
FLASH DAQ DATA MANAGEMENT AND ACCESS TOOLS

* V.Rybnikov, V.Kocharyan, K.Rehlich, E.Sombrowski, T.Wilksen

Abstract
The Free Electron Laser in Hamburg (FLASH)[1] at

DESY is a user facility for the photon science
community. It produces laser light of short wavelengths
from the extreme ultraviolet down to soft X-rays. To
study, monitor and document the machine performance
and parameters and also to collect the results of the
experiment measurements, a fast data acquisition (DAQ)
system is being used. Having above 1000 linear
accelerator diagnostics channels collected by the DAQ
currently results in a data rate of ~100 Mb/s. The large
amount of data requires corresponding data storage and
management to enable efficient data retrieval. This paper
will focus on the data paths, storage and bookkeeping. A
number of tools provided for the users to work with DAQ
data will be described. The current status of the achieved
performance in the data storage and retrieval will be
covered as well.

INTRODUCTION
The FLASH DAQ [2] system was launched in summer

2004. Its main tasks are: collecting LINAC beam
relevant data in real time, providing the data to feed-back
and monitoring tools as well as storing it for an offline
analysis. The DAQ system is also used by FLASH user
experiments to store their data together with information
coming from LINAC. This allows easy correlations
between the experiment measurements and the LINAC
state. A set of tools is provided for data visualization and
analysis.

DATAFLOW
The dataflow in the FLASH DAQ and all involved

components are shown in Fig. 1. There are two types of
data collected by the DAQ. Fast data include channels
with beam related information (beam position monitors,
etc.) and currently collected with the shot repetition rate
of 10 Hz. All other channels considered as slow (magnet
currents, etc) and collected with the maximum rate of 1
Hz. The data is collected by fast (FC) and slow collectors
(SC) correspondingly via Ethernet. The collectors put data
to the Buffer Manager (BM) [3] for online access.
Distributors (DS) read data from the BM according to the
stream descriptions provided by the Run Control during
the DAQ configuration procedure. The data streams are
pushed to the Event Builder (EVB) and further to the
Writers (WR). The latter writes data to files on a local
disk. The files from the local disk are copied to a huge
RAID array and accessible via NFS for the public. The

experiments data is usually copied to tape for the
permanent storage.

DATA MANAGEMENT
The DAQ data management components control the

data flow and guarantee all required data is written to data
files and to the tape if required. The components keep
track of the written data in order to assure fast data
access. The rest of the paper will be devoted to the
description of those components.

Figure 1: FLASH DAQ dataflow and access tools

Fast Channel Data
The fast channels (~ 700 channels) provide the most

part of the data volume (~99.5%). It means that the
reduction of the total data amount strongly depends on the
configuration of the front-end DAQ senders. The front-
end configuration is performed by the Run Control
process during the DAQ configuration. The RC is capable
to set every parameter for the spectra that are usually sent
by the front-end (e.g. start, increment, length). For that
the RC has a group of run parameters when changing one
of them changes a spectrum parameter in a group of
channels (e.g. the same device types). The different sets
of run parameters are stored in the Run Modes of the Run
Control data base [4]. Every Run Mode corresponds to a

*Deutsches Elektronen-Synchrotron, DESY, Hamburg, Germany

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan FRCOMA02

Experiment Data Acquisition/ Analysis Software Data acquisition

195

FLASH operations mode. In this way one can control the
total amount of written data.

Data produced by Middle Servers (MS) belongs to the
fast data. Their configuration is performed by the RC too,
and therefore defined by the Run Modes.

Slow Channel Data
The amount of slow channel data is controlled by

assigning the channels to two types of slow events: update
event and/or environment event. The data for update
events is put to the BM periodically (currently every 15
seconds). The channel data for environment events is put
to the BM only on its value change. Writing the
environment channels can be also controlled by filters
(absolute or relative limits for the value difference).

Data Streams

The FLASH DAQ is currently writing 7 data streams
simultaneously. Every data stream consists of a set of
collected channels. The list of channels for a stream is
defined by the experiment using the stream. The largest
LINAC stream contains all data collected by the DAQ.
The LINAC data can be used by other experiments in
case some additional channels are required for their
analysis. The stream separation is done by the DS. It
receives stream descriptions from the RC during the
configuration.

Writers, Run Catalogue and Index Files
Currently EVB is acting as a gateway between

distributors and writers. In future one could use it as filter
for data streams to reduce the data volume, to generate
statistics, etc.

Writer processes are responsible for dumping the data
streams into files. The writers keep track of created files
by means of a Run Catalogue (RCTL). For every run and
stream a set of index files (INXF) is created by the
writers. The RCTL is a binary file that contains the start
and the stop time for every run and the number of written
files. The index files contain the information about every
written file. It includes time stamp and event IDs of the
first and the last event in the file and the number of events
for every event type. The RCTL and INXF allow to find
the list of file names for a certain time period and
experiment.

Permanent Data Storage
The files written by WRs are shipped from the local

disk to the tape storage by the dCache [5] copy process
(DCCP). DCCP keeps track of all taped files in a DCCP
catalogue.

FLASH DAQ Data Files
We are using a custom designed file format for the data

storage. The format is highly optimized for fast data
access. The fast access is achieved by writing the data for
one channel in a continuous data block (basket). Three
steps are usually required to read a channel data:

• Read reference tables and find out the data basket
offset

• Read the data basket
• Decompress data if required
Depending on the data type the channel data can be

written into the file with or without compression. Two
algorithms for compression are supported: ZLIB [6] and
LZO [7]. The second one is used in case of CPU power
limitations.

DAQ data files are self describing. One can get
information about the list of stored channels with their
descriptions as well as the number of entries for every
channel without accessing the data itself.

