of ‘standard-’ or user functions’ for 

communication is generated automatically by the 
macro package. The bulky type of driver functions with 
long argument lists is mapped to a set of user friendlier 
functions. The functions have the general form: 

 
def user_function (value, argument ) ‘{  
<return> driver function (“device name . property”)  
} 

The simplest user functions don’t have arguments, for 
example a ‘blct‘-call, gives the outputs of all para-
meters of the assembly of power supplies, DMMs, and 
Hall-probes of the B-Test facility: 
A generic example for function mapping, will be the 
‘setcurrentrate’ user function for 8-fold power supply 
‘fug’, device No 3, with a I-current rate of 0.2A/sec. 
The user function call is , 
 
• blset_fug_currentrate3( 0.2) 
mapping to the device driver function : 
• FUG_setcurrentrate3( “fug”, 0.2, 3). 
 
This calls the SPEC socket functions of the driver to 
write an appropriate value to the hardware register sub 
address 3 of the power supply “fug”, after command 
reference given in [5]: 
def FUG_setcurrentrate3(device,quiet,value,) '{ 
__FUG_setcurrentrate(device,quiet,value,2)  }' 
 

# call of __internal driver function : 
def __FUG_setcurrentrate(device,quiet,value,devnr) '{ 

#which type of power supply ?: 
if ( FUG[device]["$fugtype"]=="FUG-NTV 100") { 

# write external inputs for ps with devnr=2+1 to’ 
 value’: 

value =  NumberInput ("current rate", FUG [device] 
[sprintf ("setcurrentrate%i",devnr+1)] ,0, 1, quiet, 
value); 

# call subdevice 3, addressing, convention, s. com-
mand reference [5] 

 

__FUG_sendcommand(device,sprintf ("%s>S%iR 
%g\n",sprintf("#%i",int(devnr/2)),devnr-
2*int(devnr/2), value )); 

# The __internal function uses the basic ‘built in’ 
 SPEC socket_put function: 

def __FUG_sendcommand (device,command) '{ 
sock_put(FUG[“device”]["$address"],command); 

} 
}' 

# value gets the formatted readback from subdev. 3: 
value = __FUG_splitanswer(__FUG_readback 
(device)); 

 
# __internal function calls basic  sock_get function: 

def __FUG_readback(device)  '{ local tmp; 
tmp=sock_get(FUG[“device”]["$adress"]); 

 }' 
# updates appropriate element of global array FUG 

with current read back value: 
 

FUG[device][sprintf("setcurrentrate%i",devnr+1)]=_
_FUG_readcurrentrate (device, quiet ? 0 :1,devnr); 
 } 

CONCLUSION  
The object oriented implementation, by use of 

existing beam-line software modules make the 
procedure straightforward since only the missing 
drivers for power supplies, digital multi-meters and the 
raw data evaluation algorithm, have to be introduced. 
But synergy proceeds, the FUGs will be the power 
supplies of future insertion devices [4] at ANKA, so 
the Software modules written to control its devices can 
easily be ported to the control system of the next 
ANKA superconducting undulator. 
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MACRO PACKAGE BASED ENHANCEMENT OF SPEC CONTROLLED 
EXPERIMENTAL SETUPS 

Thomas Spangenberg*), Karlheinz Cerff, Wolfgang Mexner 
Institut for Synchrotron radiation, ISS, ANKA, KIT-Campus North, Karlsruhe, Germany

Abstract 

Certified Scientific Software's program package spec [1] 
for X-Ray diffraction and data acquisition provides 
reliable instrument control to scientists at synchrotrons 
and other facilities worldwide. It’s very flexible C-like 
macro language provides a large number of degrees of 
freedom for experiment control as advantage and as big 
disadvantage at the same time. A large number of 
programmers with their own ideas and naming 
conventions are contributing to the growth of 
functionality. At the same time the risk of collateral 
damage by accidentally overriding already existing 
functions and variables grows constantly. To solve this 
dilemma a new object oriented like software development 
concept for spec is proposed. A few naming rules plus a 
macro package in combination with a single client-server-
application expand the manageability and options to 
control experiments considerably. As main goal spec gets 
an object-like handling and a standardized user interface 
of newly introduced devices. A generic server-client based 
interface allows a smooth integration of spec in more 
complex control environments via TANGO [2]. 

INTRODUCTION 
Most of the physical and logical devices provides the 

opportunity to operate them in a simplified model as a set 
of independent properties which are offered by a certain 
remote interface. Therefore it becomes possible to 
integrate them rapidly into its own measurement setup 
either by direct driver support or by some macro 
integration. 

As an example, the software package SPEC with its 
flexible macro language and various interfaces offers a 
number of paths to implement additional hardware into an 
experiment.  

It will be shown that the risk of interfering solutions 
can be avoided for the device integration by introducing a 
few design rules in combination with a macro package. 
Additionally the client server based export possibilities of 
the integrated devices will be increased significantly. 

MACRO PACKAGE AND DATA 
STRUCTURING 

The basic idea of that macro package is to organize and 
handle devices object like although SPEC’s pure macro 
based programming language definition doesn’t support 
objects directly. But the provided data structures permit 
with a few limitations an object like structuring of data 
and a macro supported creation of specific functions to 

manipulate them.  
Starting from the abovementioned simplified device 

model the representation of the device properties is stored 
into SPEC’s associative arrays (see Fig. 1) which yields 
three advantages.  
• First, all objects of one class are stored in only one 

array variable. It is evident, that a naming conflict 
can be prevented by using a single identifier per 
class.  

• Second, due to SPEC’s data type definition any type 
of data can be stored into this array.  

• Third, the two dimensional index organized by 
strings is well suited to store data differentiated into 
‘objects’, their properties, and their methods. 

The data organization of the macro package is basically 
funded to associated arrays and is introducing a naming 
convention to their indices. SPEC defines associative 
arrays as a string indexed data object which stores any 
type of information. The first dimension of the two 
dimensional index is used for the device name. The name 
is usually chosen as an acronym which describes the 
device function in the experiment (e.g. vc1 for vacuum 
controller 1, see fig. 1). 

The second part of the index string is primary subjected 
to the device property. Additionally the first character is 
used to transport the minimal necessary information about 
the represented property which is used for the 
automatically generation of the user interface. The 
implemented scheme is as follows: 
• ‘$’ indicates internal variables. There are no user 

functions provided. 
• ‘*’ indicates read only properties or variables. Read 

functions are provided. 
• ‘!’ indicates a command. A command function will 

be available. 
• no special character indicates a read/write property. 

Read and write functions are provided.  
The formal initialization overhead due to the macro 

package is very small. There are 2 functions for the whole 
macro package and only 3 additional steps are needed to 
implement a new device. There are: 
• The formal declaration of the device instance by 

name and device type, followed by  
• The initialization and declaration of start-up values 

and finished by  
• Initializing the device or synchronizing the stored 

information. 
The macro package evaluates the stored data and 

creates automatically the functions to manipulate them 
obeying the fixed naming scheme. Thereby the whole 
user functionality will be generated.  

 ___________________________________________  

*) thomas.spangenberg@kit.edu 
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EXAMPLE IMPLEMENTATION 
An example may demonstrate the situation. Assuming a 
hypothetical vacuum pump controller (similar as shown in 
fig. 1) device vc1 which may store its data into the 
associative array VPC. The declaration of that structure is 
done by global VPC while loading the macro package for 
that type of controller. 
 

 

private:  address 
r/o:  current 
r/w:  voltage 
command:  on/off 

 
Figure 1: an example vacuum pump controller and its 
properties 
 

As it is common to object orientated approaches a set of 
‘class-functions’ needs to be provided by the controllers 
macro package. The first argument of all functions is the 
device name. Other arguments are regulated and straight 
forward connected to the idea of the object like access 
and the simplified device model approach. 

The value initialization is done by 
VPC_standardvalues(device, [arg1 [,arg2...]]). This 
special function (see fig. 2) doesn’t have strong naming 
rule because it will never be used automatically by the 
package and depends of course from the device which is 
to be implemented.  

The task of the function is comparable to a constructor 
of an object. It has to pre initialize all instance variables 
and at the same time it is declaring the user interface 
functionality due to the fixed naming scheme 
abovementioned. 

 
def VPC_standardvalues(device,address) '{ 
VPC[device]["$adress"] = address  
VPC[device]["*current"] = 0  
VPC[device]["voltage"] = 0 
VPC[device]["!on"] = "VPC_poweron" 
VPC[device]["!off"] = "VPC_poweroff" }'  
 
Figure 2: example device value initialization 

 
Furthermore current implementations of the macro 

package expecting the functions VPC_init(device) which 
drops all pre setted values into the device, 
VPC_sync(device) to synchronize the object to the 
device otherwise, and VPC_state(device) which is 
printing the read device state onto the screen.  

Declared commands are realized by any function which 
has to handle 2 arguments. The first is the device and the 
second is the optional user argument. An example may be 
VPC_poweron(device,option), which name was stored 
into the device property '!on'. 

For reading and setting the property XYZ the functions 
VPC_readXYZ(device,..) and VPC_setXYZ(device,..) 
need to be defined.  

The read and set functions have to provide some other 
arguments which will be discussed following. 

 

FUNCTION ARGUMENTS 
The macro package requires from all ‘class-functions’ a 
strict organization of all arguments concerning their order 
and the meaning. The first argument is always the device 
name.  
Reading and setting functions are already differentiated 
by the second argument which is for reading functions an 
integer indicating the verbosity of it. The complete 
declaration of the example read function is as follows  
VPC_readXYZ(device,verbose). 
The argument verbose regulates the verbosity which can 
be switched on or off. 
Setting functions using as a second argument an integer 
which lets them operate quiet. In that case the third 
argument represents the value to be set. The declaration is 
therefore 
VPC_setXYZ(device, quiet, value) 
It is quiet clear that these ‘driver class functions’ needs to 
be programmed with respect to the device and are 
therefore similar to other approaches in relation to the 
necessary programming effort. The goal are the generated 
user interface and the export capabilities. 

 

USER INTERFACE  
Just offering to the user device view orientated 

functions doesn’t satisfy the users view to an experiment, 
which is usually more orientated to the job that needs to 
done than to a certain device. 

The macro package evaluates automatically the array 
stored information (the index names and ‘$*!’) and builds 
the whole set of corresponding functions and macros 
which are representing the user interface for any device. 
Even different user custom is satisfied by creating a 
function based access and a macro based access as well at 
the same time. 

The created set for the example is shown in table 1: 
 

Table 1: corresponding set of device functions and 
generated user functions 
device function user function / macro  
VCP_state(“vc1”) blstate_vc1 

blstate vc1 
VCP_readXYZ(“vc1”,...) blread_vc1_XYZ(...)  

blread vc1.XYZ 
VCP_setXYZ(“vc1”,...) blset_vc1_XYZ(...)  

blset vc1.XYZ 
VCP_poweron(“vc1”) blcmd_vc1_poweron 

blcmd vc1.poweron 
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It is obviously that the hardware specific part VCP is 
eliminated from the user functions or macro calls. 
Therefore any device with similar options maybe 
exchanged without big incidence for the user. 
The argument structure may appear rather complicated 
but the macro package derived functions offering a 
verbose interface to the user as well as a quiet device 
interface for further macro programming at the same time. 
Furthermore increases the clear and straight forward 
command structure for any implemented device the user 
acceptance and comprehension. 
In case of reading a certain property the user may type 
blread_vc1_XYZ(1) or blread vc1.XYZ to get a print 
out of the current value. Otherwise any macro may use 
blread_vc1_XYZ([0]) to obtain the value of the property 
returned silently. The 0 is optionally because a not set 
argument is implicitly set as 0.  

On the other hand blset_vc1_XYZ(1,3) sets the value 3 
silently to the device property and the use of the 
argumentless version blset_vc1_XYZ() indicates the 
request for a user dialog. The macro versions of the same 
functions are blset vc1.XYZ 3 and blset vc1.XYZ 
respectively. 

 

DEVICE EXPORT 
SPEC supports among other things the export of variables 
and arrays and furthermore the remote execution of code 
by a socket connection. This server functionality is well 
developed but isn’t SPEC’s main goal. Some care is 
advisable concerning the bandwidth of a single socket 
connection and therefore the strategy for data exchange 
influences the benefit. 
The internal structure of the devices organized by the 
macro package, as stated before, is concentrated in two 
arrays which stores the basic set of information about a 
device. The name and the name of the device class array 
can be obtained and therefore the whole information set 
maybe derived in a second step. Observing and exporting 
these two arrays into a client application offers the option 
to derive the complete state information about all macro 
package managed devices if additionally the device class 
arrays are obtained as well.  
This approach minimizes the total number of variables to 
be observed by the client and the run-time influence of 
the steady client-server connection. Only 2 + N variables 
needs to be tracked. 
The realized client itself is designed as a TANGO server. 
The first one offers a generic access to all macro package 
devices too. 
Due to the strict data organization the TANGO-server can 
offer a generic and complete interface to access any 
property for reading and writing (if applicable). The 
generic functions are string based and schematically (the 
original TANGO calls are a bit less instructive) defined as 
follows: 
• string SPECgetdevices(); 
• string SPECgetproperties(string device); 

• string SPECblread(string device, string property); 
• void SPECblset(string device, string property , string 

value); 
• void SPECblcmd(string device, string command); 
All reading interface functions are operating with a 

buffered and automatically updated data base. Settings 
and commands are scheduled into SPEC’s command 
queue 

 

CONCLUSIONS 
The introduced macro package in combination with a few 
naming rules offers a straight forward approach to an 
object like access for device implementations with 
SPEC’s macro language. Unwanted variable cross talking 
is maximally avoided and a systematic macro generated 
user interface can be provided at the same time. 

The whole functionality can be exported into a socket 
client which offers itself a TANGO server for the SPEC 
macro package managed devices and permits a remote 
control of them by other programs 
 

REFERENCES 
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 STUDY CASE OF A COLLABORATION PORTAL FOR A 
INTERNATIONAL SCIENTIFIC PROJECT 

Marcin Trycz and Luciano Catani, INFN-Roma Tor Vergata, 

Via della Ricerca Scientifica, 1 - Roma, Italy

Abstract 
In this paper we present the results of the design, 

development and preliminary evaluation tests of a web-
based collaboration portal aimed at supporting the 
teamwork of an international scientific collaboration. 

In the academic research environment often people use 
very simple collaboration tools, usually chosen out of 
habit. In the case of international collaborative projects, in 
which people don't work physically in the same place for 
most of the time, these important tools are far from being 
effective and appropriate. For instance, a collaborative 
scientific project is made of teams of specialists from 
different research institutions and countries that need to 
share files, drawings, pictures, software etc. and 
document the progress of their work. The different tasks 
of the project are managed by work groups (WGs) of 
specialists that organize their work by scheduling 
meetings, workshops and by setting deadlines. Quite often 
a single researcher contributes to more than one work 
group. 

The aim of our Portal is to offer a suite of web 
instruments fulfilling the above requirements without 
adding extra complexity to the procedures the scientists 
are familiar with. 

INTRODUCTION 
In the present-day world of science, research projects 

are often carried out by large collaborations of different 
research institutions and universities. The need of 
specialists for each task of the project requires the 
contribution of top-quality scientists from different parts 
of the world working in collaboration across the different 
phases of the project development: design, operation and 
the analysis of results. 

Sometime the collaboration is based on in-kind 
contribution from each partner requiring a constant 
interaction to ensure the perfect matching of the 
components. 

Given these requirements, a continuous and effective 
communication among members of work groups, and a 
constant coordination of the latter, is crucial for the 
successful development of the tasks. At higher level, WGs 
leaders should continuously check the progress of their 
own group against each other to ensure a uniform 
development of the project. 

Scientists, compared to many other professional 
communities, are certainly skilled and well trained in 
using computers and computer networks because of the 
important role these instruments have in their daily work. 

As consequence of this familiarity, scientists 
spontaneously tend to profit from computer based 

communication and collaboration tools, selecting by 
themselves the solution they consider more appropriated. 

This explains the tendency to develop solutions to their 
collaboration needs that simply implement the tools they 
are more familiar with: email especially, for 
communication and documents distribution, file servers, 
Internet shared agenda, polling services etc. 

Experience teaches that, in spite of their familiarity 
with Internet technologies, or probably as a consequence 
of it, scientists are somehow reluctant to accept dedicated 
all-in-one project management solutions that might be 
selected and suggested by the management. Often, they 
are convinced that the collaboration instruments they 
currently use are sufficient or even more effective that the 
new one.  

The above considerations suggested us to start the 
development of a web portal aimed to providing a 
"smooth" replacement of basic communication and 
collaboration tools with a centralized server.  

 

OVERVIEW OF TOOLS AND 
TECHNOLOGIES 

The first task of our analysis process was the 
identification of the framework suited for our needs. 

We ended up with three candidates representing a wider 
spectrum of technologies: Xoops, Joomla and Liferay. 
The first two are PHP frameworks; the latter is by now 
the only open source Java Portal. A deeper analysis 
showed that only Liferay would have fulfilled our user 
scheme. On the other hand this portal it's far from being 
simple, but its complexity can easily be hidden to the final 
user. 

THE COLLABORATION PORTAL 
The Portal is meant to be a web-based integrated set of 

tools supporting a large collaborative project as a 
communication and documentation service. The two main 
goals of the Portal are prompt and effective information 
sharing and well ordered archiving. The Portal also 
contains additional services that support other aspects of 
the collaborative work, a calendar for instance, and by 
taking advantage of the Java portlet [1] “plugability”, 
others can be added if need be. 

Users Management 
As we already mentioned, the main reason for adopting 

Liferay was its powerful user management capability. In 
international, or large national scientific collaboration 
scientists from many different research organizations 
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contribute to the development and operation of a large 
device, experiment, facility by collaborating to the 
progress of the different activities dealing with the tasks 
of the project. 

Work Groups, constituted by experts of different 
research organizations, are created around each task. 
Typically, scientists from each organization are distributed 
in many of the project’s WGs and every single scientist 
might contribute to more than one WG. The collaborative 
Portal should take into account this organization for a 
targeted and effective deployment of it services (Fig.1).  

In Liferay a user’s profile can be defined in details and 
used to configure the services, roles, privileges and even 
the layout of the user's home page with the information 
and instruments relevant for role and responsibilities of 
that particular user. Users won’t need to browse the whole 
Portal to find what they’re looking for; sections that are 
not interesting, or forbidden, will be hidden. 

This powerful management of users profile allows 
creating easily and effectively the different workspaces of 
the Portal. Work Groups homepage (Fig.2) are accessible 
only to members of that particular WG and links to these 
WG homepages are automatically available in the 
homepage of their members. Similarly, Institutions 
homepages are accessible only to users affiliated to that 
research organization. 

As final result the Portal is automatically customized 
for each user according to its profile. Moreover, since 
users will find their own environment at the first login, 
learning effort will be very limited. 

Portal Workspaces 
One of the main concepts and functional components of 

the Portal are the workspaces. Liferay allows for much 
flexibility in this aspect, the workgroups, the institutions, 
even single users can have their own separate workspace. 
The administrators can decide if the contents of a 
workspace need to be accessible for reading to all the 
registered users (i.e. all participants to the project) or only 
to members of that particular Workgroup. 

The management of the Workgroups is dynamic. It 
means that the project structure doesn't need to be set a 
priori when the Portal is under development; the 

Workgroups can be added and removed any time when 
the Portal is running.  

Although Liferay offers other powerful features, for our 
purposes we chose to use only part of its structure. For 
instance we didn't implement user's personal workspaces 
to simplify the interaction with the Portal and to focus 
user’s attention to collaborative activities and services. 

The access to the Portal is restricted. Nevertheless the 
Administrator can configure the workspaces in such way 
to make some information accessible to unregistered 
users. 

Applications and Tools 
The Logbook and the Document Library are the core of 

the Portal's functionality. The Logbook, developed by 
customizing the original Blog portlet, is the main tool for 
sharing information and documenting the progress of the 
teamwork. The Document Library is the repository for 
both files uploaded by means of either the built-in 
interface or as attachments to Logbook entries. While 
editing Logbook entries, attachments can be assigned to a 
specific folder according to the topic, achieving a well-
organized allocation of files in the repository, which can 
be accessed via either the Logbook's interface or a 
dedicated browsing page.  

The Calendar allows management of events and 
deadlines; users can be reminded of relevant events 
through an automated email system. The Bookmarks tool 
allows highlighting important links in a side frame. The 
Activities portlet aggregates all the relevant recent 
activities, sorted by date, at a glance: new Logbook 
entries, recent uploaded documents and new Calendar 
events. 

Search is enabled for all of the Portal's content, and is 
implemented with Lucene text-search library. 

As already mentioned before, the main feature of the 
Portal is the integration of these simple, well-known tools 
into a fully functional application. 

The inter-operation and the co-presence of these tools 
in a managed environment provide added value to this 
solution. 

As an example, we present in more detail benefits 
offered by the Portal for some collaborative tasks as 
compared to the "standard solutions": 

Figure 1: Basic navigation workflow 
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Figure 2: An example of user’s home page. 

Documenting a work group activities 
This duty is usually accomplished by sending email to 

all WG members and each user needs to organize its own 
mailing list in the mail browser and keep it up to date. A 
typical issue is tracking back the old messages in the 
search for particular information. That is usually not 
trivial, although some mail browsers allow threading by 
subject. The Logbook (Fig.3) approach is still simple but 
more effective: entries are available to all current 
members of the WG in a dedicated section of the Portal, 
sorted by date and stored for later browsing. An RSS 
service, available for this as well as for many other 
sections of the Portal, allows users to be promptly 
informed about relevant activities. 

Files distributing and archiving 
The dedicated Documents Library is a more efficient 

replacement of a file server.  
  

Figure 3: The Logbook page 
 

A WG can choose a simple one-level folders structure, 
another might need a more complex multi-level tree-like 
file system for a structured archiving. The main way to 
add files to the Library is through the Logbook interface, 
but single files can be added through the dedicated 
Documents Library interface. Either way a message that a 
new file has been uploaded to the Portal will be added in 
the Recent Activities section in both user’s and WGs’ 
homepage. As well as the Logbook entries, all the files 
can be searched by title and by content in full-text mode, 
given it's a text-based file like txt, doc or pdf. 

Setting up a meeting, deadline, reminder etc. 
Any kind of event relevant to the Project or WGs’ life 

can easily be added through the Calendar's advanced 
interface. Many different event types can be managed: 
recurring events, multi-day events, etc. The events are 
time zoned by default, simplifying international users 
access. Furthermore, all the users potentially interested to 
the event will receive an automated remainder via email 
before it's beginning, with customizable advance time.  

FIRST ADOPTION 
The European IRUVX* collaboration has been the first 

real-life adopter of the Portal. IRUVX project perfectly 
fits with the target of the Collaboration Portal: it’s an 
international collaboration aimed to the development of 
an international consortium of FEL facilities; it addresses 
different tasks that are managed by working groups in a 
coordinated effort. 

During the test period members of the collaboration 
involved in the evaluation actively helped us by 
debugging the Portal services and also suggested minor 
tweaks for usability. With this experience we ended up 
with a fine-tuned working Portal, confirmed by the good 
user satisfaction. 

CONCLUSION 
The development of a web-based collaboration portal 

aimed at supporting the teamwork of an international 
scientific collaboration has been completed. The Portal 
has been under test for several months by an international 
scientific collaboration and results confirmed the 
effectiveness of the collaborative services it provides. 
Modularity of the framework allows to easily customize 
and expand the services to any particular user needs. 

REFERENCES 
[1] http://www.liferay.com/. 
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DEVELOPMENT OF IMAGE PROCESSING SYSTEM ON EMBEDDED 
EPICS FOR BEAM DIAGNOSTICS 

J. Odagiri, K. Furukawa, T. Obina, M. Satoh, High Energy Accelerator Research Organization 
(KEK), 1-1 Oho, Tsukuba, Ibaraki, Japan

Abstract 
A new image processing system was developed based 

on EPICS and the FA-M3 PLC made by Yokogawa 
Electric Corporation. The hardware of the system 
comprises an F3RP61 CPU module running Linux and an 
F3UM02 frame grabber module. The CPU functions as an 
IOC to analyze the raw image data acquired and 
transferred by the frame grabber module on the PCI-bus, 
which connects the two modules. A custom record, 
graphicsRecord, holds the raw image data and the results 
of analysis as well as parameters set by the user over the 
network. GUI panels were created by using EDM in order 
to display the image and to set relevant control parameters 
into the fields of the graphicsRecord being stationed on 
the memory of the F3RP61-based IOC. It was confirmed 
that the developed system is able to acquire image data, 
analyze them appropriately, and send them over the 
network to a host computer to display the results of 
analysis. The design and results on performance 
measurement of the system is also reported. 

INTRODUCTION 
It had been common practice to use a desktop PC with 

frame grabber boards installed in it for beam profile 
monitoring. This approach allows us to broaden the range 
of choice of the frame grabber boards and the PC for the 
purpose. On the other hand, short lifetime of the products 
and less reliability of the hardware forces us to replace the 
system frequently to increase burden in maintaining the 
system in the long run. 

In order to solve the problem, we have adopted 
embedded technology with Experimental and Industrial 
Control System (EPICS) running on a Programmable 
Logic Controller (PLC) made by Yokogawa Electric 
Corporation [1]. Fig. 1 shows the image processing 
system under test. The main specifications of the 
F3UM02 frame grabber module are listed in Table 1. 

HARDWARE CONFIGURATION 
The system comprises an F3RP61 CPU, which runs 

Linux as its Operating System (OS), and an F3UM02 
frame grabber module. The two modules are connected 
with each other by using not only the PLC-bus on the 
backplane but also an additional PCI-bus. Both of the 
modules have a PCI- connector on the side panel to stack 
them for faster data transfer. The image data acquired 
with the frame grabber module is transferred to the 
F3RP61-based CPU by using DMA. The CPU executes 
the Input / Output Controller (IOC) core program of 
EPICS on Linux. The IOC analyzes the raw image data 

and sends it with analyzed results to a host computer 
which functions as an Operator Interface (OPI) of EPICS. 

 
Table 1: Main Specifications of F3UM02 

Item Specification 

Number of Channels 2ch 

Compatible Camera Types Single Tap (8bits/pixel) 
Dual Tap (bits/pixel) 
RGB Colour (24bits/pixel) 

Max. Connections 6 monochrome cameras 

Resolution of 
Digitizer/Channel 

8 bits 

A/D Converter Frequency 100 MHz 

SOFTWARE DEVELOPMENT 
Record Support 

An existing spherical record type, graphicsRecord, 
which had been created for a seat-gas beam profile 
monitor was used with some modifications for the 
analysis of raw image data, such as subtraction of 
background image, calculation of the projection to both 
horizontal and vertical directions, searching the peak 
position in the projection, calculation of the total amount 
of the light and so forth [2]. 

 

Figure 1: Image processing PLC unit under test. The 
left most black module (two slots) is the power supply 
module. The F3RP61 CPU comes to the right of the 
power supply module. The module just right to the 
CPU module is the F3UM02 frame grabber module. 
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Device Support 
A new device support module was developed in order 

to interface graphicsRecord with the hardware. The 
device support makes the instance of graphicsRecord be 
processed upon every acquisition of a new image frame 
by issuing an “I/O_interrupt” scan request. What the 
device support does is just to transfer the raw image data 
from the hardware into the buffer of an instance of 
graphicsRecord. All the other processing of raw image 
data is subject to the graphicsRecord module. 

Operator Interface 
Extensible Display Manager (EDM) [3] was chosen for 

developing the Graphical User Interface (GUI) of the 
image processing system since it has a type of object 
which can display an array of data in the form of a two 
dimensional array of arrays. The feature enables us to 
display image on the GUI panel from one dimensional 
array of data stored in the buffer of a graphicsRecord 
instance as shown in Fig. 2. 

TEST OF BASIC FUNCTIONS 
To confirm that the device and record support modules 

function as expected, we have tested the system with a 
simple object. (See, Fig. 2). The result showed that:  
• Captured image was successfully transferred from 

hardware to the buffer of an snstance of the 
graphicsRecord. 

• Image analysis, such as, creation of projection to 
both horizontal and vertical directions, peak search, 
subtraction of background (See, Fig. 3) were 
successfully executed with the graphicsRecord 
module. 

• The raw image and analyzed results were 
successfully transferred to the host computer to 
display them on the EDM-based panel. 

All the monitoring and control operations were done 
via Channel Access (CA) of EPICS which connects 
F3RP61-based IOC and the host computer over the 
network. 

PERFORMANCE MEASUREMENT 
In such a system like PLC, where hardware resource is 

rather limited, a performance can be an issue. The 
performance measurement was also done by monitoring 
CPU power consumption with running the system with 
various different conditions. The CPU loads measured 
when no image analysis and no channel access activities 
were listed in Table 2.  Table 3 and Table 4 list the CPU 
loads measured in case only one of the analysis of raw 
image or the CA activity between the F3RP61-based IOC 
and the host computer was in execution. In this 
measurement, the frame grabber module, F3UM02, was 
running in external trigger mode and a DC output module 
was used as the trigger source. While all the tables are 
subject to a case where one channel of image is being 

acquired, we have confirmed that the results scale with 
the number of channels by using two cameras. 

More detailed tests revealed that creating projection 
data costs a lot more than other analysis and making it the 
most part of the cause of CPU power consumption. 

 
Table 2: CPU Power Consumption  
(No Analysis, No Channel Access) 

Repetition 
Period 

CPU Load 
(Typical) 

CPU Load 
(Max.) 

1 second 3.00 % 4.00 % 

0.5 second 3.70 % 7.30 % 

0.2 second 16.0 % 17.0 % 

0.1 second 31.0 % 32.6 % 

 
Table 3: CPU Power Consumption  

(Only Analysis) 

Repetition 
Period 

CPU Load 
(Typical) 

CPU Load 
(Max.) 

1 second 18.6 % 19.0 % 

0.5 second 37.0 % 37.3 % 

0.2 second 91.3 % 91.9 % 

0.1 second N.A. N.A. 

 
Table 4: CPU Power Consumption  

(Only Channel Access) 

Repetition 
Period 

CPU Load 
(Typical) 

CPU Load 
(Max.) 

1 second 6.70 % 7.30 % 

0.5 second 13.7 % 14.0 % 

0.2 second 34.0 % 35.0 % 

0.1 second 69.0 % 70.0 % 

SUMMARY 
A new image processing system was developed based 

on an embedded EPICS technology by using a PLC’s 
CPU which executes Linux as its OS and a frame grabber 
module of the PLC. A special record, graphicsRecord, 
was ported onto the F3RP61-based IOC and a new device 
support was developed to interface the record with the 
hardware. The test results of the system showed that the 
developed software woks as expected. The result of 
performance measurement showed that creating 
projection data is the most part of the cause of CPU 
power consumption and gives the limit of the repetition 
rate of image analysis or the number of channels of image 
data which the developed system can handle. 
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Figure 2: EDM-based graphical user interface. The numbers and buttons at the right side of the image shows the 
results of analysis and control channels respectively. Horizontal and vertical profiles are shown in the lower part of 
the GUI. 

 

Figure 3: Subtraction of background from raw image. The left side of the upper image shows the raw data. The right 
side of the upper image shows background data. The result of subtraction is shown in the lower image. 
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CONTROL AND ACQUISITION SOFTWARE COMPLEX FOR TBTS 
EXPERIMENTS 

A. Dubrovskiy, CERN, Geneva, Switzerland

Abstract 
The Two-beam Test-stand (TBTS) is a test area in the 

CLIC Test Facility (CTF3) to demonstrate the high power 
RF extraction and acceleration at a high accelerating 
gradient, which are feasibility issues for the Compact 
Linear Collider (CLIC) project. In order to achieve an 
efficient data collection, an acquisition and logging 
software system was developed. All year round these 
systems store the main parameters such as beam position, 
beam current, vacuum level, pulse length etc. For 
predefined events they also gather and store all 
information about the last several pulses and the machine 
status. A GUI interface allows from anywhere to plot 
many logged characteristics at a maximum of 10 minutes 
delay, to go though all events and to extract any logged 
data. A control interface configures actions and long-term 
control procedures for conditioning accelerating 
structures. The flexible configuration of the logging, the 
acquisition and the control systems are integrated into the 
same GUI. After two years operation the critical 
components have shown highly fault-tolerant. Logging 
data are used for physic researches. 

INTRODUCTION 
CTF3 is a test facility which addresses the feasibility 

demonstration of the Compact Linear Collider (CLIC) 
[1,2]. The CLIC machine will produce electron-positron 
collisions at the nominal center of mass energy of 3 TeV 
at a luminosity of 2×1034 cm-2 s-1 with a two-beam 
acceleration scheme. This scheme is studied in the Two-
beam Test-stand (TBTS), which is a part of CTF3. An 
electron beam (the drive beam) of 12 GHz is generated 
from a 1.5 GHz electron beam in a Delay Loop and 
Combiner Ring and then sent to the TBTS. The drive 
beam of an intensity of up to 32 Amps passes through a 
Power Extraction Structure (PETS). The extracted 
12 GHz RF power from the drive beam is used to 
accelerate the second, low-intensity, beam (the probe 
beam). In the TBTS set-up the CLIC feasibility, stability 
and protection issues are studied, such as the beam 
changes during the deceleration, the RF extraction 
properties by the PETS, the high-gradient acceleration, as 
well as the Two-beam scheme performance and the fault-
tolerance [3]. 

A control and acquisition high-level software complex 
was developed in order to assist all TBTS experiments, 
measurements and control routines. From the user point 
of view, the acquisition and logging parts of the system 
must be extremely reliable and robust; and it must work 
round-the-clock. The software system is flexible and 
adaptive to failures of hardware or software components 
involved in the TBTS set-up. Another issue is that the 
development of the software continues during several 

years such that it follows the requirements of R&D 
experiments and the hardware installation; and it remains 
light in support and compatible. The automatic control 
part contains a material protection mechanism and an 
accelerating structure processing.  

FRAMEWORK 
The TBTS software design approach is based on a 

model-driven architecture. The software developing 
process contains two distinct periods of time. During the 
first and initial period the developer followed the 
waterfall model approach. Specifications for different 
software aspects were completed iteratively during an 
extended period of time. That is why the first four stages 
of the software development consecutively alternated: 
requirements analysis → software design → integration 
→ testing → requirements analysis → and so on. During 
this period the full range testing is very time consuming 
and some aspects remain unknown. Hence the testing, the 
validation and the performance estimations were made for 
some aspects of typical situations. The model merging is 
one of the most difficult processes during this phase. In 
order to simplify this problem, a core model was 
designed, which covers the static part of the set-up and it 
remains independent of the software and hardware 
realisations. The core software model was developed 
based on the instrumentation, controllers and machine 
time triggers layouts and general specifications. The 
acquisition model defines the generalized device 
interfaces for different data access interfaces and different 
types of equipments.  The control model depends on only 
the core model and the acquisition model.  At the end of 
the first period most of this was defined and realized in 
the server part of the software. The remaining part is 
gradually put in operation during the second period taking 
into account the importance of the blocks. So the second 
period of the development relies on the feed-back from 
results, goals and tasks of experiments and set-up 
changes. During this period the development becomes 
lighter and faster, the development tends to be agile.  

ACQUISITION 
The acquisition part of the software complex is to 

obtain all necessary information about the CTF3 machine 
status and the experiment. CTF3 can run in several modes 
for the TBTS beam lines:  
• only the drive beam is on; 
• only the probe beam is on; synchronizly;  
• probe and drive beams are on, but not synchronized; 
• probe and drive beams are on and synchronized. 
Moreover all measurement equipments are located on 
different front-end crates in the network, and 

THPL020 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

168

Data acquisition



measurements are updated non-simultaneously. Thus in 
all running modes the acquired data must be synchronized 
in a way to get the beam, RF and other measurements 
resolved for each pulse in both beam lines. If the read-out 
of some of equipments fails, the missing information is 
treated as a special case.  

Machine status 
In CTF3 there are several parameters which relevant to 

TBTS beam properties. The status of the electron gun and 
the pulse length define the initial beam. Meanwhile the 
recombined beam pulse can be cut by a tail clipper, which 
is installed after the extraction from the Combiner Ring. 
The CTF3 safety interlock system protects the equipment 
and the personal from harm. Any TBTS control activity is 
stopped on the activation of one of interlocks; and it 
resumes when the system is okay. All these parameters 
are synchronized with a CTF3 acquisition trigger and they 
are synchronously acquired by the TBTS software. 

At present the distribution in the waveguide system of 
the extracted RF from the PETS is controlled by RF 
actuators: two RF attenuators and one RF phase shifter 
that can be remotely changed. The actual position of 
stepping motors is read using a spring return. The read-
out and the control of RF actuators are also synchronized 
with CTF3 triggers.   

RF Simulation 
Most of the time the TBTS set-up is running in the RF 

recirculation mode: a part of the extracted RF feeds back 
the PETS with a certain phase shift and the other part of 
RF goes to the accelerating structure [4]. Taking into 
account the status of RF actuators, the RF propagation in 
the RF waveguide system is simulated based on the drive 
beam intensity for every pulse. The simulation is 
compared to the RF power measured by directional 
couplers, which are installed in 5 different places. This 
allows detecting anomalies of the RF transportation and 
recirculation every pulse. In case of a normal pulse the 
comparison between the simulation and the measurement 
gives the beam quality: the bunch form factor and the 
beam phase along the pulse. 

Pulse Summary 
Every pulse, the full set of data is summarized into a set 

of scalar values. The summarized data is used later in the 
control part of the software. For the user it is a possibility 
to monitor the evolution and the processing of the system. 
The main waveform measurements are summarized into 
the data set by the type of measurement: 

• forward power – the peak power, the total power 
over the pulse duration, and the total period, when 

the power exceeds 50%, 75% and 90% of the 
peak power; 

• reflected power - the peak power and the total 
power over the pulse duration; 

• BPM – the mean current, vertical and horizontal 
positions at the flat top of the intensity waveform; 

• Faraday cup – the peak signal. 
Based on the predefined conditions the acquisition system 
determines anomalies during the high-field travelling in 
three sections of the TBTS: in the RF recirculation loop, 
in the RF waveguides towards the probe beam and in the 
accelerating structure. The typical indications are a high 
relative reflection, a missing energy, a high ion emission 
and a significant difference between the measured and the 
simulated RF. 

Event 
In order to minimise the amount of logged data and to 

provide a “one row data access”, the event system was 
implemented. For predefined conditions, such as 
breakdowns, interlocks and errors, the event system 
gathers all data together about the last and several 
preceding pulses and the machine status. In particular data 
from about 50 additional signals predefined by the user 
and two MTV cameras are acquired and saved, which are 
analysed off-line. The user can also raise an event by an 
external trigger from the GUI panel or he can activate the 
periodical event trigger.  

CONTROL 
The software system controls relevant TBTS actuators: 

the gun mode, the gun interlock, the gun pulse length, the 
tail clipper, the RF attenuators and the RF phase shifter. 
The user can control actuators in physical units. Control 
subsystems were implemented that atomise the control 
routine. The most important controllers are the interlock 
and the accelerating structure conditioning systems. 

Interlocks 
The interlock control subsystem is needed to protect the 

experiment hardware and to provide the purity of the 
experiment. There are two typical actions on an interlock: 
to cease the drive beam and to reduce the power 
production. These actions avoid problems with high 
vacuum, beam losses, klystron instabilities, PETS and 
accelerating structure breakdowns. The main indications 
for an interlock are a high reflection, a high vacuum level, 
beam losses, a missing energy and a breakdown. After 
vacuum level sparks the system waits until the vacuum 
level is below the normal level. Similarly, the system 
waits a predefined time to calm down the experiment set-
up after a breakdown. The operation is automatically 
resumed only when all detected problems are solved.  
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Figure 1: Illustration of the event chronograph, where a detected RF transmission anomaly in the waveguide is shown.  

Conditioning controls 
The conditioning strategy is an automatization of the 

conditioning, preparation and the long-term measurement 
processes. The control software must initialise the 
machine with an initial attenuator position and the pulse 
length and verify that all interlocks are deactivated. Then 
the programme ramps up the pulse length to a target pulse 
length by a pulse length step and a delay between 
changes. After that it changes the attenuator stepping 
motor position towards the target attenuation by steps and 
delays. If a breakdown occurs during that procedure, the 
control system must follow the interlock specification. If 
the number of breakdowns exceeds a threshold over a 
period, the programme should increase the target 
attenuation by a specified increment. If the procedure 
reaches the target positions and it stays for more than a 
predefined time, the programme reduces the target 
attenuation by a certain decrement. All parameters of the 
conditioning strategy are defined by the user. 

LOGGING & GUI 
The logging system permanently stores most of the 

acquisition data and many other parameters, in total 
several thousand parameters. All data are available after a 
several seconds for CERN internal users and after less 
than 10 minutes for external users.   

The GUI part is composed of different display 
instruments. Quick access panels are an actuator control 
panel, an experiment description, the last pulse summary 
and the logging status. Remote configurations are an 
accelerating structure processing setup, interlock 
configurations, connections and signal treating 
configurations, RF simulation settings and others. The 
logging tools are a logging data plotting and the data 
extraction into MAT-format files. Acquisition 

visualizations are a last pulse waveform display and an 
event chronograph display. An example of the event 
chronograph display is shown in Fig.1, where a RF 
transmission anomaly was automatically detected.  

CONCLUSIONS 
An approach to develop dedicated software for the 

TBTS research was worked out. It allowed to create a 
model based system with rich functionality and 
flexibility, which meets the physics requirements. It is 
light in support during the operation.  The complex of 
developed systems has been used in CTF3 for two years. 
The software has shown highly fault-tolerant and it is an 
efficient instrument within the scope of Two-Beam 
studies.  
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PLANS FOR MONITORING TPS CONTROL SYSTEM INFRASTRUCTURE 
USING SNMP AND EPICS 

Y. T. Chang, Y. K. Chen, Y. S. Cheng, C. Y. Wu, C. H. Kuo, Jenny Chen, C. J. Wang, K. H. Hu,      
K. T. Hsu 

National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan 

Abstract 
The Taiwan Photon Source (TPS) control system is one 

of the crucial systems for the accelerators and beamlines. 
It is necessary to monitor the status of the control system 
components such as housekeeping parameters of cPCI 
EPICS IOC crates, network traffic, connections between 
computers, etc. The equipment room environment 
including electric power, temperature, fire alarm, and 
water leak will also need to be watched. Using Simple 
Network Management Protocol (SNMP), the behaviour of 
network-attached devices can be monitored for 
administrative attention. Since the TPS control system is 
based upon the EPICS framework, the monitoring system 
is planned to adopt the EPICS support with SNMP. This 
paper will describe the system architecture of this 
monitoring system. 

INTRODUCTION 
Taiwan Photon Source (TPS) [1] will be the new 3 

GeV synchrotron radiation facility to be built at National 
Synchrotron Radiation Research Center, featuring ultra-
high photon brightness with extremely low emittance.  
The construction began in February 2010, and the 
commissioning is scheduled in 2013.   

TPS control system will be implemented by using the 
Experimental Physics and Industrial Control System 
(EPICS) [2] framework. The various devices are 
integrated with EPICS based Input Output Controller 
(IOC) via control network connection. Figure 1 shows the 
architecture of TPS control system. 
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TPS Control System Network
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Power Supplies 
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Figure 1: Possible SNMP-compatible devices in the TPS 

control system network 

There are 24 Control Instrumentation Areas (CIA) 
which distributed along the inner zone just outside of the 
machine tunnel.  Each CIA serves for one cell of the 
machine control and beamline interface. EPICS IOCs and 
major control devices connected to the control system are 
installed inside CIAs. 

The TPS control system is designed for high 
availability. Its infrastructure must be reliable. Due to the 
long distance between control room and CIAs, an 
infrastructure monitoring system is planned to be 
implemented for gathering status of control system 
components such as CompactPCI (cPCI) IOC crates, 
network switches, servers, Uninterruptible Power 
Supplies (UPSs), etc. A dedicated  EPICS IOC is planned 
to be used for housekeeping to monitor the health 
condition of these devices. When abnormal situations 
occur, e.g. crate temperature overheat, power supply 
breakdown, fan failure, or network disconnection, the 
monitoring system will automatically display the warning 
messages on the operator interface (OPI) screen and send 
out the alarm notification by voice call and E-mail.  We 
can receive the early notification before a problem turns 
into a disaster. In addition to the warning messages, the 
monitoring system will also generate the warning reports 
or charts which can indicate the problems at the same 
time. Software tools such as MATLAB will be used to 
create these warning reports or charts automatically. 