DATA ACCESS TOOLS
To be able to work with the DAQ files one needs tools

to extract the required data. A set of tools has been
developed, providing two different access methods:
directly from files (local access) and by means of DAQ
data servers (remote access, see Fig.1). In the second case
the user software receives the required data from the
DAQ data servers running on dedicated computers. The
requirements to the data access tools are strongly
dependent on the user’s task. We have concentrated on the
general purpose visualization tools and the libraries that
could be used by the experts to make their own
processing programs corresponding to their wishes. We
have developed libraries and tools for thee environments
used at FLASH: C++, Java, MATLAB [8]. Platform
supported are Solaris (SPARC), Linux (Debian and
Ubuntu) as well as Mac OS X.

 C++ BASED TOOLS
A set of classes has been developed to access DAQ

data from files. In order to start the data extraction one
needs to provide a “data request” containing the time
period (start, stop, or a run number), list of channels to
extract and the experiment name. One can set all those
parameters either by means of the corresponding methods
of classes or by providing the name of a XML file
containing all required information. Once the request is
defined, a method to start the data extraction is to be
invoked. Due to multithreading design one can get the
required data simultaneously with ongoing data
extraction.

Based on the described libraries a data processing
framework has been developed. It takes care of the data
extraction. The user is provided with 4 routines:
user_help(), user_init(), user_loop() and user_end(). The
routines can be rewritten by the user, recompiled and re-
linked with the framework. The loop routine is called to
provide the user code with the channels data in the
sequence as it was collected by the DAQ. The init and end
routines are called once for user code initialization and
finalization correspondingly. The FLASH accelerator and
photon experiment groups are using this framework since
quite some time to their satisfaction.

FRCOMA02 Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan

Experiment Data Acquisition/ Analysis Software

196

Data acquisition

JAVA BASED TOOLS
A library (JDAQ) has been developed in Java to

provide DAQ data access for Java based applications. The
library offers both local and remote DAQ data access. The
library contains the same classes as the C++ ones. The
same XML configurations can be used for both
environments. A few Java GUIs exploding JDAQ have
been developed: FLASH DAQ data GUI, FLASH DAQ
data Converter, JDDD [9] expert panels.

Figure 2: FLASH DAQ data GUI

The FLASH DAQ data GUI (see Fig. 2) is a general
visualization tool. It makes use of JFreeChart [10] to draw
waveform, histories and histogram plots. The GUI allows
watching a set of channels signals as they were during
every shot in the linac. One can create histograms and
histories for every selected channel as well as the
correlation plot for any pair of channels. The GUI can be
used for local and remote data access.

The FLASH DAQ data converter dumps the DAQ data
to ASCII files. The GUI has a convenient interface to
plug-in other converters for producing other data formats.
 JDDD is becoming the new display tool for FLASH
operators and experts. A few additional components based
on JDAQ have been written. They allow drawing stored
DAQ data along with online data read from the FLASH
control system. Because of that new capability of JDDD
one can easily build panels for the experts to analyze the
behaviour of their setups in the past.

The LLRF expert coupler interlock panel is a good
example of that approach. The expert selects an interlock
event shown in the DOOCS [11] history of the beam
interlock system. On selection an event a request to DAQ
data servers to extract data for a set of channels is sent for
5 seconds period before and after the event. On
receiving the requested data the wave forms are plotted in
the same plots where the current online waveforms are
drawn. The expert can shot by shot go through 10 second
period of DAQ data and compare the channels with the

online ones. In this way it makes it easy to find out the
source of the interlock for the selected interlock event.

MATLAB TOOLS
Based on the C++ classes external MEX functions have

been developed to provide access to the DAQ data from
within MATLAB. The DAQ data request can be set either
by setting an array of strings inside of the MATLAB
script or via an XML file with the same format as for C++
and JDAQ libraries. The MEX functions extract the
requested data and convert it into MATLAB structures
that can be read by MATLAB scripts and analysis code.

 PERFORMANCE
The FLASH DAQ currently collects all required beam

related channels with the rate of 8000 bunch/s (800
bunches at 10 Hz repetition rate).

The measurement of the data extraction time shows that
for modern workstations exploiting fast multi-core
processors it mostly depends on disks performance and
network bandwidth. In our environment we measure 0.1-
0.2 ms/event for reading one spectra channel (2000
floats).

PLANS
We continue to improve our data access tools trying to

satisfy our users’ requirements. E.g. implementing pre-
processing of data by the DAQ data servers could
drastically reduce the amount of raw data currently used
by the clients and speed up the final data processing.

REFERENCES
[1] http://flash.desy.de/

[2] A. Agababyan et al., “Multi-Processor Based Fast
Data Acquisition for a Free Electron Laser and
Experiments”, IEEE Transactions on Nuclear
Science, Vol. 55, No. 1, February 2008.

[3] V. Rybnikov et al., “A Buffer Manager
Implementation for the FLASH Data Acquisition
System”, PCaPAC 2008, Ljubljana, Slovenia,
October 2008

[4] G.Dimitrov, “Application of Oracle Database for TTF
DAQ System”, PCaPAC 2005, Hayama, Japan,
March 2005

[5] http://www.dcache.org/

[6] http://www.zlib.net/

[7] http://www.oberhumer.com/opensource/lzo/

[8] http://www.mathworks.com/products/matlab/

[9] http://jddd.desy.de

[10] http://www.jfree.org/jfreechart/

[11] http://doocs.desy.de

Proceedings of PCaPAC 2010, Saskatoon, Saskatchewan FRCOMA02

Experiment Data Acquisition/ Analysis Software Data acquisition

197