SYSTEM ARCHITECTURE 
Simple Network Management Protocol (SNMP) is an 

industry standard protocol for managing statistical data of 
the network-attached devices. It is based on the client-
server architecture and consists of three components: 
managed device, agent, and Network Management 
System (NMS). A managed device is a network node that 
implements an SNMP interface that allows access to 
specific information. An agent is a software module that 
resides on a managed device which reports information 
via SNMP to the NMS. The NMS is an application which 
runs on the manager and regularly polls data from agents.  

SNMP mechanism associates with the Management 
Information Bases (MIBs) which describe the structure of 
the management data of a device. MIB uses a hierarchical 
namespace containing object identifiers (OID). Each OID 
identifies a variable that can be read or set via SNMP.  

The devSNMP [3] is the EPICS device support with 
SNMP that allows us to access management data from 
any network device in the same manner as we are used to 
for the EPICS PVs. Current devSNMP supports only 
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snmp-read commands and works with SNMPv2c. 
A dedicated EPICS IOC will be used to retrieve 

information from the SNMP-compatible devices. The 
system structure is shown in Figure 2. The IOC can query 
the management data from managed devices via SNMP 
protocol. Then the data will be stored in the EPICS 
database for PVs channel access. The Extensible Display 
Manager (EDM) will be used as the operator interface 
(OPI) to show the monitored information via the Channel 
Access (CA) protocol. 
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Figure 2:  System block diagram of building EPICS 
support for SNMP-compatible devices 

MONITORING OF SNMP-COMPATIBLE 
DEVICES 

 In the future, the TPS control system is expected to 
setup more than 100 IOC crates, more than 50 network 
switches, and more than 50 UPSs. Due to these large 
amounts of devices, it is hard to pinpoint which device 
has a breakdown. Fault-finding and troubleshooting 
become a critical issue we have to face. So, it is necessary 
to build a warning mechanism using the SNMP-
compatible devices that can show the status of device 
information on the Graphical User Interface (GUI). 
Besides the monitoring screen, it can also send the 
warning message by voice call and E-mail. In order to 
speed up the troubleshooting, the warning message should 
indicate the location and status of the fault devices. The 
detail will be described in the following paragraphs. 

cPCI Crates 
The cPCI crate is chosen as the standard EPICS IOC 

platform for the TPS control system. Monitoring the 
health of the crate is essential. Each cPCI crate has an 
alarm board with SNMP support. The alarm board can 
provide the parameters of the crate status. These 
parameters stand for the status of the following entries, 
including voltage, temperature, fan speed, and status of 
power supply unit. 

The monitoring system will poll the data from the cPCI 
crates located at 24 CIAs every 10 seconds. A prototype 

has been developed to collect the real parameters from 
cPCI crates for testing. Figure 3 shows the EDM display 
page for monitoring the cPCI IOC crate status. Each 
column  represents one cPCI IOC crate which will be 
installed in certain CIA. If the parameters exceed normal 
range, the display value will turn into red for warning the 
operator. 

 

 
 

Figure 3: EDM display page for monitoring cPCI IOC 
crate status 

 
The original devSNMP module should be extended  the 

"Regular Expression" for non-standard output data string.  
There are two ways to solve the problem: One is to 
rewrite the device support of devSNMP module, the other 
is to insert the a new definition field of module support. 
However the second method could solve the problem 
much more directly so that the definition "scalcout" from 
CALC [4] module is inserted to main database definition 
file. Afterwards, it only need to add the "scalcout" field in 
the DB file which would translate the output string from 
the device. 

Network Switches 
Network Switches only support SNMP, however, they 

do not support with EPICS framework. We can use off-
the-shelf network management tools or dedicated EPICS 
IOC to obtain the SNMP data of switches.  

The application tools for network management (e.g. 
MRTG, RRDTools, Ganglia, etc) usually have many 
complicated functions for certain purposes. These tools 
are suitable for webmaster or network manager who 
needs to monitor the detail information of network 
equipments. 

In general, most of the users or maintainers only wants 
to know some ordinary entries such as heartbeat, 
bandwidth and hot-spot warning. Thus assembling the 
housekeeping parameters is also needed to make into 
consideration for monitoring these switches. 

In contrast with switching among different kinds of 
graphical user interfaces, it is more convenient and 
efficient to centralize variety of data into EPICS IOC so 
that we can manage and present the received data via a 
customized control interface which could integrate into 
the TPS control system. 

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan THPL022

Data Networking and Web Technology Network Design

175



 

 

In Figure 4, it shows that both EPICS IOC with 
devSNMP module and network management tools are 
used to monitor the status of switches.  
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Figure 4: EPICS IOC vs. Network Management Tools   

Servers  
There are two strategies to monitor the servers, one is 

used for the servers without running EPICS IOC but 
support  SNMP, the other is for the servers with running 
EPICS IOC. Figure 5 shows the difference between them. 
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Figure 5: Monitoring schema for servers 
 

For servers without running EPICS IOC, such as file 
servers and database servers, we can start the SNMP 
daemon to allow the dedicated EPICS IOC to gather host 
information. The host information includes heartbeat, 
CPU load, disk usage, number of processes, network 
traffic, etc. The housekeeping information such as status 
of power supply, fan, and temperature can also be 
obtained via the MIBs provided by vendors. 

For servers with running EPICS IOC, there is the IOC 
monitoring utility similar to IOCMON [5] that can run at 
IOC and monitor the available resources. The OPI can get 
data directly through the utility without involving SNMP 

and other dedicated EPICS IOC. It can reports the IOC 
resources information including CPU heart beat, CPU 
usage, number of file descriptors used, memory allocated, 
boot parameters, number of CA clients, number of CA 
database links, and network interface statistics, etc. 

Others 
Other SNMP-compatible devices such as UPSs are 

planned to be added into the monitoring system. The UPS 
status information such as current, load rate and battery 
will be monitored. 

The equipment room environment parameters including 
electric power, temperature, fire alarm, and water leak are 
also our concerns. Instead of using the inefficient SNMP, 
detection devices supported by EPICS will be used to 
collect the environment parameters which can be 
integrated to the control system. 

In order to maintain and classify each device in 
effective way, EPICS framework supports the template 
file for management. In particular, "dbLoadTemplate" 
loads the definition file which contains macros and other 
substitutions. It is not only reducing the line numbers of 
the script but also flexible to extend the parameters for 
each device. 

SUMMARY 
Maintaining high reliability of the TPS control system 

is important to the operations of accelerators and 
beamlines. Since there are many control system 
components distributed at numerous locations in the TPS 
buildings, it is necessary to have an infrastructure 
monitoring system to supervise the status of these 
components. Most of these components such as IOC 
crates, network switches, and servers support SNMP 
which is the industry standard protocol for managing 
statistical data of the network-attached devices. To be 
consistent with TPS control system which is based on 
EPICS framework, the monitoring system is developed by 
using the EPICS device support with SNMP. This system 
not only can display warning messages on the OPIs but 
also send alarm notifications to responsible personnel by 
voice call and E-mail. The alarm message should contain 
the location and status information for easily targeting the 
failed device. A prototype has been developed to gather 
the real status information from cPCI crates. 
Implementation for other SNMP-compatible devices is 
still in progress. 
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DATA ACQUISITION AND STUDIES OF VIBRATION MOTION IN TLS 
BEAMLINES 

P.C. Chiu, C.H. Kuo, K. H. Hu, Jenny Chen, Y. S. Cheng, Y. K. Chen, K.T. Hsu 

NSRRC, Hsinchu 30076, Taiwan

Abstract 
TPS (Taiwan Photon Source) is being under 

construction while TLS (Taiwan Light Source) is still on 
operation at the same NSRRC site. It was observed that 
the stability of photon beam intensity (Io) of TLS seemed 
a little deteriorated at daytime, when civil work is busy, 
compared to the nighttime. The intensity changes at 
different beamlines, however, aren’t consistent with each 
other in each time, furthermore not so agreeing with the 
electron beam. Therefore, to correlate how the ground 
vibration due to civil construction effected on beam 
behaviour, the vibration measurement system is 
integrated into the existing TLS control system. The 
system will support waveform acquisition which could be 
acquired on demand. Meanwhile, realtime 10 Hz rms 
detector which could be archived continuously is also 
considered to be built in the future. 

INTRODUCTION 
 The TPS is a 3 GeV energy electron ring with 512 
meter circumference and planned to be delivered to users’ 
end stations in 2014. During the periods of its 
constructions, the TLS at the same site will continuous be 
on operations. The quakes caused by excavators or pile 
drivers as Fig. 1 seem to have deteriorated the stability of 
beamline intensity (ΔIo/Io) from 0.1% up to 10% or 
more. On the other hand, these stability indicatorsΔIo/Io 
between different beamlines have been not always 
concordant. Furthermore, it has been confused us over a 
long period that the indicators sometimes became worsen 
while the related subsystem remained normal even before 
TPS construction. It is suspected that different 
characteristics of vibration of different girders quite 
would be one of possible causes. Therefore, to clarify 
these inconsistent and not-yet-explained phenomena, the 
data acquisition system of vibration is planned to be built 
and continual expanded.  In this report, the infrastructure 
of vibration data acquisition system will be presented as 
well as correlations of electron orbit, photon beam and 
vibrations of several spots will be shown. 

INFRASTRUCTURE OF DATA 
ACQUISITION FOR VIBRATION 

The DT8837 manufactured by Data Translation Inc. is 
employed as data acquisition tools for the accelerometers 
and photon intensity of beamlines distributed around the 
rings. The device supports functionality of bias current 
enable for ICP input. The equipped Ethernet interface is 
convenient for cabling and UDP trigger packet also 

provides sufficient synchronization mechanism for the 
distributed modules. Fig. 2 shows the infrastructure of the 
related system. All of the data from electron beam, photon 
beam, and vibrations could be synchronous acquired by 
software trigger within 100 msec. As Fig. 2 shown, 
besides the 10 Hz data from IOC/ILC could be acquired 
in real-time and archived, the fast transient motion could 
be also observed in adjustable higher time resolution and 
sampling rate up to 10 kHz. 
 

 
Figure 1: TPS construction site in Sep 2010. 
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Figure 2: Infrastructure of data acquisition for vibration 
and the other related subsystem. 
 

STATUS OF NORMAL OPERATION 
Fig. 2 shows the normal status of the beam stability in 

quiet: the stability of beamline intensity (Δ Io/Io) is 
usually under 0.1%, the spectrum amplitude of electron 
beam stability is also less than 0.5 um below 50 Hz. The 
overall RMS stability of electron beam can achieve 
submicron level from DC to 50 Hz in normal operation 
[1][2]. The mechanic design of BL11 looks better than 
BL10’s where the vibrations of three-axis at BL11 are all 
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less than 0.01 mg and are less 0.1 mg at BL10 as Fig. 3. It 
is required further studied to seek for causes of these 
differences. It is clear from Fig. 3 that the spectrums of 
two electron BPM are very similar while they are not 
consistent with the spectrum of photon intensity Io 
between BL10 and BL11. Furthermore, even these two Io 
cannot agree with each other. The vibration characteristics 
of two beamlines are not consistent so much. The fact that 
47.5Hz noise is observed in both of the electron beam and 
accelerometers but is invisible in photon beam. It seems 
very necessary with more sensors for detection and 
analysis. 

5 10 15 20 25 30 35 40 45 50 55
0

0.05

0.1

(n
A
)

20-Jul-2010 13:01:29

 

 

5 10 15 20 25 30 35 40 45 50 55
0

0.05

0.1

(m
g)

 

 

5 10 15 20 25 30 35 40 45 50 55
0

0.05

0.1

(m
g)

 

 

5 10 15 20 25 30 35 40 45 50 55
0

0.05

0.1

(m
g)

 

 

5 10 15 20 25 30 35 40 45 50 55
0

0.2

0.4

μm
/(
H
z)

1/
2

Frequency (Hz)

 

 

BL10Io

BL10 x-axis vibration

BL10 y-axis vibration

BL10 z-axis vibration

R2BPM4Y

 
(a) 

5 10 15 20 25 30 35 40 45 50 55
0

0.02

0.04

(n
A
)

20-Jul-2010 13:01:29

 

 

5 10 15 20 25 30 35 40 45 50 55
0

0.005

0.01

(m
g)

 

 

5 10 15 20 25 30 35 40 45 50 55
0

0.005

0.01

(m
g)

 

 

5 10 15 20 25 30 35 40 45 50 55
0

0.005

0.01

(m
g)

 

 

5 10 15 20 25 30 35 40 45 50 55
0

0.5

1

μm
/(
H
z)

1/
2

Frequency (Hz)

 

 

BL11Io

BL11 x-axis vibration

BL11 y-axis vibration

BL11 z-axis vibration

R2BPM1Y

 
(b) 

Figure 3: (a) Spectrum of BL 10 Io, three-axis vibration 
and electron BPM: R2BPM4Y. (a) Spectrum of BL 11 
Io, three-axis vibration and electron BPM: R2BPM1Y. 

LARGE VIBRATION CONDITION 
  The inconsistence of the above section is also presented 
when large vibration occurs. Although the scales of the 
instabilities of photon intensity and vibration became 
larger when excavators or pile drivers were operated, but 
the characteristic of the behavior is still quite differed. Fig. 
4 shows one of the examples. It can be observed that in 

the time domain, the transient motions (spikes) occurred 
simultaneously but the spectrums of these signals aren’t 
so correlated much as Fig. 5. 
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Figure 4: (a) Time series of BL 10 Io and three-axis 
vibration and electron BPM R2BPM4Y. (a) Time series 
of BL 11 Io and three-axis vibration and electron BPM 
R2BPM1Y when large vibration occurs. 
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Figure 5: (a) Spectrum of BL 10 Io and three-axis 
vibration and electron BPM R2BPM4Y. (a) Spectrum of 
BL 11 Io and three-axis vibration and electron BPM 
R2BPM1Y when large vibration occurs. 

ΔIo/Io change study 

As Fig. 6 (a) shown, the stability indicatorsΔIo/Io of 
one beamline (in this examples, BL10) became worsen 
sometimes. In the meanwhile, the other (BL11) still 
remained normal and the electron beam orbit was also 
steady. We check the vibrations of these two beamlines at 
that moment as Fig. 4 (a) & (b). Transparently, an 
individual vibration event nearby this beamline caused 
the BL10 quake. The vibration was local not global. If not 
all of the indicators Δ Io/Io become worsen 
simultaneously, the indicators are meaningless. However, 
even if the global vibration result in instabilities, the 
change of photon beam motion is not majorly from 
electron beam but itself vibration contributed more. In 
fact, the electron beam is more stable than photon beam 
when large vibration occurs. The stability of photon beam 
deteriorated over twice while the electron beam almost 
not changed comparing Fig. 3 and Fig. 5.  
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Figure 6: (a) 10Hz data of Δ Io/Io and electron and 
photon BPM (b) Time series of BL 10 Io and three-axis 
vibration and electron R2BPM4Y. (c) Time series of BL 
11 Io and three-axis vibration and BPM R2BPM1Y when 
large vibration occurs. 

SUMMARY 

The installation of the accelerometers and its data 
acquisition are presented. The vibration acquisition 
system provides information about ground vibration so 
that it could be correlated with electron and photon beam. 
It helps to clarify some unclear events and contradictions 
in the TLS operation. For examples, the inconsistency of
ΔIo/Io between different beamlines was possibly resulted 
from local ground motion. The characteristic of the 
different girders quite differed. The firmness of storage 
ring girder is better than beamlines and the electron beam 
are more immune from vibration than photon beam. 
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Abstract

Big physics control experiments require enormous com-
putational power to solve large problems with demanding
real-time constraints. Sensors are acquired in real-time to
feed mathematical routines, which then generate control
outputs to real-world processes. For tokamak control, a
non-linear PDE needs to be solved in real-time with a cy-
cle time of less than 1 ms.

We report on an alternative approach based on LabVIEW
that solves the critical plasma shape and position control
problems in tokamaks. Input signals from magnetic probes
and flux loops are the constraints for a non-linear Grad-
Shafranov PDE solver to calculate the magnetic equilib-
rium. An architecture based on off-the-shelf multi-core
hardware and graphical software is described with an em-
phasis on seamless deployment from development system
to real-time target. A number of mathematical challenges
were addressed and several generally applicable numerical
and mathematical strategies were developed to achieve the
timing goals. Several benchmarks illustrate what can be
achieved with such an approach.

INTRODUCTION

The magnetic equilibrium for a tokamak is described by
the Grad-Shafranov equation :

R
∂

∂R

(
1

R

∂ψ

∂R

)
+
∂2ψ

∂Z2
= −µ0Rj(R,Z), (1)

whereψ is the poloidal flux function,j is the current den-
sity, R is the radial component andZ is the axial compo-
nent ( see figure 1 ). This problem is commonly solved by
a cyclic reduction algorithm [1, 2, 3]. A magnetic equi-
librium for discharges with plasma current is reconstructed
on a 33 x 65 grid using 40 magnetic probes and 18 flux
loop difference signals. The right hand side current den-
sity term is calculated by a weighted least squares fit to the
measurements which yields coefficients for the basis cur-
rent density profiles [2, 3, 4]. Three basis current density
profiles were chosen in the first round of development and
found to adequately fit the experimental magnetic probe

∗Louis.Giannone@ipp.mpg.de

and flux loop measurements [5]. The currents from the
poloidal field coils are also needed to compute the value
of ψ on the spatial grid.

Figure 1: The cross section of the ASDEX Upgrade toka-
mak showing the flux surfaces of the magnetic equilibrium
(red dotted lines) and plasma separatrix (red solid line).

REAL TIME GRAD-SHAFRANOV
SOLVER

We report on a new spectral-based algorithm to solve the
Grad-Shafranov equation in an unbounded domain. The
new algorithm adapts a method commonly used to solve
the Poisson equation in cylindrical coordinates. The use
of discrete sine transforms (DST) along the Z-axis and a
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tridiagonal solver [6, 7] is an alternative to the cyclic re-
duction algorithm to solve the Grad-Shafranov equation for
poloidal flux,ψ.

Spectral Method

A uniform mesh with constant spacingdR anddZ in the
R and Z directions is assumed. The grid points are labeled
from 0 toNZ−1 and 0 toNR−1, whereNZ is the number
of grid points in the Z direction, andNR is the number of
points in the R direction. The five point difference equation
with indexi in the R direction and indexj in the Z direction
can be written as :

ψi+1,j − 2ψi,j + ψi−1,j

dR2
− 1

Ri

ψi+1,j − ψi−1,j

2dR

+
ψi,j+1 − 2ψi,j + ψi,j−1

dZ2
= −µoRiji,j (2)

Introducing the discrete sine transform ofψ andj :

φi,k =

NZ−2∑

j=1

ψi,jsin

(
πjk

NZ − 1

)
(3)

Ji,k =

NZ−2∑

j=1

ji,jsin
(

πjk

NZ − 1

)
(4)

leads to the tridiagonal matrix equations :

βiφi+1,k − αkφi,k + γiφi−1,k = −µ0RidR
2Ji,k (5)

whereαk = 2 + 4S2sin2

(
πk

2(NZ − 1)

)
, βi = 1 −

dR/(2Ri) , γi = 1 + dR/(2Ri) andS = dR/dZ.

Tridiagonal Solver

The tridiagonal matrix equation is solved with a tridi-
agonal solver using an LU decomposition algorithm. The
LU decomposition generates two bidiagonal matrices sub-
sequently used in the iterative procedure to solve the tridi-
agonal equations. By using LU decomposition, operations
are reduced by a factor of 2 compared to the direct solver
algorithm [8].

Unbounded Domain

The solver for the Grad-Shafranov equation in an un-
bounded domain is composed of two fast solver steps [1].
The new algorithm reduces the computing time dramati-
cally by utilizing a spectral method at each step.

The first step of the solver uses zero as the condition for
all grid boundaries with a right hand side current distribu-
tion on the flux surfaces from the previous iteration given
by the weighted least squares fit to the magnetic probe and
flux loop measurements. In this step, it is only necessary
to computeψ at points neighboring the grid boundary and

a reduced inverse DST can be performed to calculate these
values. The columns ofψ inside the boundary edge are :

ψi,k =
2

NZ − 1

NZ−2∑

j=1

φi,jsin

(
πjk

NZ − 1

)
(6)

wherei = 1 andNR − 2, and the rows inside the bound-
ary edge can be calculated in a similar fashion withk = 1
andNZ − 2. All these four edges can be computed using
matrix-vector multiplication. This avoids the unnecessary
computations performed by a traditional inverse DST op-
eration applied to the entire grid. The gradients inψ nor-
mal to the grid boundary,(∂ψ/∂n)boundary, are the inputs
required for the next solver step. These are the shielding
currents that are necessary to force the zero boundary con-
dition of the first solver step. They are used to calculate the
Green’s functions forψ generated by a current hoop of ra-
dius,a, carrying current,I, for each grid point with radial
coordinate,R, and a vertical distance,Z, on the boundary
[1, 9, 10] :

ψ = µoI
√
(a+R)2 + Z2)((1− k2/2)K(k2)− E(k2))

(7)
wherek2 = 4aR/((a+R)2+Z2)),K(k2) is the complete
elliptic integral of the first kind andE(k2) is the complete
elliptic integral of the second kind [11, 12]. The actual
calculation of the resultingψ on the boundary is performed
as a matrix multiplication with pre-calculated coefficients
times the vector of shielding currents.

The second step of the solver is carried out with bound-
ary conditions from the first solver step but without current
source terms on the right hand side of the Grad-Shafranov
equation. Because only the first and last elements are
nonzero, it is possible to use an optimized DST to reduce
the computation effort. The faster DST is carried out by the
BLAS functiondger producing :

Dij = −
ψi,1sin

(
πj

NZ−1

)
+ ψi,NZ−2sin

(
πj(NZ−2)

NZ−1

)

dZ2

= −ψi,1 − (−1)jψi,NZ−2

dZ2
sin

(
πj

NZ − 1

)
(8)

The DST of the boundary conditions at the inner and
outer radial positions are added to the first and last
columns. The tridiagonal solver is applied to this result
and is added to the result from the first solver step. The
solution of the Grad-Shafranov equation is then calculated
by an inverse DST.

Under equivalent boundary conditions, an implemen-
tation based on the cyclic reduction algorithm computes
all elements on the grid in both solver steps. The Grad-
Shafranov solver algorithm described here achieves a sig-
nificant performance improvement in comparison to cyclic
reduction by employing two optimized DST implementa-
tions. The first implementation exploits the ability to avoid
unnecessary calculations. The second implementation ex-
ploits the fact that the right hand side term is zero except at
the boundary to greatly reduce the number of operations.
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Theψ generated by the external poloidal field coils and
passive stabilizing loop on the grid is also realized as a
matrix-vector multiplication using factors calculated with
Equation 7. The poloidal field coils and passive stabiliz-
ing loop are simulated as a finite number of filaments, with
each filament carrying an applicable number of turns. Vac-
uum field shots with current pulses successively in each of
the poloidal field coils are carried out to ensure that the best
possible estimates of the magnetic probe and flux loop po-
sitions and calibration factors of the integrators are usedto
reconstruct the tokamak magnetic equilibrium with plasma
current [5].

BENCHMARKS

A Dell T5500 with two PCI-e x16 slots wired as x8 (half
length), two PCI-e x16 Gen 2 graphics slots up to 150 watts
each, a PCI-X 64bit/100MHz slot with support for 3.3V or
universal cards (half length) and a PCI 32bit/33MHz 5V
slot (half length in desktop orientation) has been delivered
with LabVIEW RT 2009 installed. A dual port Gigabit Eth-
ernet card, a x4 PCIe VMIC 5565 PIORC reflective mem-
ory card and a NI PCIe 8362 interface card for connection
of 2 PXI 1045 chassis for data acquisition of up to 256
channels were installed. Floating point benchmarks indi-
cate a factor of up to 2.7 increase in performance in com-
parison to the current dual quad-core 3 GHz Xeon 5365
computer currently used for data acquisition and real-time
calculations of magnetic equilibrium using only function
parameterization [13]. The reflective memory card trans-
mits the 33x65 poloidal flux matrix value to the control
system with less than 1 ms delay. A third party PCI card
delivers 64 bit time stamps using a 100 MHz clock and gen-
erates the 10 MHz TTL pulses for clock synchronization of
the data acquisition boards in a number of data acquisition
systems.

The following cycle time benchmarks were achieved for
the real time Grad-Shafranov solver (GS) :

Table 1: Benchmarks for a single iteration of the real-time
Grad-Shafranov solver (GS) using 8 CPU cores and Lab-
VIEW RT 2009.

Platform GS
(ms)

Xeon X5365 @ 3.0 GHz 1.13
Xeon X5677 @ 3.46 GHz 0.63

The achieved cycle time for the Grad-Shafranov solver is
therefore satisfactory for the real-time processing require-
ments of neoclassical tearing mode stabilization experi-
ments where the cycle time of the discharge control system
is 1.3 ms [14]. It should be noted that these benchmarks are
for a single cycle iteration for the PDE solution. A detailed
comparison of real-time magnetic equilibrium reconstruc-
tion with well converged solutions from offline calculations
show that the small differences that are found for relatively

steady state conditions are not relevant for practical dis-
charge control [2].

CONCLUSION

A real-time Grad-Shafranov solver based on a discrete
sine transformation of the difference equation rather than
cyclic reduction has been realized. The resulting tridiago-
nal equations are solved with a specially developed subrou-
tine based on LU factorization. This tridiagonal solver re-
duces the number of operations with respect to the iterative
direct solver by pre-calculating the reciprocal of the diag-
onal elements. A reduced inverse DST is required in the
first solver step as only the relevant terms for those neigh-
bors of the grid boundary need be calculated. A simplified
DST can used for the second solver step where only the first
and last elements are non-zero. In this way the full inverse
DST of the first solver step is omitted and the DST of the
second solver step without current source terms can be cal-
culated with a smaller number of operations. The real-time
Grad-Shafranov solver cycle time of 0.63 ms on the de-
livered Dell T5500 platform satisfies the ASDEX Upgrade
real-time processing requirements.
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Abstract 
The European Spallation Source (ESS) will be 

constructed by a number of geographically 
dispersed partner institutions in an international 
collaboration [1]. This increases organizational 
risk, as control system integration will be 
performed by a large number of quasi-
independent teams. Significant effort will be put 
into standardization of hardware, software, and 
development procedures early in the project. 
The ESS will use EPICS, and will build on the 
positive distributed development experiences of 
SNS [2] and ITER [3-5]. The basic unit of 
standardization is called the Control Box. This 
consists of one or more input/output controller 
(IOC) computers, zero or more I/O modules, 
PLC subsystems, and intelligent special-purpose 
controllers, and includes software and integrated 
development environment support. We present 
the challenges faced by Control Box plans for 
ESS, and expected benefits. 

INTRODUCTION 
Lund was chosen as the ESS site in May 2009. 

The Design Update phase (Jan 2011 to Dec 
2012) will be completed with delivery of a 
Technical Design Report (TDR). ESS will 
deliver proton beam through a ~420m 
superconducting linac, and is expected to begin 
delivering beam to users in 2019. ESS will 
eventually deliver a nominal average proton 
current of ~50 mA at ~2.5 GeV in ~2 ms long 
pulses with a repetition rate of ~20 Hz to a 
single neutron target station, for a nominal 
average beam power of 5 MW. 

There are several base assumptions for ESS 
control system planning: 
• ESS will use the EPICS control system. 
• ESS will use the Linux operating system in 

the controls service tier. 
• ESS will use the Oracle relational database 

system as a project-wide RDBMS. 

After approval of the CDR in late 2012, the 
ESS project will proceed with R&D and 
construction, installation, and commissioning. 
ESS partner institutions doing development and 
R&D work over many geographical locations 
will be supplied with Control Boxes and given 
tools to enforce standards for common data 
management issues such as naming conventions, 
source code control, and controls development 
environment.  

THE CONTROL BOX CONCEPT 
The SNS project faced similar distributed 

controls and integration development challenges 
[2]. Several later projects, particularly ESS and 
ITER, are following the SNS distributed 
collaborative accelerator construction model and 
also require early broad controls coordination. 

The Control Box concept is similar to the 
Plant System Host (PSH) concept used in ITER 
controls development [3]. In ITER terminology, 
the Control Box philosophy is realized with the 
concepts PSH, mini-CODAC [4], and Plant 
System I&C (instrumentation and control). The 
main purposes of the Control Box are to: 
• allow independent and yet standardized 

subsystem controls development, 
• enforce consistency between subsystems 

(possibly including target and experimental 
stations), 

• facilitate testing of new components (e.g. 
EPICS drivers), 

• allow centralized acceptance testing of 
subsystems through the control system, 

• validate technology decisions, 
• reduce risks early to lower projection 

integration uncertainty and effort, 
• force early documentation of standards, 
• and minimize throw-away hardware and 

software development. 
An example structure of an ESS Control Box 

is shown in Fig. 1. The ITER Plant System I&C 
document [5] discusses the different available 
approaches to Control Box design. 

____________________________________________  
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CONTROL BOX COMPONENTS 
A generic ESS Control Box will consist of 

several software and hardware components: 
• One or more EPICS input/output controller 

(IOC) computers. 
• Zero or more I/O modules (analog-digital 

converters and digitizers, digital-analog 
converters, serial interfaces, etc.) attached to 
the IOC computer’s hardware bus. 

• A real-time or non-real-time operating 
system, depending on the requirements on 
IOC processing. 

• A subset of the ESS EPICS real-time 
database to maintain values of all process 
variables under responsibility of the IOC. 

• EPICS device support, which implements 
drivers for communication with equipment. 

• EPICS Channel Access, which allows the 
process variables on the Control Box to be 
accessed from other computers in the 
network, and can retrieve values of process 

variables from other IOCs. 
• PLC subsystems for slow industrial controls 

(e.g., water cooling; HVAC, etc), connected 
to the IOC with one of several standard 
communication mechanisms, such as 
PROFINET or Modbus TCP/IP.  

• Intelligent special-purpose controllers (e.g. 
LLRF controllers). 

A standard set of supported PLCs will be 
established during the ESS Design Update, 
similar to SNS and ITER. Intelligent controller 
development will occur as part of R&D and 
construction, and controller drivers will be 
shared with the EPICS collaboration. 

The ESS Control Box distribution will 
package an EPICS distribution, Linux 
distribution, middleware, development 
environment, and documentation. This approach 
is similar to existing approaches by the NSLS-II 
and ITER projects. We are investigating IRMIS 
for project-wide PV management. Application-

 
Figure 1: A schematic of Control Box components for ESS. 
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level development will use Control System 
Studio (CSS) [6] and XAL [7], and ESS and 
CosyLab are participating in a growing XAL 
collaboration [8]. A prototype of this Control 
Box package is a planned deliverable at the end 
of the ESS Design Update. 

DATA MANAGEMENT 
Data management among disparate R&D 

projects becomes another challenge that has 
control integration implications. In this area, one  
strength of EPICS (ease of adding and removing 
control points and IOCs) can also produce 
integration, maintenance, and diagnosis 
problems. 

Central inventories will help manage this data 
and provide an infrastructure for consistency 
between distributed development and 
centralized machine design efforts. With limited 
resources, the ESS will focus on leveraging 
existing solutions such as the EPICS Channel 
Archiver [9] for historical values of process 
variables, CERN EDMS [10] for technical 
documentation and installation management, 
and IRMIS [11] for EPICS control inventory. 

Project data integration during the design 
phase will be largely driven by the machine 
model in top-down design approach. A 
schematic of this approach is shown in Fig. 2. 
This also provides an infrastructure for naturally 
coordinating machine design through control 
system details such as lattice and control point 
names, such as in XAL. 

DEVELOPMENT 
Defining standards before R&D development 

may lower integration risk, but it raises 
technical risk. Controls development projections 
are quite uncertain nearly a decade from first 
delivered beam. Control Box development and 
support must therefore iterate through the R&D 
phase to react to changes in the technical 
landscape, incorporate new developments in 
EPICS, and distribute best use cases through the 
project. We plan to develop the ESS Control 
Box in annual cycles. 

Early implementation costs are another 
challenge. The Controls Box concept requires 
enough maturity and management support at the 

outset that ESS development partners “buy in”, 
and do not hide fragmentation beneath a layer of 
conformity. Early definition of naming 
standards is a priority of development, and 
agreement to adherence to these standards will 
be a requirement for ESS partners. 
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Figure 2: Flow of model data for top-down ESS 
control system design. 
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CONTROL SYSTEMS FOR NEW LARGE EXPERIMENTS 
J. Dedic, M. Plesko, R.Sabjan*, I. Verstovsek, K. Zagar, Cosylab, Ljubljana, Slovenia 

 
Abstract 

We discuss control systems of accelerators and similar 
projects that are presently still in design and early 
construction phases, such as FAIR [1], ESS [2], 
MedAustron [3], NSLS II [4], ITER [5], etc, and 
comparing them against the approaches of the last two 
decades and explain the new trends that are emerging:  
• From the organizational perspective, control system 

architectures are established earlier in the project, 
allowing them to adapt to the machine physics 
requirements better as well as allow for modeling and 
simulations. 

• In software, there is much less emphasis on custom 
codes than there was in the past. Instead, standard and 
off-the-shelf components and frameworks already used 
at existing accelerators are becoming the preferred 
choice, not only reducing risks, but also allowing for 
reuse and sharing.  

• In hardware and networks for real-time control and data 
acquisition, there is a strong trend from custom 
electronics development to standard and off-the-shelf 
solutions. This in particular applies to systems like 
timing, machine protection, BPMs and LL RF. When 
custom solutions are needed, flexible hardware 
technologies (e.g., FPGA) are chosen to allow for 
future extensibility. 

INTRODUCTION 
Building a control system for a large experiment has 

always been a difficult task which required dedicated 
effort from a big group of people. And we have to thank 
controls groups in accelerator and the rest of big physics 
communities for their great achievements. 

Control systems evolved in the recent decades, together 
with information technology, computer science and 
electrical engineering. In the starting days, little 
equipment, be it either software or hardware, was 
available off-the-shelf. A handful of physics labs with 
difficult requirements, for which solutions have never 
been implemented, were just not commercially 
interesting. This led to lots of custom work in the labs. 
From custom IO board development to advances in 
computer networking and developing whole software 
frameworks, nothing was taken for granted. Engineers 
were also scientists. 

During the years, big number of experimental projects 
and the advance of computing allowed widespread 
standardization of components. Standard technologies are 
applied in every aspect of a modern control system, some 
systems can even be bought completely and some, which 

are only based on standard technology, but still require a 
lot of work before installed and commissioned. We shall 
look at some examples from the current experiments on 
which we collaborate. 

At the end we shall try to summarize and find trends 
and consequences of progress. The main question is 
whether the everyday work of controls groups has 
changed and what does this mean for the main priorities 
that need to be set at the beginning of every project. 

STANDARDIZATION IN LIGHT 
SOURCES 

Plenty of light sources were built in the last decades 
and they have a lot common with respect to the control 
system. Control system packages (e.g. EPICS [6] or 
TANGO [7]) have matured through collaboration and can 
be easily deployed. They are supported on multiple 
standard hardware platforms (PC, VME, PXI etc.) and 
operating systems (Linux, Windows, Unix, Macintosh 
etc.). They provide solutions for most of your needs. 
Infrastructure applications like archiving, alarm handling 
or error logging are provided together with GUI builders 
and interfaces to many programming languages. Usually, 
even more than one implementation exists. 

Increasing market has attracted industry as well. High 
performance electronics, made specifically for 
experiments’ requirements is available off-the-shelf. Not 
only chips, but complete systems like digital BPM 
electronic [8] or timing systems [9] can be bought. Many 
equipment or subsystem vendors provide control system 
drivers with their products and they offer to implement 
them for the control system package of your choice. 

Project leaders and funding agencies know this as well 
– control system budget has typically fallen from 10% to 
5% of the machine’s budget (not counting the building 
and beamlines). The challenge today is to implement a 
control system with state-of-the-art technology, but with a 
smaller budget and/or on a shorter time-frame, not 
sacrificing quality, of course. This prioritizes 
organizational aspects of the project which will be 
discussed in later sections. 

 PUSHING THE LIMITS OF CONTROL 
SYSTEM COMPONENTS 

Other experiments (we have recently worked with 
ITER, FAIR, ESS and MedAustron) are still hiding more 
technical challenges and questions. Some examples are 
explained below. 

Machine Protection System 
One such example may be a complicated timing system 

or very flexible, but still safe machine protection system. 
 ___________________________________________  
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Reference (or just similar) implementations do not exist 
yet and these components are key to success of the whole 
project. 

We have collected requirements from several projects 
and apart from the traditional role of the machine 
protection system (MPS) just statically reacting to digital 
inputs, new features are required. One such is a 
reconfigurable IO matrix, where responses to interlock 
inputs would be based on the current mode of the 
machine. This enables bypassing certain faults or 
threshold levels. Integration with the timing and control 
system is highly desired, allowing for quick 
reconfiguration of the system. 
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Figure 1: Possible implementation of a fast machine 
protection system 

Integration with the timing system is important for the 
post-mortem analysis as well. Input signals can be 
accurately time-stamped and the proper timeline of a 
problematic event can be reconstructed even if there are a 
lot of interlocks firing. 

Most of today’s MPS implementations make use of 
PLC technology, which has a response rate in the range of 
several milliseconds. The new design allows response in 
the range of microseconds even with fibre lengths of over 
1 km, making the speed of light the biggest constraint. 

Such a standard solution does not yet exist, but the 
collaboration with a number of labs and their interest 
makes it worthwhile to start the development. It is our 
view that the solution to MPS can be a good mix of 
common general system with specific. 

Hard Real-Time Feedback System 
Another interesting control system component is a hard 

real-time feedback system, which brings distributed 
dimension to the real-time control. Implementations of 
this already exist and work well (e.g. fast orbit correction 
for storage rings).  

However, current implementations are largely based on 
proprietary technologies like reflective memory (RM), or 
are implemented in-house using specialized solutions 
such as dedicated fiber network and custom hardware. We 
believe, in order to really standardize on open standards 
and to lower the cost and the risks for the future, (ten-) 
Gigabit Ethernet should also be considered. 
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Figure 2: Measurement of latency using RTnet [10] and Gigabit Ethernet as a function of data size. Different lines 
represent different network topologies, from using a crossover cable only, to complicated topology, where four network 
switches are used. 
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We have measured the deterministic performance of 
Gigabit Ethernet as a task for ITER. We were interested 
in achieving 1 KHz feedback cycle (2 network hops per 
cycle) with very low jitter (less than 10 usec) with total 
traffic of 40kB per cycle. For this, we did not just look at 
standard UDP packets with multicasting over the 
network, but we also tested our setup with Xenomai [11] 
real-time Linux kernel and RT net, a real-time network 
stack implementation. 

Our results showed (Figure 2) [12] that we can already 
achieve today a very good latency of 0.5ms for data rates 
that are typical for accelerators. Although we cannot use 
Gigabit Ethernet technology for ITER requirements 
today, we are very close. With 10-Gigabit Ethernet just 

years away, we are confident that Ethernet will be a very 
good choice for development efforts [13]. Commercially, 
no other technology can come close – consumer switches, 
network adapters and cables could be used. It seems very 
unlikely that this will change in the coming years. 

Timing system 
New complex machine require a timing system which 

is more complicated than just a simple event system that 
is usually used at light sources. New features like virtual 
accelerators, timing super-cycles (Figure 3) and event 
acknowledgements are introduced. 

 
 

Figure 3: Example timing sequence for FAIR 

 
The existing (off-the-shelf) timing solution like the one 

produced by Micro Research Finland, which is the most 
widespread among new machines, cannot provide all the 
needed functionality, but they can be used as the basic 
component, the transmission layer. 

We see that despite having a commercially available 
standard solution a lot of customization work is 
necessary. You can purchase the transport layer, whereas 
the application layer is machine specific and needs to be 
implemented for every project individually. 

COMPLEX COMPONENTS AND 
INTEGRATION 

We have established that there are definitely trends 
towards standardization of control system components, 
which could mean that work is reducing for the controls 
team. But unfortunately, not everything is that simple. 

Components are getting more complex and they require 
more time and effort to be integrated into your control 
system. Choices need to be made early in the project 
which is risky if not all aspects are considered. 

Basic control system package 
Traditionally the first choice is about the control system 

package itself (EPICS, TANGO, FESA, TINE, COACK, 
DOOCS, ACS etc). But this choice is not the most 

important one. In fact, we believe that people decide for a 
control system package in a similar way as when they are 
buying a car: we decide based on emotions and later we 
rationalize this discussion with architecture description 
and features. Luckily, most of control system packages 
are mature and modern technology will enable you to 
finish your project whatever your choice might be.  That 
is why we recommend choosing the package that you like 
the most, either due to your personal experience, your 
people background or because a similar project already 
used it and those people can help you when you get in 
trouble. 

Integrating other packages 
Many facilities use more than just one control system, 

either they are dealing with a legacy system from a 
previous experiment, with a component developed by 
another group or buy machine components with existing 
commercial control system (e.g. NI LabView [14] or any 
other SCADA system). Typically, facility control (e.g. air 
condition) is already automated and needs to be integrated 
in the main system.  

Usage of many different packages is to be avoided, if 
possible. For the remaining case, I believe that the main 
control system group must clearly define responsibilities 
and approve requirements for the interface, especially if 
other groups are involved. Documentation and 
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maintenance of the systems must be considered. 
Technical problems come second to interpersonal 
relationships in this case. 

Another set of examples come from the machine 
physics world. There different packages are used, MatLab 
[15] and XAL [16] are the most popular recently. Issues 
here are all the interfaces to other control system 
components (process variables with all the attributes like 
alarms, relational database, event handling etc.). 

Determining the level of integration is the most 
important issue to resolve. We need to realize that we are 
not just “pushing” the data from one system to another, 
but we must also think about configuration management 
and maintenance. For example, usually people have 

different views about which system will check values for 
alarm levels and how where these thresholds be defined. 

In such cases it is usually best to adopt best practices 
developed and lessons learned by a previous similar 
experiment. 

Distributed development and ‘in-kind’ projects 
New large experiments, such as ITER, FAIR or ESS, 

are very costly and are often started as international 
projects with in-kind contributions. The extreme example 
of this is ITER, where more than 150 plant systems will 
be provided by the 7 collaborating countries together with 
the local control system that will be integrated into the 
main control system. 

 
Figure 4: ITER Core System [17] is a software product helping to standardize and ease the development of the control 
system. To ensure the quality, the software is heavily covered with automatic unit tests which are run at every build. 
Continuous build system notifies the developers of build problems and test failings within a few minutes. 

 
 
ITER is tackling this issue with very rigid 

standardization. Every year, the ITER controls group 
publishes the Plant Control Design Handbook (PCDH), 
which describes all the standards, and releases the Core 
System software (Figure 4), the set of all standard, ITER 
approved, community tools and software drivers. 

The standardization does not stop with the main 
architecture, hardware platform and IO boards, operating 
system and software packages. Project life-cycle, naming 
convention and test plans are also specified. 

In addition to this, the Core System software package is 
prepared. It is the practical aspect of the PCDH and will 
be used by all ITER collaborators, making it easier to 
develop the control system properly and easily. 

We have recommended this approach to ESS as well 
and they have adopted the Control Box concept [18]. ESS 
will also be built by many partners, albeit not as many as 
ITER. 

FOCUS ON DEVELOPMENT PROCESS 
Building a complex system from more or less standard 

components is an engineering task (much more than a 
scientific experiment) with all the steps that are common 
to all engineering disciplines. In fact, control system 
development has an even more complicated cycle: 

• Write specifications  
• Architecture  
• Design  
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• Prototyping – probably the only fun part  
• Define test procedures  
• Implementation (coding) – the only software part  
• Writing documentation  
• Testing (follow ISO procedures)  
• Debugging  
• Acceptance at customer 

Projects are increasingly aware of the development 
processes. Especially, the international efforts recognize 
this and focus heavily on the following things. One such 
is the signal list. It is a golden list that represents the 
contract between different subsystems and different 
developers. This is very obvious and should be made in 
the initial stages, but many projects do not have it until 
very late in the project. 

Signal list also requires a good naming convention, 
which is unique and still people-friendly. Different people 
need to access process variables in the control system and 
naming convention should help not hinder that. 

Control groups are putting procedures in place that deal 
with changing signal list, hardware and software in 
manner that all interdependencies are taken care of and 
changes will be applied in all the appropriate places. This 
avoids project inconsistencies. 

There are two more important procedures that are 
considered: logistics of installation and error handling 
(i.e. bug fixing). How one handles control system 
installation and testing needs to be defined well before 
integration time, even before any outsourcing contracts 
are written. It should define what are the necessary testing 
steps before integration starts, who is responsible for what 
part and what are the interfaces between different groups 
of people (control system people, device experts, 
subcontractors, electrical support team). 

We all accept that some bugs are inevitable and 
sufficient time needs to be planned for testing and 
debugging. The procedure should also define how bugs 
are reported and how changes (fixes) are introduced and 
re-tested. Last by not least, good development practices 
minimize the number of bugs in the first place. 

Big projects realize that man-power is a problem and it 
is difficult to cover the wide range of required 
competences. That is why they decide for outsourcing for 
a big part of control system, whereas they retain the 
overall system responsibility in-house. 

CONCLUSIONS 
Standardization is the key trend emerging with 

development of new and complex projects. Labs are not 
required to develop all parts of a control system 
themselves, but can rely on re-using development from 

other people or even buy off-the-shelf components and 
solutions. Technical risks are reducing. 

Today, integration is the biggest aspect of a controls 
project. How will all the components fall into the main 
architecture, what will be the interfaces and how any of 
the requirements will be addressed, are the main 
questions. Integration starts with day one and is an every-
day companion throughout the project. 

Organizational risks in big and complex project with 
many partners are increasing. Focus needs to be shifted to 
stricter definition and implementation of development 
processes and rigorous standardization with clearly 
defined interfaces. 

In short, control system development is becoming more 
and more an engineering discipline and less like a 
science. 
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WHITERABBIT - A NOVEL, HIGH PRECISION TIMING SYSTEM

M. Kreider, R. Baer, T. Fleck, C. Prados (GSI, Darmstadt)
E. Garcia Cota, J. Serrano, T. Wlostowski (CERN, Geneva)

Abstract

The WhiteRabbit timing network is a deterministic field
bus, based on synchronous GBit Ethernet and the Preci-
sion Time Protocol (PTP). The WR protocol was designed
to provide precise timing and event distribution for high
end real-time systems and was therefore chosen as the tim-
ing basis for the new GSI FAIR accelerator facility. With
precise phase measurement to compensate for signal prop-
agation delay, a timing accuracy down to sub-nanosecond
range is feasible. To achieve necessary determinism and ro-
bustness (packet loss of 10−12 ), an OSI layer two Forward
Error Correction and Quality of Service protocol have been
introduced to the concept. Special switches wield the WR
protocol, while being transparent to normal Ethernet traffic.
Switch hardware is currently under development at CERN
and will be a mixed FPGA/CPU solution. Working proto-
type cards have been introduced at the 3rd WR Workshop
at CERN in 2009, demonstrating phase measurement and
PTP capabilities. The presentation will contain detail on
technical concepts, current project status, as well as future
areas of application will be part of the discussion.

INTRODUCTION

Purpose

WhiteRabbit was designed to provide very accurate
clock synchronisation to a facility and control its machines
with equal precision. Any event sent to a physical machine
causes a certain action to be executed at a given absolute
time.

The goal here is to the know the exact link delay to des-
tination in advance, so each outgoing event can be sent out
early enough to arrive on time.

In order to achieve that, certain unpredictable factors to
the response time have to be addressed. One is packet loss
due to data corruption on the physical medium, the other
factor is collisions resulting from packet switching in the
network.

NETWORK LAYOUT

WR utilises GigaBit Ethernet on fiber or copper links.
Fiber links have an advantage here, because copper tran-
ceivers and their channel encoding logic are more complex
and often show a non-determinstic behavior. Optical links
enable a higher measurement accuracy on link delay.

The topology of WR system may take any non-meshed
form, since time synchronisation must be unidirectional. If
the network is indeed meshed, a Spanning-Tree algorithm
must be used to avoid loops in time distribution.

GSI/FAIR is planning to employ a Tree Topology with a
GPS receiver as UTC timing reference at the source. Be-
low come several layers of switches, fanning timing out to
endpoints throughout the facility.

WR uses special switches and endpoints to wield its pro-
tocol. Current design of the WR switch has one uplink and
sixteen downlinks, each has a second physical port for re-
dundancy. GSI/FAIR is planning a system with roughly
two thousand timing receivers

Making extensive use of commercially available ether-
net basic components lowers costs for WR switches and
endpoints. It will be possible to integrate non-White rabbit
nodes into the network. WR is compatible with PTP de-
vices and can time sync these nodes. However, PTP nodes
can only be synchronized with reduced accuracy, since they
lack the special hardware for high precision phase measure-
ment.

General purpose ethernet nodes could also be connected
to the network. While being compatible with basic func-
tions, WhiteRabbit design does not support full Ethernet
standard at the time.

TECHNOLOGY

Synchronous Ethernet - SyncE

SyncE describes the special case of IEEE 802.3 ethernet
standard where the recovered RX clock from its master is
used as its own TX clock, making the whole system syn-
chronous. 8b/10b channel encoding is used to make RX
clock recovery from the incoming RX data signal possible.
This adjustment is done in hardware and is the basis for the
PTP fine measurements.

Phase Measurement - Aliasing and DPLL

Figure 1: Aliasing and Phasemeasurement

After SyncE has adjusted the PTP clients frequency to
the masters, the PTP can now measure the time difference
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and lag between nodes. With WR, this is aided by hard-
ware doing the precise measurement on the clocks phase
difference, bringing timing accuracy from 8ns to a theoret-
ical value of 32ps. In order to get highest precision, the
clocks frequency would have to be in optimal range of the
PLL.

The endpoint achieves this by undersampling both
clocks with a frequency very close to their own. Assum-
ing mid term stability of the oscillator, this produces low
alias frequencies which lie in the optimum measuring range
and still possess the proportional phase shift of the original
while jitter is greatly reduced .

Time synchronisation - PTP

PTP addresses the basic problem of clock synchronisa-
tion when message lag and local time difference are un-
known. A handshake between master and client is ini-
tialised, all incoming and outgoing messages are times-
tamped. After two messages and four time values, it is pos-
sible for the master to calculate link delay and difference of
localtime. The master then communicates the correctional
value down to the client which adjusts its own clock.

WhiteRabbit uses an extended version of the IEEE 1588
Precision Time Protocol. Here, synchronisation direction
is fixed, hardware phase measurement increases accuracy
and assymetry in link delay is taken into account.

This assymmetry is a result of chromatic dispersion com-
ing from wavelength multiplexing in the medium. A single
fiber is used for both RX and TX, employing two different
wavelengths to differ between incoming and outgoing mes-
sages. Light propagation in a an optical fiber is a function
of its wavelength, so RX and TX will differ in propagation
delay. [1]
Choosing fiber type with a nearly equal dampening for each
wavelength helps balancing signal strength and therefore
maximum range.

Time is adjusted sequentially down the layers of
switches and nodes. Further consideration for the link de-
lay model are slowly changing characteristics of the phys-
ical medium, caused by temperature, moisture and aging
effects.

Encoding - Forward Error Correction

The goal for WR is an event loss of 10−12. Normal TCP
protocol for example handles the problem of data loss by
re-requesting the damaged packet. In WR, there is no time
for this backup mechanism. Forward Error Correction al-
gorithms are a class of encoding that can introduce enough
redundancy to the data that chances of a packet being ir-
recontructably lost are minimimal. An event stream always
consists of several packets, and the packet header is ad-
ditionally secured with a CRC check. Individual packets
themselves may be lost or corrupted, the event must reach
its destination nevertheless. A detailed description and
analysis of suitable algorithms and effectiveness is avail-
able here [5].

Figure 2: Simplified PTP Delay Calculations

Packet Switching - QoS

In order to guarantee absolute maximum lag time, it is
necessary to prefer time critical packets to others. When
a switch has more than one output packet for a port at a
time, a second arriving packet must be treated differently
depending on priority. Standard Priority packets , SP, can
be queued if buffer space allows, else they are dropped. SP
packets are not time critical and therefore re-requesting a
dropped packet is possible.

Any arrival of an HP packet will cause a currently sent
SP packet to be fragmented and resumed when HP traffic
is over. This makes the 64 cycles maximum delay when
crossing a switch possible.

Figure 3: HP packet preempting SP packet
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OPEN HARDWARE PROJECT

When thinking about the implementation of WhiteRab-
bit, care has been taken from the beginning not to use com-
mercial components that come with royalty fees. At the
same time, WR needed protection against possible lawsuits
for suggested patent infringements or similar.

WhiteRabbit Hardware and Software is completely
open and documentation and sources are available at
http://www.ohwr.org/

CONCLUSION

Working Point-To-Point time synchronisation has first
been shown at the WR workshop in 2009. Since then,
switch hardware was under continous development and a
first WR switch prototype with switching capabilities will
be ready by the end of 2010.

Running side by side with hardware development, WR
protocol specs were expanded and improved. Timing Re-
ceiver boards are also currently under development and will
be made in various form factors. First planned are PCIe and
VME boards to accomodate a timing receiver in many ex-
isting systems, first prototypes are expected early 2011.

WhiteRabbit is a timing system for the future. GSI is
planning to control all its current and new FAIR machines
over WhiteRabbit, with the only exception of the HF gen-
erators.

A fully deployed system at the FAIR facility is to be ex-
pected by 2016.
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FLASH DAQ DATA MANAGEMENT AND ACCESS TOOLS 
* V.Rybnikov, V.Kocharyan, K.Rehlich, E.Sombrowski, T.Wilksen

Abstract 
The Free Electron Laser in Hamburg (FLASH)[1] at 

DESY is a user facility for the photon science 
community. It produces laser light of short wavelengths 
from the extreme ultraviolet down to soft X-rays. To 
study, monitor and document the machine performance 
and parameters and also to collect the results of the 
experiment measurements, a fast data acquisition (DAQ) 
system is being used. Having above 1000 linear 
accelerator diagnostics channels collected by the DAQ 
currently results in a data rate of ~100 Mb/s. The large 
amount of data requires corresponding data storage and 
management to enable efficient data retrieval. This paper 
will focus on the data paths, storage and bookkeeping. A 
number of tools provided for the users to work with DAQ 
data will be described. The current status of the achieved 
performance in the data storage and retrieval will be 
covered as well. 

INTRODUCTION 
The FLASH DAQ [2] system was launched in summer 

2004.  Its main tasks are: collecting LINAC beam 
relevant data in real time, providing the data to feed-back 
and monitoring tools as well as storing it for an offline 
analysis. The DAQ system is also used by FLASH user 
experiments to store their data together with information 
coming from LINAC.  This allows easy correlations 
between the experiment measurements and the LINAC 
state.  A set of tools is provided for data visualization and 
analysis. 

DATAFLOW 
The dataflow in the FLASH DAQ and all involved 

components are shown in Fig. 1. There are two types of 
data collected by the DAQ. Fast data include channels 
with beam related information (beam position monitors, 
etc.) and currently collected with the shot repetition rate 
of 10 Hz. All other channels considered as slow (magnet 
currents, etc) and collected with the maximum rate of 1 
Hz. The data is collected by fast (FC) and slow collectors 
(SC) correspondingly via Ethernet. The collectors put data 
to the Buffer Manager (BM) [3] for online access.  
Distributors (DS) read data from the BM according to the 
stream descriptions provided by the Run Control during 
the DAQ configuration procedure. The data streams are 
pushed to the Event Builder (EVB) and further to the 
Writers (WR). The latter writes data to files on a local 
disk.  The files from the local disk are copied to a huge 
RAID array and accessible via NFS for the public. The 

experiments data is usually copied to tape for the 
permanent storage.   

DATA MANAGEMENT 
The DAQ data management components control the 

data flow and guarantee all required data is written to data 
files and to the tape if required.  The components keep 
track of the written data in order to assure fast data 
access. The rest of the paper will be devoted to the 
description of those components.  

 

 

Figure 1: FLASH DAQ dataflow and access tools 

Fast Channel Data 
The fast channels (~ 700 channels) provide the most 

part of the data volume (~99.5%). It means that the 
reduction of the total data amount strongly depends on the 
configuration of the front-end DAQ senders.  The front-
end configuration is performed by the Run Control 
process during the DAQ configuration. The RC is capable 
to set every parameter for the spectra that are usually sent 
by the front-end (e.g. start, increment, length). For that 
the RC has a group of run parameters when changing one 
of them changes a spectrum parameter in a group of 
channels (e.g. the same device types).  The different sets 
of run parameters are stored in the Run Modes of the Run 
Control data base [4]. Every Run Mode corresponds to a 

 ___________________________________________  
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FLASH operations mode. In this way one can control the 
total amount of written data. 

Data produced by Middle Servers (MS) belongs to the 
fast data. Their configuration is performed by the RC too, 
and therefore defined by the Run Modes.     

Slow Channel Data 
The amount of slow channel data is controlled by 

assigning the channels to two types of slow events: update 
event and/or environment event.  The data for update 
events is put to the BM periodically (currently every 15 
seconds). The channel data for environment events is put 
to the BM only on its value change. Writing the 
environment channels can be also controlled by filters 
(absolute or relative limits for the value difference). 

 
Data Streams 

The FLASH DAQ is currently writing 7 data streams 
simultaneously. Every data stream consists of a set of 
collected channels. The list of channels for a stream is 
defined by the experiment using the stream. The largest 
LINAC stream contains all data collected by the DAQ. 
The LINAC data can be used by other experiments in 
case some additional channels are required for their 
analysis. The stream separation is done by the DS. It 
receives stream descriptions from the RC during the 
configuration.     

Writers, Run Catalogue and Index Files 
Currently EVB is acting as a gateway between 

distributors and writers. In future one could use it as filter 
for data streams to reduce the data volume, to generate 
statistics, etc. 

Writer processes are responsible for dumping the data 
streams into files. The writers keep track of created files 
by means of a Run Catalogue (RCTL). For every run and 
stream a set of index files (INXF) is created by the 
writers. The RCTL is a binary file that contains the start 
and the stop time for every run and the number of written 
files. The index files contain the information about every 
written file. It includes time stamp and event IDs of the 
first and the last event in the file and the number of events 
for every event type. The RCTL and INXF allow to find 
the list of file names for a certain time period and 
experiment. 

Permanent Data Storage 
The files written by WRs are shipped from the local 

disk to the tape storage by the dCache [5] copy process 
(DCCP).  DCCP keeps track of all taped files in a DCCP 
catalogue.  

FLASH DAQ Data Files 
We are using a custom designed file format for the data 

storage. The format is highly optimized for fast data 
access. The fast access is achieved by writing the data for 
one channel in a continuous data block (basket). Three 
steps are usually required to read a channel data:   

• Read reference tables and find out the data basket 
offset 

• Read the data basket 
• Decompress data if required 
Depending on the data type the channel data can be 

written into the file with or without compression. Two 
algorithms for compression are supported: ZLIB [6] and 
LZO [7].  The second one is used in case of CPU power 
limitations.   

DAQ data files are self describing.  One can get 
information about the list of stored channels with their 
descriptions as well as the number of entries for every 
channel without accessing the data itself.  

DATA ACCESS TOOLS 
To be able to work with the DAQ files one needs tools 

to extract the required data. A set of tools has been 
developed, providing two different access methods: 
directly from files (local access) and by means of DAQ 
data servers (remote access, see Fig.1). In the second case 
the user software receives the required data from the 
DAQ data servers running on dedicated computers. The 
requirements to the data access tools are strongly 
dependent on the user’s task. We have concentrated on the 
general purpose visualization tools and the libraries that 
could be used by the experts to make their own 
processing programs corresponding to their wishes. We 
have developed libraries and tools for thee environments 
used at FLASH: C++, Java, MATLAB [8]. Platform 
supported are Solaris (SPARC), Linux (Debian and 
Ubuntu) as well as Mac OS X. 

 C++ BASED TOOLS 
A set of classes has been developed to access DAQ 

data from files. In order to start the data extraction one 
needs to provide a “data request” containing the time 
period (start, stop, or a run number), list of channels to 
extract and the experiment name. One can set all those 
parameters either by means of the corresponding methods 
of classes or by providing the name of a XML file 
containing all required information. Once the request is 
defined, a method to start the data extraction is to be 
invoked. Due to multithreading design one can get the 
required data simultaneously with ongoing data 
extraction.  

Based on the described libraries a data processing 
framework has been developed. It takes care of the data 
extraction. The user is provided with 4 routines: 
user_help(), user_init(), user_loop() and user_end(). The 
routines can be rewritten by the user, recompiled and re-
linked with the framework. The loop routine is called to 
provide the user code with the channels data in the 
sequence as it was collected by the DAQ. The init and end 
routines are called once for user code initialization and 
finalization correspondingly. The FLASH accelerator and 
photon experiment groups are using this framework since 
quite some time to their satisfaction.   
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JAVA BASED TOOLS 
A library (JDAQ) has been developed in Java to 

provide DAQ data access for Java based applications. The 
library offers both local and remote DAQ data access. The 
library contains the same classes as the C++ ones. The 
same XML configurations can be used for both 
environments. A few Java GUIs exploding JDAQ have 
been developed: FLASH DAQ data GUI, FLASH DAQ 
data Converter, JDDD [9] expert panels. 

 

Figure 2: FLASH DAQ data GUI 

The FLASH DAQ data GUI (see Fig. 2) is a general 
visualization tool. It makes use of JFreeChart [10] to draw 
waveform, histories and histogram plots. The GUI allows 
watching a set of channels signals as they were during 
every shot in the linac. One can create histograms and 
histories for every selected channel as well as the 
correlation plot for any pair of channels. The GUI can be 
used for local and remote data access. 

The FLASH DAQ data converter dumps the DAQ data 
to ASCII files. The GUI has a convenient interface to 
plug-in other converters for producing other data formats. 
   JDDD is becoming the new display tool for FLASH 
operators and experts. A few additional components based 
on JDAQ have been written. They allow drawing stored 
DAQ data along with online data read from the FLASH 
control system. Because of that new capability of JDDD 
one can easily build panels for the experts to analyze the 
behaviour of their setups in the past.  

The LLRF expert coupler interlock panel is a good 
example of that approach. The expert selects an interlock 
event shown in the DOOCS [11] history of the beam 
interlock system. On selection an event a request to DAQ 
data servers to extract data for a set of channels is sent for 
5 seconds period before and after the event.   On 
receiving the requested data the wave forms are plotted in 
the same plots where the current online waveforms are 
drawn. The expert can shot by shot go through 10 second 
period of DAQ data and compare the channels with the 

online ones. In this way it makes it easy to find out the 
source of the interlock for the selected interlock event.  

MATLAB TOOLS 
Based on the C++ classes external MEX functions have 

been developed to provide access to the DAQ data from 
within MATLAB. The DAQ data request can be set either 
by setting an array of strings inside of the MATLAB 
script or via an XML file with the same format as for C++ 
and JDAQ libraries. The MEX functions extract the 
requested data and convert it into MATLAB structures 
that can be read by MATLAB scripts and analysis code. 

 PERFORMANCE 
The FLASH DAQ currently collects all required beam 

related channels with the rate of 8000 bunch/s (800 
bunches at 10 Hz repetition rate). 

The measurement of the data extraction time shows that 
for modern workstations exploiting fast multi-core 
processors it mostly depends on disks performance and 
network bandwidth.  In our environment we measure 0.1- 
0.2 ms/event for reading one spectra channel (2000 
floats).     

PLANS 
We continue to improve our data access tools trying to 

satisfy our users’ requirements. E.g. implementing pre-
processing of data by the DAQ data servers could 
drastically reduce the amount of raw data currently used 
by the clients and speed up the final data processing.  
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BEAM PROFILE MO ITORI G SYSTEM FOR XFEL/SPRI G-8 
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Y. Otake, RIKEN/SPring-8, 1-1-1, Kouto, Sayo, Hyogo 679-5148, Japan

Abstract 
A beam profile monitoring system was developed for 

XFEL/SPring-8. In this paper, we focus on an image 
processing system. The image data can be recorded with 
the synchronized data acquisition system of 
XFEL/SPring-8. The system is composed of 46 screen 
monitors (SCMs) and the transverse size and shape of the 
electron beam are measured down to a resolution of 10 
μm. The SCMs provide a valuable tool for beam 
commissioning in terms of optimization of beam transport 
and measurement of beam emittance. The imaging system 
uses CCD cameras that are connected by Camera Link. 
An image data is selected using the Camera Link selectors 
and is then processed by an image server. A diagnostic 
tool for the beam profile monitoring system requires 
many functions: real-time image monitoring, image 
analysis, camera control, screen control, etc. We 
developed a GUI (Graphical User Interface) using Python 
as a tool to flexibly implement the functions required for 
the image data. The system was successfully implemented 
on the SCSS prototype accelerator and it operated as 
intended. The system can thus be applied to the beam 
commissioning of XFEL/SPring-8, which is planned for 
March 2011. 

I TRODUCTIO  
The Japanese X-ray free electron laser (XFEL/SPring-

8) is under construction at the SPring-8 site, and its beam 
commissioning will begin in March 2011 [1]. 
XFEL/SPring-8 will generate an X-ray laser with a 
wavelength that is less than 0.1 nm via the SASE (Self-
Amplified Spontaneous Emission) process. To achieve 
this goal, high-precision beam characteristics (a low 
emittance electron beam less than 1 π mm mrad, etc.) are 
required, and various types of beam diagnostic tools must 
be positioned at each stage of the accelerator [2]. In total, 
57 RF cavity beam position monitors (RF-BPMs), 49 
screen monitors (SCMs) for beam profile measurement, 
and 35 current transformer (CTs) for beam charge 
measurement will be installed.  

In this paper, we describe an image processing system 
equipped with 46 SCMs that is used for transverse beam 
profile measurement with an accuracy of about 10 μm. 
The remaining 3 SCMs are used for longitudinal beam 
profile measurement, which will not be addressed here. 

The beam profile monitoring system plays the 
important role of tuning the beam during the beam 
commissioning. The system is used for optimization of 
the beam transport and the measurement of beam 

parameters (emittance, twiss parameters, etc.). In order 
for the beam commissioning of XFEL/SPring-8 to 
proceed smoothly, a prototype of the system has been 
developed and was implemented in the SCSS prototype 
accelerator to confirm its performance.  

SCREE  MO ITOR (SCM) 
The configuration of an SCM is shown in Figure 1. The 

SCM system is composed of a screen, a screen actuator, 
an optical system, and a data acquisition system with a 
CCD camera. Since the beam is destructed by the screen, 
the screen actuator moves the screen outside of the beam 
orbit when it is not used. The material of the screen 
components was selected depending on the beam energy. 
For higher energy (>30 MeV), metal foil was used for the 
optical transition radiation (OTR) while for lower energy 
(<300 MeV), Ce:YAG was used for fluorescence. In order 
to achieve a high position resolution, the optical system is 
equipped with a custom-made lens. The zoom range can 
be adjusted through the operation of a motor. The position 
resolution is about 3 μm at a magnification of four times 
and satisfies a required resolution (10 μm). For equipment 
controls such as stepper motor controller of the zoom 
adjustment, Programmable Logic Controllers (PLCs) are 
used [3]. Two types of CCD cameras are used: a JAI 
CV-A10 CL (monochrome, 0.46 M pixel, 60 fps) and a 
JAI CV- M4+CL (monochrome, 1.45 M pixel, 24 fps). 
For each SCM, the proper CCD camera was selected 
according to its needs.  

 

Figure 1: Screen monitor for XFEL/SPring-8. 

IMAGE PROCESSI G SYSTEM FOR SCM 
An overview of the image processing system for SCM is 

shown in Figure 2. Communication with CCD cameras
 ___________________________________________  
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is performed by Camera Link, which makes it possible to 
transmit image data, provide trigger signals, and control 
the cameras. Measurement can only be performed with a 
camera because the SCM destructs the beam. Therefore, 
Camera Link selectors (Stack: CLS-900A) are used to 
select a camera, and the selection signals are inputted into 
an image server. In total, 11 Camera Link selectors are 
used to select a signal from among 46 CCD cameras. 
Cameras are positioned along the accelerator tunnel and 
the signal cables need to extend into a control room. For 
this reason, Camera Link signals are converted into 
optical signals for long-distance transmission. 

Figure 2: Overview of image processing system. 

 

The image server has two trigger inputs for 
synchronization of the data acquisition system. One is for 
a trigger signal that activates the timing of the RF control 
equipment (60 Hz at maximum, called the RF trigger), 
and the other one is for a trigger signal for the beam 
arrival timing (called the beam trigger) [4]. The beam 
trigger is a sub-divided signal of the RF trigger. The beam 
trigger is used for data acquisition by the CCD cameras. 
The RF trigger is used to count identification numbers 
(called tag numbers) for the synchronization of the data 
acquisition. 
In the image server, an image processing board 

(AVALDATA APX-3312/1) and a counter board 
(Interface PEX-632102) are implemented. These are PCI 
express boards, and Linux drivers are available. Cent OS 
5.4 is used as the operating system of the image server. 
Most of the operations (camera control, image processing, 
etc.) are performed by the image server, though remote 
controls can also be applied with a MADOCA framework 
[5]. Sometimes the image data needs to be taken under 
changed conditions (the magnetic field values for beam 
transport, etc.). In such cases, it is useful to be able to 
operate the data recording remotely. 
The data is stored in data storage and can be utilized for 
analyses. Web interface is available via the data viewer. 
Due to the large size of the image data, the file names of 
the image data are saved in the DB (database) and the 
image data themselves are saved in files. 

Software configuration

As shown in Figure 3, the software used for image 
processing has a multi-layer configuration to intermediate 
shared memory. Higher level applications (image 
monitoring GUI, image recorder) send the control 
commands and receive data (image data, tag numbers, 
etc.) via shared memory, and a program for image 
processing and counter boards is operated via the shared 
memory. Such a system with shared memory has several 
distinct merits: 

• Past image data can be obtained by preparing a 
buffer area for the image data in the shared memory. 

• Multiple processes can utilize image data in the 
shared memory asynchronously. When the GUI 
monitors an image, the data can be recorded at the 
same time.  

• Image data other than Camera Link can be easily 
processed through modification of the program for 
image processing and counter boards. For example, it 
was possible to test the system using pseudo data. In 

future, it will also be possible to process image data 
for a GbE camera. 

 
Figure 3: Configuration of software for image processing. 

Using Python for GUI construction 
Because many functions are implemented in our GUI, its 

efficient construction is a priority. For this purpose, we 
implemented Python and WxPython for use in the GUI 
toolkit. With Python, current existing modules can be 

easily applied. PIL (Python Imaging Library) and numpy 
(scientific computing with Python) are especially useful. 
Several modules (MADOCA control, image analysis, etc.) 
were prepared for possible use and were utilized to 
construct the GUI efficiently. In the construction of the 
GUI, the GUI frame was built using WxFormbuilder and 
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the layout of the GUI frame was saved in an XRC file 
(XML format). With the XRC file, the development of the 

GUI frame and GUI algorithm were kept separate, which 
simplified the construction process. 

GUI FOR BEAM PROFILE MO TIOR 
The GUI for the beam profile monitor is used for 

camera tuning and data recording, and for the image 
viewer. The image data is recorded with synchronization 
of the data acquisition system in order to compare the 
image data with other beam diagnostic data (BPM, CT) 
from a beam shot. For this purpose, a prototype GUI was 
developed and implemented in the SCSS prototype 
accelerator, as shown in Figure 4. The test results, which 
are described below, confirmed that the system can be 
applied to XFEL/SPring-8. 

Camera tuning 
The parameters for the CCD cameras were tuned for 

exposure time and gain setting before measurements were 
taken. Tuning can be performed for each camera by 
selecting a camera using the Camera Link selectors. 
Screens can be operated in order to see the beam profile 
image. The tuned values for each camera are stored in the 
DB and can be loaded at a later time as needed. 
Background image data can be taken with internal trigger 
events and utilized for the subtraction. The threshold 
value for the image data can be also adjusted. After tuning, 
it is possible to put a lock on the tune values to prevent 
them from being modified. 

Image viewer 
Real-time beam profile images can be monitored on the 

GUI. Beam statistics (center, width, and intensity) and 
projection histograms can be obtained at the same time, as 
shown in Figure 4. The monitor rate of 5 Hz is sufficient 
to enable the beam condition to be evaluated by eye. 
Beam statistics can be extracted using several slice 
method options. In the experiment, we initially had 
trouble seeing the beam shape due to its small size, and 
therefore developed the GUI to provide expanded image 
data if necessary. In addition to real-time images, image 
data stored in the shared memory and image files can also 
be selected for the monitor in the same manner as above. 

 Data recording 
Image data can be recorded on the GUI. The recording 

number can be set in advance. To implement the image 
data in the synchronized data acquisition system, the 
image data are stored with tag numbers. Since the image 
server only counts the RF trigger, we need to estimate the 
offset value in order to extract the tag numbers. To do this, 
we saved the count number of the RF trigger with a 
timestamp and compared the data in terms of the 
relationship between a tag number and the timestamp 
stored in the DB. We confirmed this procedure with SCS 
and a reasonable correlation was observed between the 

BPM data and the beam position obtained from the beam 
profile image. 

 

Figure 4: GUI for beam profile monitor                 
implemented in SCSS prototype accelerator. 

SUMMARY 
A beam profile monitoring system was developed for 

XFEL/SPring-8. In the system, CCD cameras are 
connected by Camera Link and the beam profile image is 
processed by an image server. The image data is recorded 
with a synchronized data acquisition system in order to be 
able to see the correlation with other beam diagnostic data 
obtained from a beam shot. A prototype of the system was 
tested with the SCSS prototype accelerator, and we 
confirmed that the system can be applied to 
XFEL/SPring-8. We are now in the process of 
constructing the system for XFEL/SPring-8 in preparation 
for the beam commissioning planned for March 2011. 
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EMBEDDED CONTROLLER FOR INDUSTRIAL CT TRIGGER MODULE 
G. Gong, T.Xue, J.Li, Dept. of Engineering Physics, Tsinghua University, Beijing, China, 100084 

Abstract 
The industrial CT is used to generate a 3D image of 

the inside of an object; it consists of an accelerator x-ray 
source, detector array, readout electronics and control 
system. A trigger module collects the position 
information from three decoders installed all the 3 
moving axis and generates trigger signal to the x-ray 
source and readout electronics. The trigger module is 
remotely accessed by the SCS (system control station) via 
a fast Ethernet connection. The trigger module utilizes an 
embedded controller board which consists of a PowerPC 
controller running the Linux operation system, and a 
FPGA connected to the PowerPC local bus as a 
customized peripheral to carry out the trigger logic. With 
different interface mezzanines and online firmware 
upgrade, the trigger module has great flexibility to work 
with different decoders readout electronics. 

INTRODUCTION 
Originally developed as a medical diagnostic tool, the 

Computed Tomography (CT) can provide detailed internal 
information of human body. This technology has also 
been applied to non-destructive inspect objects that have 
the indispensable requirement for safety and reliability 
like high-speed railway train wheels or the air plane 
turbine engineers. Without the constraints of patient 
movements or dose restrictions that exist in the medical 
CT, the industrial CT can achieve better resolution by 
applying much stronger x-ray source and a much longer 
exposal time [1].  

The industrial CT consists of an x-rays tube, a rotary 
table, the detector array, the readout electronics, the 
trigger module and the data analyse and image 
reconstruction computer. 

A typical schematic block diagram of industrial CT is 
given in figure 1. 

 The object to be inspected is located on the rotary table 
between the x-ray tube and the detector; the X-ray source 
and the detector are relatively stationary and can move 
together in the vertical direction along the object; the 
rotary table can move in two directions and rotate. By 
setting the relative motion between object and the x-
ray/detectors, the industrial CT can be configured to work 
in direct radiography (DR) mode, second generation CT 
mode or third-generation CT mode. The x-ray source is 
working in pulse mode to reduce radiation dose and 
prolong the life, the readout electronics are also work in 
gated integration mode to suppress the detector dark noise. 

TRIGGER MODULE STRUCTURE 
As seen from Figure 1, the trigger module is one of the 

key components in the industrial CT; it connects with all 
the other control blocks and manipulates the working 
flow of the equipment. The functional block structure of 
the trigger module is shown in figure 2; a picture of the 
module is given in figure 3. 

Its main function blocks are provided by the embedded 
control mezzanine which will be described later. A 
description of all the other elements is given below: 

Encoder input 
In each axle of the drive motor, there is an absolute 

rotary encoder installed. They have 16 resolution bits and 
8 turns bits to cover the whole scan range. The position 
and angle the object under inspection can be achieved 
from the output of these encoders, which are normally in 
gray code that has only one bit difference between any 
two consecutive values. 

The output of those encoders are converted into the 
local electrical domain by isolation transistors, a 3 out of 
3 low-pass filter removes the noise glitch signals that 
couple into the cable, then the original Gray code are 

Figure 1: typical schematic block diagram of industrial CT. 

Figure 2: Functional block of trigger module. 
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converted into binary code for following process. 
Two types of encoders are foreseen to be used: the 

parallel type has a separate signal for each bit; the serial 
type multiplexes all bits to be sent via a single signal 
using the SSI protocol. A multi-channel low speed photo-
coupler mezzanine is used for parallel type while a single 
channel high speed magnetic coupler mezzanine is used 
for serial type. Both mezzanines have the same connector 
definition thus can be easily replaced. 

Trigger output 
Depending on the working mode, when the specific 

encoder outputs indicates that the object has reached a 
pre-defined position, the trigger module sends a trigger to 
activate the x-ray source, also sends a trigger to the 
readout electronics to start integration and conversion 
after a certain delay caused by the  x-ray source latency 
and detector response time.  

The internal trigger logic is working in pipeline mode 
that can deliver consecutive trigger pulses. Due the 
limitation of motion system and the minimum trigger 
width requirement from both x-ray source and readout 
electronics, the internal trigger pulses are first modulated 
and pre-scaled before send out. The time delay can be 
adjusted independently in the step of 10ns for both the x-
ray source and readout electronics. 

External input 
In some product types there are special requirements 

which need external inputs to the trigger module. For 
example, in order to inspect the gap of air plane turbine 
blades, the turbine must be in operation during the 

inspection. In this case, the motion system is steady but 
the object itself is rotating, thus the trigger module can be 
synchronized by the signal from turbine gear control 
system. 

The external input can also used for the safety interlock 
to avoid unexpected radiation. 

DAQ interface 
The image reconstruction algorithm needs to know the 

geometrical position and angel for each acquired 
tomography slice. Thus the trigger module provides a 
DAQ interface and transfers the encoders’ data to the 
readout electronics for each trigger. The DAQ electronics 
packs this information together with detector data to from 
a complete slice data frame. 

The DAQ interface is based on a generally defined 
high-speed differential serial links. If different DAQ 
electronics are used in certain product types, an adapter 
card is needed to convert the serial link to whatever the 
DAQ electronics asked for. 

SCS connection 
To configure the parameters and to monitor the status 

of the trigger module, like to set the work mode or to 
check the trigger rate etc, the trigger module is connected 
to the SCS (System Control Station) via the fast Ethernet 
link provided by the embedded controller. 

Switch 
Few switches are used to set the encoder types, the 

DAQ electronics types and other configurations. 

 
Figure 3:  The front panel of the trigger module for industrial CT 

 

EMBEDDED CONTROL MEZZANINE 
All the logic and control functions are carried out in 

the embedded control mezzanine which consists of a 
processor running the Linux operation system and a 
FPGA device for the user specific firmware logic [2]. A 
description of the major items of the mezzanine is given 
below. 

MPC5200 processor 
The PowerPC processor from Freescale, MPC5200, 

with the necessary peripheral, memories and interface 
devices is the kernel of the embedded controller 
mezzanine, it has the following features: 

• Running at 400MHz 
• with 256MB DDR-266 SDRAM 

• 16MB NOR flash memory for Linux kernel, file 
system and user application  

• 100Mbps fast Ethernet connection 
• Plenty of slow control interfaces like USB, CAN, 

IIC, SPI.  
• Support Linux 2.4 or 2.6 operation system 
• boot loader supported 

The Linux operation system provides complete support 
for network protocol stack, file system, device drivers, 
multi thread communication and many other useful 
functional packages.  

The process FPGA 
The fast and real-time trigger process is implemented in 

a FPGA device, the EP2C35 from Altera. It provides 
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enough logic elements and distributed memory for the 
industrial CT trigger logic. 

The FPGA is configured in passive serial mode, the raw 
binary configuration file is stored in the NOR flash. After 
power up or reboot, the processor executes the u-boot 
code to read the rbf file and configure the FPGA 
accordingly. In this way, it is very easy to update the 
FPGA logic by downloading a new rbf file to the Linux 
file system via the Ethernet link. 

Utilizing the local bus interface logic, The FPGA can 
be accessed by the PowerPC processor to change the 
configuration and check the internal information. 

SCS client daemon program 
A daemon service for the SCS communication is 

automatically latched after the Linux operation system is 
booted up. Two Ethernet sockets are created for sending 
commands and reading information. The daemon program 
has a simple command line interface that can be easily 
accessed from any computer via telent, ssh or even simple 
serial connection. 
Self test and diagnostic feature 

The embedded control mezzanine has several self test 
features to check the system integrality and interface 
connections.  

• Each encoder signal is checked for the possible 
break or short connection. This is very useful for 
encoder cable and connection diagnostic. 

• Self test of the trigger output and external input 
circuit with a loop back cable. 

• A pseudo random counter can be sent through the 
DAQ interface to check the connection and the 
transition error rate. 

SUMMARY 
We have built a universal trigger module for the 

industrial CT product. The module collects the position 
and angle information from encoders and performs a 
trigger algorithm to deliver trigger signal back to the x-
ray source and readout electronics. An embedded control 
mezzanine is utilized in the trigger module, which 
consists of a FPGA device to perform the trigger logic 
and a PowerPC processor running Linux operation system 
to provide Ethernet connection, FPGA configuration, and 
slow control. The design has shown great adaptability and 
flexibility for the industrial CT application. 
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DATABASE-DRIVEN STATUS ANALYSIS IN BEAM OPERATION AT THE
HEIDELBERG ION THERAPY CENTER

K. Höppner∗, R. Cee, M. Galonska, T. Haberer, J. M. Mosthaf, A. Peters, S. Scheloske
Heidelberg Ionenstrahl-Therapie Centrum (HIT)

HIT Betriebs GmbH am Universitätsklinikum Heidelberg, Germany

Abstract

The HIT (Heidelberg Ion Therapy) center is the first ded-
icated European accelerator facility for cancer therapy us-
ing both carbon ions and protons, located at the university
hospital in Heidelberg. It provides three treatment rooms,
two with fixed beam exit (operational since Nov. 2009 and
Sept. 2010, respectively), and the first gantry worldwide
where the beam exit can be rotated by 360 degrees, cur-
rently under commissioning.

HIT uses a PC-based proprietary software system for ac-
celerator controls with an Oracle database for storing de-
vice parameters, beam history, error logging etc. Since
medical treatment of humans requires a high level of qual-
ity assurance, a detailed analysis of beam quality and er-
ror logs is needed. We wrote a series of database applica-
tions using Python to perform these tasks automatically and
create daily reports on beam statistics and parameters, ma-
chine status and errors occurred. Additionally, some graph-
ical applications on top of the commercial control system
help the scientists and operators in the beam commission-
ing of the new therapy treatment rooms and the gantry. We
will present these applications and show how they are used
at HIT.

INTRODUCTION

The HIT accelerator setup as shown in Fig. 1 consists of

• two ion sources, currently used for producing carbon
and proton ions (a third ion source is to be installed
soon)

• a linac accelerating the ions to 7 MeV/u,
• a synchrotron used to accelerate the ions to their fi-

nal energy as defined by the patient-specific treatment
plan, and

• four high energy beam transport lines providing the
beam to the horizontal treatment rooms, the rotatable
gantry or the additional station dedicated to quality as-
surance (QA), research and development.

Cancer treatment with different ion types and of different
patients in parallel requires a multiplexed beam operation
with the possibility to switch the ion source and beam des-
tination from pulse to pulse, every source/destination com-
bination identified by a virtual accelerator number. Beam
parameters can be chosen from a matrix of 255 energy val-
ues, up to 6 focus sizes and up to 15 different intensity val-

∗ klaus.hoeppner@med.uni-heidelberg.de

Figure 1: Overview of the HIT accelerator complex. (The
QA station is not shown.)

ues, denoted as MEFI parameters. For commissioning and
quality assurance, the beam is requested by the Accelerator
Control System (ACS) directly, while in therapy mode the
Therapy Control System (TCS) requests the beam charac-
teristics determined by the treatment plan via a communi-
cation interface to the ACS.

HIT uses an accelerator control system built by a Ger-
man company for automation and process control hard- and
software [1]. It runs on Windows servers, using Oracle 9i as
database backend. An upgrade to Oracle 11g is planned for
the end of this year. While changes to the GUIs of the con-
trol system require invention by the supplier, we can easily
access the tablespace used for accelerator controls in the
Oracle database. Thus, we were able to develop database
applications for various tasks in beam analysis and machine
commissioning.

APPLICATION ENVIRONMENT

For a fast development of database applications that
may easily be deployed on different systems (Windows
for client PCs in the accelerator control room, Linux for
a server that is mainly used for the web based electronic
logbook [2]), we decided for Python 2.6 [3] as a cross plat-
form OO scripting language. Python provides a variety of
builtin and 3rd party modules, including an Oracle mod-
ule [4] compliant to the Python Database API 2.0. Table 1
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Table 1: List of used Python modules

Module Purpose

cx_Oracle DB-API 2.0 compliant Python
wrapper for Oracle client
libraries

csv reading and writing comma
separated values

struct binary I/O
Datetime providing date/time funtions
wxPython 2.8 cross platform GUI library

lists the most important Python modules used for our ap-
plications.

Since the creation of many data plots is needed both in
beam analysis and commissioning, we use Gnuplot 4.4 as
graphical utility that can be used in batch mode to produce
plots from a list of plot commands automatically created by
a script.

While the applications used for commisioning are real-
ized as graphical applications on Windows client PCs using
the wxPython wrapper for the C++ wxWidgets library [5],
the apps for beam analysis exist either as Windows GUI
for interactive analysis tasks or as command line scripts
that are run by the cron demon on the Linux elog server to
create automatic reports on beam performance.

DATABASE TABLES

The accelerator control system stores any beam cycle
with its attributes in a database table:

• Unique cycle id as primary key,
• start and end time of cycle, and
• foreign keys to other tables, like beam mode, cycle

status and MEFI combination.

Cycle Data

cycle_id INT

start time TIMESTAMP

end time TIMESTAMP

mefi_id INT

mode_id INT

status_id INT

Indexes

MEFI List

id INT

energy INT

focus INT

intensity INT

gantry idx INT

source INT

destination INT

ion INT

Indexes

System Modes

id INT

name VARCHAR(10)

Indexes

Ion Types

id INT

name VARCHAR(10)

Indexes

Device List

id INT

name VARCHAR(45)

type_id INT

Indexes

Standard Measure Archiv

cycle_id INT

device_id INT

measurement_1_2 INT

Tech MVal A DECIMAL(8)

Tech MVal B DECIMAL(8)

Indexes

Device Types

id INT

name VARCHAR(8)

Indexes

Cycle Status

id INT

name VARCHAR(20)

Indexes

Figure 2: Simplified ER diagram of database tables.

Table 2: Analysis example: used beam request modes
Cycles: Beam Modes

All Carbon Protons

Cycles Cycles Particles Cycles Particles

Total 3744 3094 1.36×1011 650 1.53×1012

TCS 2369 1778 3.43×1010 591 1.47×1012

ACS/Exp 1257 1257 1.01×1011 0 0.00×1000

ACS/QS 118 59 1.47×1009 59 5.87×1010

Measured values—like beam position and size on grids
or currents of power supplies—are stored in a different ta-
ble using the combination of cycle id, device id and mea-
surement index (since some devices are measured twice per
cycle) as primary key.

A simplified of the database tables used for storing cycle
parameters and measured values is shown in Fig. 2.

BEAM ANALYSIS TOOLS

As mentioned before, reports on beam performance are
created by a Linux cron job, both on daily and weekly in-
tervall. The cycle data for the time intervall of interest are
read from the database and are analyzed by the following
criteria:

• Number of failed cycles with analysis of error mes-
sages,

• origin of beam request: Therapy Control System
(therapy) or Accelerator Control System (technical),

• ion types and destinations of beams,
• distribution of MEFI parameters in therapy mode: en-

ergy, focus and intensity.

We use HTML and LATEX as output formats, the former
for a quick overview on beam performance within the elec-
tronic logbook, the latter for printed reports. Additionally,
all beam parameters are archived as comma separated val-
ues since the maximum storage time in database is about
six weeks. Thus, a long term analysis (e. g., the number of
particles per year has to be checked against the limit in the
permission for operation) is possible. Table 2 gives an ex-
ample for the automatic analysis of the system modes that
requested the beam during a 24 h period, while Fig. 3 shows
the chronological distribution of virtual accelerators (i. e.
combinations of source and destination) during the same
period.

TOOLS FOR COMMSSIONING

While patient treatment at a horizontal station started in
2009, the rotatable gantry is still under commissioning [6].
The raster scan technology used at the treatment stations
requires a fixed beam position and focus size for all combi-
nations of beam parameters: energy (E), focus (F), inten-
sity (I) and in the case of the gantry also the rotation angle
(G).

During commissioning, the beam is optimized for a sub-
set of E, F , I and G combinations that are used as nodes
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Figure 3: Chronological analysis of cycles. Virtual Accel-
erators (VAcc) denote a unique pair of ion source and beam
destination.

for an interpolation of the full E ×F × I ×G MEFI space.
The quality of interpolation is checked by running various
beam sequences and measuring beam position and size on
a fluorescent target. In the past, these checks involved a
lot of manual work by the operator, i. e. exporting the data
sets as CSV file and importing them into a spreadsheet to
get a comparison to the reference values. With our new
database applications, we read both the measured values
for beam center and FWHM of the beam size and the refer-
ence values from the database and directly show the result
in a graphical window as table (see Fig. 4) or plot. The
GUI supports plotting slices from the E ×G data set, i. e. E
on x-axis for a chosen gantry angle G or vice versa. (For-
tunately, the set values for the magnets in the gantry don’t
depend on I.)

The GUI was developed with the aim of supporting the
usual tasks performed by the accelerator scientist during

Figure 4: Measured data set: Table view, colors denoting
the quality of beam center and focus size, respectively.

Figure 5: Relative deviation of horizontal beam size from
reference value as a function of gantry angle, where a slice
of the data set with energy index 120 is plotted.

commissioning. He can load the data sets from the se-
quence that was run most recently by a single click and eas-
ily chose the device of interest from a list of beam instru-
mentation devices like the fluorescent target or grids and
ionization chambers within the beamlines that were active
during the sequence. The standard limits for categorizing
the beam quality by colors are read from a configuration
file, but these limits may also be changed within the GUI.
Plots may be exported as PNG files what is heavily used
for adding plot to reports on the outcome of commission-
ing shifts. For further analysis, data sets can be exported as
CSV files.

Figure 5 shows the relative deviation of horizontal beam
size from the reference value as a function of gantry angle
for a fixed E index.
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QUARK: A DYNAMIC SDLC METHODOLOGY* 
V. Vuppala, J. Vincent, NSCL, East Lansing, MI 48824, USA. # 

 

Abstract 
No single Software Development Life-cycle (SDLC) 

methodology works well for all types of software 
projects. The project may require a methodology that can 
be very predictive to very adaptive based on 
characteristics such as requirements volatility, 
requirements clarity, project criticality, complexity, and 
size. We describe a new iterative approach that can vary 
from being more adaptive to being more predictive during 
its iterations. The project characteristics change with 
iterations, and the SDLC adjusts accordingly by changing 
its parameters. We also discuss the results of using this 
methodology for projects at National Superconducting 
Cyclotron Laboratory (NSCL). 

INTRODUCTION 
Last few decades have seen an evolution of SDLC 

models to address the software-crisis. Some of these are 
Waterfall, Spiral, V-Process, RUP, and Agile among 
others. Each model has its advantages and drawbacks, and 
not all of them work for all types of software projects [1]. 
Some of them are predictable in terms of cost and 
schedule but rigid in terms of requirements, whereas 
others are adaptive to changes but less predictive. 

In our organization there was a need to implement 
processes to instil engineering rigor into software 
development. The following were the requirements for the 
process model: 
• Provide transparency and predictability 
• Work with limited customer availability 
• Not overly bureaucratic, low overhead 
• Support project management 
• Support critical and non-critical systems 
We evaluated various models but found them to be 

inadequate for our needs. Many organizations, especially 
in the software industry, choose from a set of SDLC 
models based on the project characteristics. This was not 
an option for us, as it required the project team to be 
proficient in multiple software development 
methodologies. As a result, we developed a set of 
processes for software development and project 
management, which resulted in the Quark Model (QM). It 
is based on CMMI-Dev 1.2, PMBOK 4, and ISO 9000-3 
standards. 

Iterations 
QM uses an iterative approach to software 

development. QM iterations are parameterized, and 
governed by the following parameters (QMPs):  

• Duration: The duration, in terms of calendar time,  
of the iteration 

• Change Control: Specification of Major and Minor 
scope changes 

• Documentation: The detail and amount of 
documentation 

• Communication: Meeting intervals and duration 
within project team, and with Customer 

• Planning: Level of detail in planning 
• Quality Controls: Frequency of Design and Code 

reviews, and test methodology. 
By adjusting the QMPs, for each iteration, the process 

can be adjusted from being more adaptive to being more 
predictive, and anywhere in-between.  

Projects 
Projects are central to the QM model. A software 

project is a temporary endeavour undertaken to create a 
unique software product [2]. It is characterized by certain 
attributed (PCTs). Some of the PCTs that vary during the 
execution of a project are:  
• Project Team Requirement Clarity: Project team’s 

understanding of the requirements 
• Customer Requirement Clarity: Customer’s 

understanding of the requirements 
• Size: Size of the project in terms of cost, code 

base, team size, etc 
• Estimate Confidence Level: Accuracy of cost and 

schedule estimates 
• Technology Expertise: Familiarity with the 

solution technology 
Some of the PCTs remain relatively constant during the 

course of the project, such as criticality of the project, 
safety and security requirements, quality requirements, 
timeline constraints, customer Availability, bespoke or 
custom software, contract type, and team location. 

QUARK MODEL 
Figure 1 illustrates the Quark Process Model. The PCTs 

 
Figure 1: Quark Process Model. 
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and performance (of previous iteration) are used to 
generate QMPs. The QMPs drive the next iteration, which 
may result in the modification of the PCTs. Iterations are 
useful to garner feedback but incur the overhead of test 
and release management. Hence the number of iterations 
should be optimized. The idea is to start with shorter 
duration iterations, and move to longer iterations as the 
clarity of requirements improves.  

Development Process 
Figure 2 depicts QM’s software development process. 

It consists of the following major activities: 
• Refine Requirements and Architecture 
• Plan for iteration or release (PFI)  
• Refine design and test plans 
• Code, Refactor, Unit Test (CRUT) 
• Release 
• Deploy and Test 
• Review 
• Perform User Acceptance Test (UAT) 
At the end of each iteration, modifications to the scope, 

if any, are evaluated. If the change is minor, the next 
iteration is initiated. However, if the change is major, a 
Change Request is generated, and the Perform Change 
Control (PCC) process is initiated. PCC is a Project 
Management level process, and can result in iteration 
through the Plan process (see below). 

In QM, software product goes through release process 
even for integration tests. This helps with testing of the 
installation process. Not all releases are sent to the 
Customer for UAT, and UAT can be proceed in parallel 
with the execution of next iteration i.e. the next iteration 
need not wait for feedback from UAT. Configuration 
management is performed only for production releases.  

Project Management 
Project Management (PM) is an integral part of QM. 

Figure 3 shows the QM project management processes 

with their inputs and outputs.  These processes are based 
on PMBOK-4 [2] but are different especially the Initiate 
process. Goals of the Initiate process are to define the 
scope, develop the solution strategy, and estimate the cost. 
The results of these activities are documented in 
Preliminary Project Plan (PPP). PPP is refined in the 
subsequent process, resulting in the Project Plan (PP). PP 
also includes the schedule, budget, and plans for quality, 
risk, communication, and procurement. The level of detail 
in PP is dictated by the QPMs. The Execute process 
consists of the following activities: 
• Acquire and manage the project team 
• Conduct procurements, if any 
• Perform quality audits (design and code reviews) 
• Develop Software using QM Development Process 
The Monitor and Control process runs in parallel to 

other activities. It periodically evaluates project 
performance, procurement status, risks, and quality. It 
reports project status to stakeholders. The last step in the 
PM processes is to close the project. Some of the 
activities here are: 
• Obtain Customer feedback and acceptance 
• Close procurement activities, if any 
• Summarize Lessons Learned, project performance, 

and customer feedback in Project Closure Report 
(PCR) 

• Archive project related files, and release the team 

Project Performance 
 QM uses Earned Value Management (EVM) [3] to 

report project performance. EVM is part of the Project 
Status Report and is measured periodically, generally 
every week. A Cost Performance Index (CPI) of less than 
1.0 indicates that the effort was underestimated, and the 
project will be over budget if continued at the same pace. 
A Schedule Performance Index (SPI = EV/PV) below 1.0 
indicates that resources were under-allocated, and the 
project will be delayed. Similarly a CPI of more than 1.0 

 
Figure 2: Quark Software Development Processes. 
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indicates overestimation of effort, and an SPI of more 
than 1.0 indicates over-allocation of resources. The CPI 
and SPI values are used to adjust the QPMs for the next 
iteration. 

Documentation 
The documents are refined iteratively. QPMs dictate the 

level of documentation detail. The requirement 
specifications and the design documents are modified to 
be in sync with the CRUT activities of the last iteration. 
This is essential for software maintenance. Some of the 
required QM documents are Project Plan, Requirement 
Specifications, Architecture Design, Installation Manual, 
User Manual, Project Status Report (includes EVM) and 
Project Closure Report. 

IMPLEMENTATION 
Based on QM, we have developed the process 

infrastructure --policies, procedures, guidelines, 
templates, tools, etc-- for the Electronics Department at 
NSCL. The process infrastructure is hosted on a website. 
The project management processes of QM have been 
generalized, and are being used by non-software groups 
within the Electronics Department. Currently there are 
about 5 software development and 15 hardware 
development projects using the QM processes. All new 
projects in the department must adhere to the QM 
processes. 

We find that, for software projects, about 8-10% of 
effort is spent on project management, and a similar 
amount is spent on documentation. The Customers were 
very satisfied (9 out of 9) with the ability to make 
changes, the amount of resources they had to invest, and 
project management. These results are preliminary; we 

have not completed enough projects to give a definitive 
result. 

SHORTCOMINGS 
QM is not the silver bullet, and has the following 

drawbacks:  
• Currently, measurement of QPMs and the 

evaluation of PCTs, are subjective. This leaves 
many decisions to project manager’s judgement. 

• EVM requires projects to be base-lined, and may 
not work well for very short iterations.    

• It is a slightly heavy-weight model due to the 
project management processes.  

CONCLUSION 
Even though QM was developed for our specific needs, 

it is generic enough to be used by other organizations. 
Most of the processes, roles, and policies have been 
designed to be generic; only the guidelines and templates 
are specific to our environment.  

We are currently working on formulating objective 
measurements of PCTs and QPMs. We are also looking 
into modifying EVM to suit the Quark Model.  

REFERENCES 
[1] I. Sommerville, “Software Engineering”, 8th Edition, 

Addison-Wesley, 2007. 
[2] ANSI/PMI, “Project Management Book of 

Knowledge 4th Edition”, 2008; http://www.pmi.org. 
[3] U.S. Department of Energy, “Earned Value 

Management”. 
http://www.management.energy.gov/policy_guidance
/earned_value_management.htm
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EXPERIMENT BASED USER SOFTWARE

D.K. Chevrier, Canadian Light Source Inc., Saskatoon, Canada
M. Boots, Department of Physics and Engineering Physics, 

University of Saskatchewan, Saskatoon, Canada

Abstract
The Spherical Grating Monochromator (SGM) and 

Resonant Elastic-Inelastic Xray Scattering (REIXS) 
beamlines are located at the Canadian Light Source 
(CLS). A novel approach to software design has been 
undertaken to simplify user interactions with these 
beamlines.  While the SGM and REIXS beamlines are 
structurally different,  the techniques available are quite 
similar. The software is developed to provide seamless 
acquisition of data,  strong data management tools,  and 
easy transition between beamlines for end users.  The end 
result is software focussed on experiments rather than 
software focussed on beamlines.

INTRODUCTION
One reality of modern science is that 90% of 

“conducting an experiment” involves sitting at a computer 
and interacting with software. Traditionally, the CLS has 
found the resources to develop beamline software for each 
new beamline. In principle, this is a good thing. However, 
as the facility grows and matures there is a sense that the 
software used at the beamlines needs to evolve as well. As 
the vision of the CLS – “[t]o be a global leader and a 
recognized centre of excellence in synchrotron science 
and its applications” [1] – makes clear,  the purpose of the 
facility is to support science. As such, evolving our 
software from beamline software to experiment software 
seems like a way to better support science. It is important 
to note that having beamline software is a natural part of 
the software progression. When a beamline is under 
development and commissioning, the essential first 
requirement for software is to provide direct and detailed 
control over all the separate components that make up the 
beamline. The importance of this existing software should 
not be questioned: there would be no way do any science, 
nor to evolve user software to the next level, had this 
critical work not been done. 

With this background in mind, there are clear ways to 
address long-standing user issues and improve the 
experience and efficiency of conducting research at the 
CLS. The evolution from beamline-centered software to 
experiment-centered software is accompanied by an 
evolution from engineering software to designing a user 
experience. That is, there is a shift from the relatively 
straight-forward task of stating that “software requires the 
ability to do functions A, B,  and C using widgets X, Y, and 
Z” to a more holistic need for software that “makes it 
quick and intuitive for users to do tasks A and B”. Because 
of this change from concrete to descriptive requirements, 
there are competing types of requirements to keep in 
mind.  In principle the requirements of functionality, 
appearance, and connectivity will compete with each 
other as each component is designed and developed. Thus, 

every component within the software needs to work 
properly, look appeasing to the user,  and be able to 
connect with other related tasks the user wishes to do.

In addition to a discussion about the concepts and ideas 
of making an experiment centered software package for 
users,  some time must be devoted to exploring how this 
can be best achieved from a programming standpoint. 
While important,  the examination of the programming 
principles will take a backseat to the fundamental vision. 

From the inception of this project, we sought to cast as 
wide a net as possible to determine what users needed out 
of experiment based software. A summer student was 
given the task of shadowing users on a number of 
different beamlines looking for features that were 
exceptional, tasks that could be simplified, and common 
irritations that users experienced. Additionally, a 
workshop was conducted at the CLS Annual Users’ 
Meeting to act as a focus group for new software 
concepts. A number of outstanding ideas were generated 
and have been incorporated into the current design.

USER CONCEPTS
Would it not be wonderful if users could sit down and 

just start doing experiments when they first get to the 
beamline? Could it be made so  software would help users 
with their experiments – giving them guidance when 
needed and remaining unobtrusive when not? Would it be 
so bad if users only needed one software tool from the 
beginning of their experiment until the end? The vision of 
experiment based user software is to offer all of these 
opportunities to users, regardless of their experience level 
or background,  in a way to allows them to concentrate on 
the science they know. At the same time, the user 
experience needs to be as pleasant and efficient as 
possible. The question we must pose is whether it is 
possible to achieve this and, if it is, how best can that be 
done? Presuming it is possible, the software evolves from 
controlling individual acquisitions and beamline actions 
to managing the acquisition, the data, the beamline, and 
the experimental process as a whole. 

Acquisition Management
Currently, many users experience a steep learning curve 

when they arrive at the CLS, the steepest part of which is 
becoming familiar with the unique controls of the 
beamline they are working on. A common experience 
might be that of an expert user doing simple x-ray 
absorption spectroscopy (XAS) at the SGM beamline. 
Although this user likely knows as much as, if not more 
than, the beamline staff about the scientific technique 
itself they are still forced to learn how to conduct XAS on 
the SGM beamline – which controls to set, how to setup a 
scan, which detectors to look at, and so forth. Any time a 
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user changes to a new beamline, the learning curve is 
repeated. On the other hand, if the technique was 
explicitly supported in software, two general 
consequences are expected. First, the lag time stemming 
from that learning curve could be eliminated as the details 
of  how to coordinate an XAS scan could be programmed 
for each beamline with no need for the user to get 
involved if they do not wish to. Second, there would be a 
seamless transition between the two beamlines; and, not 
only would the user be able to start immediately, but they 
would already be familiar with the software. Because of 
these advantages, technique-based acquisition was one of 
the first features implemented.

Just as the concept of focusing on the technique rather 
than the beamline puts the science and the experiment 
first, the controls for a scan can also be put in scientific 
terms. Many beamlines will have a chart or a graph posted 
allowing users to look up the correct set of beamline 
parameters to achieve, for example, a desired flux and 
resolution. After choosing the curve they wish to emulate, 
it is up to the user to move the beamline components to 
the correct positions. However, since the user was 
principally concerned with balancing flux and resolution 
in the first place, could the software not have allowed the 
user to set these values directly? Furthermore, with 
appropriate feedback, the user can vary the flux and 
resolution settings to see what beamline configuration 
best suits their needs,  also giving them a means to learn 
about the beamline details if they desire. Because of the 
importance of placing science first, this particular feature 
has already been implemented.

There are a great number of other concepts that would 
place science at the forefront as well.  Routine users at the 
CLS  are familiar with using a table or similar method to 
manually define the range of an XAS scan. However, they 
are primarily interested in scanning their samples for 
particular elemental edges. While the notion of entirely 
removing manual entry of a scan range would likely 
disrupt users,  the idea of featuring an interactive periodic 
table is another way to allow the users to focus science. 
Since many users need to consult a handbook for the edge 
energy of the element they are interested in, our goal is to 
remove the middle-man and allow users to do this direclty 
in software. Furthermore, such features make it easier for 
scientists outside of physics and chemistry to use the 
CLS. This feature, while both important and achievable,  is 
still currently under development.

A key priority for the project as a whole,  but with 
particular focus on acquisition, has been to make the 
common tasks a user does easy and intuitive. If a 
beamline has a particular technique that is used more 
often than the others, or a task that has to be repeated for 
every technique, then these features have to be designed 
solidly with great attention to detail and usability. 

Finally, while the prior concepts have put emphasis on 
single acquisitions,  it is important to note that all users do 
many scans while they are at a beamline. Sometimes these 
scans are done individually with users making decisions 
between each acquisition; in other circumstances users 
wish to arrange to do one scan many times, or even to do 
several different scans in sequence. The concept of a 
workflow manager is provided to allow users to automate 

tasks – whether scanning samples, moving between 
samples, or changing the beamline configuration in some 
other arbitrary manner. This feature has also been 
implemented in the initial version. 

Data Management
The users of the CLS are accustomed to a process of 

collecting data; visualizing it in a cursory manner with a 
limited set of analysis tools; and, finally,  transferring all 
of the raw data to their own computers and re-starting the 
analysis procedure from scratch. Most beamlines at the 
CLS offer no tools to assist them in  either organizing or 
logging their experiments before,  during, or after 
acquisition. Common experience shows that almost all 
groups will record most of the same data by hand into 
either a logbook or a word processing document. Since 
this is the case, there is an obvious advantage to having 
this information automatically collected for the user and 
stored with their data. Furthermore, since there are no 
existing tools to help organize data, the addition of a 
database for scans has been implemented to make it easy 
for users to sort their data how ever they see fit. 

To make the database easy and intuitive to use, many 
features have been implemented already. Chronological 
sorting by experiment date and “run” – visit to the facility 
– is automatic, but  users can also create their own 
experiments and sort their scans how ever they wish.  This 
supports users in long-term research conducted across 
multiple visits to the facility, or across multiple beamlines. 
A single scan can belong to multiple experiments, if the 
user wishes, and scans from any run can be placed in any 
experiment.

A number of familiar user interface paradigms have 
been adapted to the database so that users can easily 
identify, select,  and organize their large data sets. List 
views and detailed thumbnail views will soon be 
implemented to provide additional context and 
information -- such as beamline configuration -- for each 
scan.  A “logbook” view is also under development: 
providing a convenient supplement or alternative to 
paper-based logbooks, and reducing mistakes that users 
can easily make when recording their experimental 
process. Finally, drag-and-drop features give users the 
opportunity to move scans to experiments as well as open 
scans in the visualization window. Simple features,  like 
selecting multiple scans and collapsible sections, make it 
even easier to view and move large sets of data.

Along with a database for managing the data users have 
collected at the beamline, there is also the capability to 
import data – whether from the CLS or else where.  A 
general structure exists for implementing a new import 
plugin and, while some coding is required, existing 
importers for older SGM data and data from Beamline 8 
at the Advanced Light Source (ALS) will act as templates. 
Finally, the importers are optimized to handle large data 
sets so common users with normal amounts of 
synchrotron data – the normal amount being “a lot” – can 
easily see all their historical synchrotron data at once. Of 
course, if data can be imported in a given format, the 
software should be capable of exporting as well. One of 
the short-term goals is to create a framework to do this 
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efficiently. Not only will it allow users to export the data 
they have collected at the CLS, it will also allow them to 
combine data from many facilities and export it all in a 
common format of their choosing. 

Finally, since a user’s data should be accessible whether  
or not they are at the beamline, the data management 
segment of the software has been designed to be easily 
separated from the rest of the acquisition tools so users 
can take it home with them. 

Beamline Management
While tools to manage acquisition and user data go a 

long way to putting science first in the software, there is 
still the issue that a number of tasks that need to be done 
regularly on the beamline do not fit into either category.  If 
the aforementioned management systems work as 
designed,  then one of the few remaining barriers to 
allowing the users to focus almost exclusively on science 
will be these beamline-specific tasks. 

A perfect example of such a task is dealing with 
samples. Between transferring samples into or out of the 
chamber, labeling them on the sample plate, and aligning 
them in the beamline,  managing samples can be a 
substantial undertaking for new, and even experienced, 
users.  Because of these factors, sample management has 
been given a prominent spot in the initial software design. 
A central location has been designed to view the sample 
plate in the beamline; move to and label samples of 
interest; and, recall sample positions or reload old sample 
plates. The added benefit of specifying the location of and 
labeling samples is that the software can automatically 
associate scans with samples. This association propagates 
to the database, allowing the user to easily browse by the 
sample names they have chosen. 

In addition to managing samples for acquisition, there 
is still the matter of transferring samples into and out of 
the chamber.  Like many other beamlines at the CLS, the 
SGM beamline has a number of manual steps that must be 
performed to do a sample transfer. Normally, users follow 
a transfer manual but often have trouble flipping between 
segments. We are currently testing a software guided 
manual that allows users to select the transfer task they 
need to do and gives as much feedback as the beamline 
has to offer.  Furthermore, additions in the near future will 
add optional pictures,  or possibly brief videos, to give 
additional help as required. 

Another beamline task that users often have difficulty 
with is troubleshooting – particularly determining if the 
beam’s signal strength is appropriate.  Normally,  users 
need to ask the beamline scientist which controls to 
monitor as well as what the feedback value should be. 
Rather than having users memorize the expected current 
for different configurations and since beamline 
characterization has already been done for the flux and 
resolution settings, another design slated for immediate 
completion is visual feedback for the signal strength. This 
simple explanation conjures the image of a cellphone’s 
signal bar, which is exactly how we intend to implement 
the visual interface.

PROGRAMMER CONCEPTS
Developing this software has presented many 

challenges: once complexity and interconnectivity reach a 
certain level programming, undoubtedly, becomes more 
difficult. However, there has been little doubt that these 
obstacles could not be overcome – with enough time and 
code, almost anything seems possible on a modern 
computer. That being said, we have placed a strong focus 
on trying to the make the software as easy to code and 
expand as possible. Some of the design features are 
discussed in the final sections.

Code Design
As the intention has always been to make the software 

work across beamlines, the design stresses the use of 
decoupling and inheritance. The base concepts have been 
to decouple associated ideas – scan configuration from 
scan control for instance – and to make “dumb general 
classes” which are inherited by “smarter specialized 
classes”. Where possible, generalization has taken a 
backseat to such decoupling and inheritance based on the 
observation that generalized code tends to do everything 
in a mediocre fashion while specialized code tends to do 
one job very well. Our hope is that having the specialized 
implementation classes completed for a set of beamlines 
will act as a roadmap for programmers who wish to 
extend capabilities to their own beamlines.

Code Management
As of September 24th, the project has grown to over 

450 files and over 66000 lines of code. Thankfully, the Git 
version control system has been used to manage the 
source since the project began. In addition to working 
well for the initial development period, Git will allow the 
project to be opened up to a larger community for 
development – we expect this to happen before the end of 
2010. In addition to code management, Doxygen has been 
used as the documentation suite. Git and Doxygen have 
been integrated so that the online documentation manual 
is automatically updated whenever code changes are 
committed to the version control system.

CONCLUSION
While there remains substantial work to be done, the 

experiment based user software project has come a long 
way in a short period of time. By focussing on putting 
science first and refining the user experience, we hope to 
deliver software that users enjoy using both at the 
beamline and when organizing their data at home. With 
beta testing underway at the SGM beamline, the time is 
ripe to open the project up to a larger community of 
contributors, including other CLS staff, CLS users, and 
collaborators from the larger synchrotron community.  
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DATA ACQUISITION FROM HETEROGENEOUS SENSOR NETWORKS:
 THE CASE OF NEPTUNE CANADA

THE WORLD'S LARGEST CABLED OCEAN OBSERVATORY
B. Pirenne, Ocean Networks Canada, University of Victoria, BC, Canada

Abstract
Ocean Sciences is at the crossroads: it is entering the

brave  new world  of  "Big Science".  The  first  of  a  new
generation  of  large  facilities,  the  NEPTUNE  Canada
cabled  ocean  observatory  (www.neptunecanada.ca)  will
be presented from the point of view of a sensor network
composed  of  hundreds  of  diverse  instruments.  The
challenges we faced will be reviewed, together with the
selected  network  design,  data  management  and  data
distribution approaches. Special emphasis will be placed
on the architecture of the system and on the more recent
developments and concepts used to help scientists in their
exploitation  of  the  data.  Finally  a  number  of  the  early
discoveries  made  with  the  new facility  will  be  briefly
described.

CABLED OCEAN OBSERVATORIES
Cabled  ocean  observatories  are  remote  observing

systems that provide power and communication media to
a  host  of  underwater  instruments  and  sensors.
Consequently, the instruments are (almost) always on-line
and sufficient power is provided to the assets to ensure
uninterrupted data flow covering multiple environmental
parameters at high resolution in a four dimensional space.
Observatory  systems  considered  here  also  provide  a
significant  ability  to  remotely  manage  their  assets  (ie,
provide  a  real-time  command  ability  for  specific
instruments).  As  an  example,  NEPTUNE  Canada  is
composed of a fully redundant 800-km cable loop and has
the ability to provide 9kW of power at up to 10 different
locations of scientific interest. Figure 1 shows the layout
of  the  NEPTUNE  Canada  observatory  as  well  as  its
currently  defined  6  main  locations,  five  of  which  are
instrumented. They reside at depth between 20 and 2700
meters.

Each of the locations is  equipped with a “node” that
reduces the line voltage of 10 kVDC down to 400 VDC
and offer data connection points for up to 4 Gbps. In a
area covering up to a few km2, extension cables can be
run from the nodes to sites of interest, where platforms
with  actual  instruments  and  sensors  are  installed.  The
platforms  are  typically  composed  of  a  “junction  box”
whose role is to be the local “power bar”, providing plugs
for instrument power and communication, converting the
400  V input  to  15,  24  or  48  Volts  and  translating  the
instrument serial protocol to IP where necessary. 

The  instrumentation  measures  physical  and  chemical
parameters  of  the  ocean  (temperature,  salinity,  oxygen
content,  CO2,  currents  speed  and  direction  at  different
depths,  ...),  but  also  has  a  number  of  more  specific
devices  such  as  underwater  video  cameras,  electro-
magnetic  experiments,  vertical  profilers  that  move

through  the  water  column,  small  vehicles  on  track
(crawler), ... all of which would not be possible without
the  availability  of  ample  power  and  the  ability  to
command  them  in  real-time.  Figure  2 illustrates  the
crawler,  itself  a  device equipped with various chemical
and physical sensors, cameras, etc.

The  entire  system  represent  the  extension  of  the
Internet  under  the  Ocean,  which  was  the  vision  put
forward by the proponents of such a system many years
ago.

Figure 1: Map of the area covered by NEPTUNE Canada
west of Vancouver Island. Please note the 800 km cable
loop and the various location of scientific interest, and

their "node".

Figure 2: A small tethered vehicle on track. It can roam
within 50 m from its central position. It is equipped with

various physical and chemical sensors and a camera. 
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NETWORK TOPOLOGY
The  network  design  implements  the  vision  of  an

Internet-based system, where every instrument and device
is either a leaf on the tree structure or a junction point
where  multiple  branches  come together.  The  tree  is  of
variable  and  arbitrary  depth  and  does  not  impose
conditions  on  its  topology  other  than  the  fact  that
communication to other parts of the network will always
propagate up the tree to the first common junction point
between any two devices.

Network Design Considerations and Choices
To  minimise  the  cost  of  the  system  and  to  re-use

existing off-the-shelf technologies, the use of the Internet
Protocol (IP) is  preferred as a  transport  mechanism for
data packets at the user/application level. Distances and
fibre  technology  may  require  another  transport
mechanism at the lower level. So in this instance the ISO
layer 1 can be implemented using fibre optics, lasers and
repeaters, on which the SONET protocol will be running.
SONET packets will encapsulate layer 2 Ethernet (802.3)
packets and deliver them to their end-point thanks to this
standard's addressing system. At that level, a traditional
network  is  available  for  implementing  data
communication, transport, routing, security, etc.

As  indicated  in  figure  3 above,  currently  available
oceanographic science instruments are of a legacy design,
optimised for power consumption, internal recording and
short stays in the water. Their typical data communication
interface will be of the serial type (e.g., IEA RS-232, IEA
RS-422 or IEA RS-485). To implement the vision of the
observatory  representing  the  extension  of  the  Internet
underwater, it is necessary to convert the communication
protocol of the instrument to IP as close as possible to the
instrument.  This  can  be  done  with  simple  devices,
typically called “terminal servers” enclosed either in the
original instrument, in a can on the cable linking it to a
junction box or within the junction box itself, often only
metres away from the instrument.

To be complete, the structure must also accommodate
multiple  nodes  at  the  same level,  daisy-chained  nodes;
many junction boxes per node and daisy-chained junction

boxes;  instruments  with  piggy-back  sensors;  possibly
multiple shore stations at the root of a network and finally
also possibly several redundant data centres.

With a potential for thousands of individual instruments
and devices attached to the network, as well as for ease of
isolation of the system, it  makes sense to select a non-
routable set of addresses, as allowed by the IP protocol. In
this  case,  given  the  complexity  of  the  network,  the
familiar 10.0.0.0 address space (RFC 1918) was selected.
It allows system managers and security analysts to only
worry about a few selected bridges between the outside
world and the private network, while allowing complete
freedom of address allocation and division into VLANs
etc. within the private domain.

Virtual Local Area Networks (VLAN – IEEE 802.1Q)
offer service segmentation and will be the tool of choice if
special categories of instruments need to be isolated from
one another  for security reasons.  VLANs are a layer  2
feature.  There  are  multiple  examples  that  can  be
considered where VLANs use would make considerable
sense in the set up of an observatory. The example of a
separate  management  VLAN comes  to  mind  where  all
non-user accessible devices will be isolated in a special
management  VLAN.  Such  devices  will  include  all
network  devices  on  the  system  (on  land  as  well  as
underwater) such as switches, routers, media converters,
serial-IP  converters;  but  also  the  facility  control
computers, precision clocks, etc.

Another VLAN that should be considered is one that
will host all instruments that are considered of “national
security  concern”  and  would  need  to  be  especially
protected or have a different management policy. 

Timing and time signal

There is a requirement that all clocks on the system be
synchronised with a master clock to ensure that all data
have the same time baseline to ensure the ability to cross-
correlate  measurements  from  different  sources.  This
requirement can be satisfied in a number of ways: 

convince  instrument  manufacturers  to  create
smart  instrument  interfaces  to  periodically  re-
synchronise the internal instrument clock to the
observatory's using the NTP or PTP protocol
periodically  and  programmatically  re-
synchronise the instrument clocks through shore-
based software
time-tag all arriving measurements at the shore
station.

Our current approach has been a combination of the first
and third option so far, as most of the instrumentation in
place is of a legacy, low-power, battery-operated type that
is optimised for durability of deployment. 

Figure 3: The example of the NEPTUNE Canada network
design from a network topology point of view.

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan FRCOAA05

Data Networking and Web Technology Web 2.0 and SOA

215



DATA ACQUISITION
  A part of the complexity of ocean sciences stems from
its plurality: an observatory such as NEPTUNE Canada is
serving many different communities with different goals
and relying on different types of instruments to achieve
their  goals:  physical  oceanographers  and  chemists  will
have  sensors  measuring  directly  phenomena  of  interest
while  biologists  will  usually  rely  on  proxies  to  derive
populations, species and abundances. This is reflected in
the instrumentation that has to be hosted on the system.

Typical instruments will therefore usually fall into one
of  three  categories  from  a  data  management  point  of
view:

Table 1: Categories of data streams and instruments

Category Instrument Data Format

Scalar CTDs, chemical
sensors, ...

Return lists of values
at regular intervals

Complex ADCP, still
cameras, ...

Return n-dimensional
matrices on a regular
basis

Stream Video cameras,
hydrophones

Return uninterrupted
streams of bytes

For  the  purpose  of  designing  a  software  system  to
manage  the  data  flow  coming  from  various  devices
connected to the infrastructure, a simple approach can be
considered  where  all  instruments  are  considered  as
sending a stream of data.

At the highest level of abstraction, given the individual
duty cycles of each instrument, all categories will, from
time  to  time,  return  their  measurements  as  a  string  of
bytes. A scalar instrument may be returning the values of
its sensors every second for months on end; a still camera
may be programmed to take a picture every day, a video
camera may be operated periodically and return a rapid
succession of images.

At  the  same  time  that  each  instrument  can  be
considered as  a  producer  of  a  more  or  less  continuous
stream of bytes, another way to look at the problem is to
see  every  new  stream  of  bytes  as  an  event  that  just
occurred  and  for  which  some  specific  processing  is
required.

We assume here a combination of both approaches to
deal with the data flow: each instrument produces data in
an  ad  hoc,  not  necessarily  predictable  fashion.  The
(a)synchronous occurrence of a new sequence of data will
trigger  the  execution  of  a  pre-determined  set  of
processing stages, the last of which will be the archival of
said stream.

Science Data vs. Engineering Data

Clearly science data collection is the primary goal of
any ocean observatory. However, sensors and instruments
are  attached  to  an  infrastructure  that  allows  them  to
operate. The infrastructure typically provides power and
communication  media  to  instruments  and  their  hosted

sensors. So, unless the infrastructure is “somebody else's
problem”  (such  as  is  the  case  when  all  or  part  of  the
infrastructure is contracted out to an external organisation,
e.g., satellite data transmission), and regulated through a
service level agreement (SLA), the organisation operating
the  facility  has  to  perform  and  support  a  potentially
significant  number  of  activities  having  to  do  with  the
oversight of the entire system. 

The oversight of the system is usually a 24x7 task that
involves the monitoring of a large number of subsystems
dealing with power and power distribution as well as with
data transmission.  All  of  those subsystems will  contain
sensors  that  produce engineering data.  The engineering
data has to be acquired, converted, verified and checked
against ceilings and thresholds on a permanent basis. Any
value  identified  as  going  beyond  pre-set  bounds  will
generate alerts to be dealt with by observatory personnel.

In  the  example  of  NEPTUNE  Canada,  nodes  and
junction  boxes,  distributing  power  and  communication
facilities to science instruments, are equipped with a large
amount  of  electrical  and  environmental  sensors.  Such
sensors typically return data at the rate of one Hz. It is
estimated  that  the  nodes  and  junction  boxes  currently
connected on the NEPTUNE Canada network will alone
produce about 8 TB of raw scalar data per year.

The data are however essential to help predict trends,
offer the ability to conduct forensic analysis to understand
why  an  element  has  failed,  etc.  An  example  where
trending  will  help  observatory  managers  extend  the
lifetime of the infrastructure and establish a priority list
for  maintenance  and  recovery  is  the  analysis  of  the
stability  of  the  various  ground  leak  current  sensors.
Indeed, in seawater,  a complete isolation of any power
conductor from seawater is essential to prevent corrosion.
A slowly increasing leak current (or reduced resistivity to
ground)  is  an  indication  that  something  is  amiss
somewhere  and  could  lead  to  accelerated  corrosion  of
subsystems.  Switching  them off  early  will  increase  the
lifetime of the rest of the system.

Tools have thus to be provided to engineers and “wet
plant” system managers to access, examine and react to
events  happening  underwater.  The  large  number  of
individual  sensors  that  have  to  be  monitored  calls  for
systems that will automatically and constantly verify that
all  variables  remain  within  their  pre-set  boundaries.  A
network management system (NMS) will collect all alerts
that come from any subsystem (power or communication)
and  draw  the  attention  of  system operators  when  they
occur.  Automating  such  tasks  is  essential  to  limit  the
operating costs of the infrastructure to a minimum and to
avoid the need for a 24x7 coverage of the operation of the
system,  limiting  the  service  requirement  to  having
personnel on call.

DATA  ARCHIVE
Big  Science  infrastructure  is  typically  designed  and

built  to  last  between  25  and  50  years:  astronomical
observatories,  large  vessels,  nuclear  reactors,  ...  after
which  they  have  to  either  be  decommissioned  or  to
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undergo  significant  refurbishment,  upgrades  and
modernisation.  The case of  an ocean observatory  is  no
exception, but will likely have a life expectancy towards
the  lower  end  of  the  range,  mostly  due  to  the  lack  of
experience  with  such  system as  well  as  the  harsh  and
corrosive environmental conditions to which the various
elements of the infrastructure are subjected.

Consequently,  with  funding  hopefully  in  place  to
support operations during the entire period, the software
systems used to acquire and store the data, monitor and
control the infrastructure should be sustained and provide
access  to  the  sum  total  of  data,  information  and
knowledge  accumulated  during  the  complete  history  of
the facility.

This  is  one  of  the  fundamental  requirements  of  the
software  system  in  charge  of  the  observatory  and  the
reason why the underwater infrastructure does not “just”
extend the Internet under the Ocean.

Table 2: Life expectancy of different elements of the
System

Element Longevity

High-level design, topology, external
environment

Lifetime

Hardware Architecture 10-15 years

Programming language 10+ years

Operating Systems 10 years

Storage Technology 8-10 years

Design of the main software elements 7 years

Operational computers 4-5 years

Storage system 3-5 years

 

The numbers in Table 2 above indicate the expected life
expectancy of the various elements of any large system
and  illustrate  that  throughout  its  lifetime,  constant
changes  and  update  will  have  to  take  place  to  keep  it
operating efficiently and economically as, as is often the
case, running an ageing infrastructure is more expensive
than a timely adoption of new technologies:

Old hardware will cost more and more to keep
running (e.g., keeping lots of small disk drives in
operation rather than a few large ones)
Old software  implementation (legacy software)
may  make  it  more  difficult  to  find  suitable
developers who know about  the language,  OS,
etc. 
Novel  instrumentation  design  or  radically
different  ways  of  using  the  underwater
infrastructure might lead to the impossibility to
continue operating with the assumptions that led
to  the  elaboration  of  the  system  to  that  date.
(Disruptive technologies).

OPERATION SUPPORT
A large  underwater  observatory  has  many  physical

components. It also represents a facility that has to have a
long life time and will therefore host several generations
of  caretakers.  The  complexity  is  so  large  that  it  is
impossible for a single person or small group of people to
remember  everything  about  the  system.  Examples  of
essential  information  abound:  installation  date  and
position,  date  of  recalibration of  an instrument  and the
formulae  that  have  to  be  used  for  each  of  its  sensors;
when  the  instrument  was  turned  on  and  off  and  by
whom,  ...  This  information  is  absolutely  critical  to
understand  the  data  that  any  instrument  produces.
Moreover, when dealing with a multiyear archive of data
from  instruments  with  a  complicated  history,
understanding that history is necessary for data users to
have some trust in the data quality. 

The  considerations  above  imply  that  the  amount  of
information to be recorded, maintained and presented to
users  about  any  component  of  the  observatory  is
tremendous  and  usually  much  more  considerable  than
what casual observers would imagine.

DATA ACCESS
Traditionally, data access consists in providing search

screens and a result download facility to users. A number
of  files  are  downloaded  and  have  to  be  individually
processed  by  the  user,  usually  in  isolation,  with  local
resources  and  locally  developed  or  installed  software.
This  model  no  longer  works  for  disciplines  where  the
amount of data is multiplied by a large number of orders
of magnitude while the amount of users remains constant.
The  model  that  is  currently  emerging  involves  a  shift
away  from the  search-download-process  approach.  The
concept  of  Web  2.0  with  its  participatory  approach  is
calling for something quite different where users use their
web  browsers  to  perform  all  activities  related  to  the
scientific process. Some of the differences are as follows: 

On-line  collaborations  with  remote  colleagues
and students are the norm. Data volumes are so
large  and  so  multi-disciplinary  that  it  is  often
necessary to seek out the support and advice of
colleagues  in  different  disciplines  to  support  a
particular  project  execution.  The  new
collaborators  may  not  be  co-located  and  may
work  at  different  times  but  a  “work  space”  is
available  for  all  members  of  a  work  group  to
perform  all  tasks  from  data  search  and
examination all the way to the redaction of the
final paper.
Searching and sifting through data is done using
other  criteria  and  sources  of  information  than
previously  available  such  as  annotations
provided by “crowdsourcing” activities and data
from  other  observatories  using  interoperability
concepts.
There  is  little  need  to  download  data:  data
processing facilities on the Grid or in a computer
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Cloud are available through privileged links with
the  archive.  Data  processing  software  libraries
and  templates  are  available  to  run  against  the
data.  Instead  of  downloading  data,  the  new
concept encourages the upload of new code to
run on the server. New code can first be tested,
refined and maybe later made available for all to
use.
With compute facilities becoming utilities, with
storage capacity available on the network, there
is no need to spend money and time maintaining
one's  own infrastructure.  Shared infrastructures
are always available at the other end of the high-
capacity network.

SOME OF THE FIRST RESULTS
There  is  no  space  on  such  a  summary  paper  to  list,
explain and illustrate  the findings,  discoveries and new
knowledge  acquired  through  a  novel  facility  such  as
NEPTUNE  Canada.  So  the  author  will  refer  the  news
posted  on  the  observatory's  home  page  for  up-to-date
information.  The  prospects  for  new  findings  are  very
important as such a system has never been built before, as
the  spacial,  time  resolution  and  accuracy  of  the

measurements  are  increased  by  several  orders  of
magnitude and that NEPTUNE Canada is supporting no
less than five distinct science disciplines (ocean physics,
chemistry, biology, plate tectonics and computer science
and engineering). Moreover, it is opening the prospect of
multi-disciplinary science discoveries.
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