
The TINE Common

Device Interface in

Operation
P. Duval, H. Wu, U. Ristau (+I. Kriznar, J. Bobnar)

CDI: A brief review …

� CDI library

� Synchronous, asynchronous i/o to hardware devices

� Multi-threaded: Each line handled in independent thread

� Device groups can span multiple lines

� CDI bus plugs

� Handle bus specific i/o

� CDI manifest

� Defines managed hardware busses

� CDI database

� Assigns device names to addresses

� CDI hook in TINE libraries

� context = “localhost”, server = “cdi” passes directly to CDI

CDI: How it works …

1) Bus Manifest :

2.) cdiLoadLib(“cdiCanEsd.dll”) - Windows

cdiLoadLib(“libcdiCanEsd.so”) - Unix

cdiLoadLib(“cdiCanEsdLib.o”) - VxWorks

Etc. …

3). Library’s prologue code ‘plugs’ dispatch routines into CDI:

int cdiRegisterBus(char *busName);

int cdiRegisterBusInitialization(char *busName,int (*fcn)(int,int,int,char *));

int cdiRegisterBusHandler(char *busName,void (*fcn)(CdiRequestInfoBlk *));

…

Bus Interface Plugs

CDI: Sample Database …

Optional: “RULE_RECV”, “RULE_SEND”, “MASK”, “PATTERN”, “LIMIT”, “INPUT”

CDI Hardware Server …

TINE Automatically supplies a CDI “hardware” server !

Devices = CDI devices

Properties = BUS actions or information

Local (in-process)

access uses :

Context = “localhost”

Server =“cdi”

CDI New Features

� TINE Release 4 compliant
� Longer names!

� CDI device names
� up to 32 characters

� but can specify and address a device “group”

� “M2AdcPia.rstTrg, M10AdcPia.rstTrg, M18AddPia.dbSta - M26AddPia.dbSta”

� TINE:
� registered device names 64 characters

� device name field can carry 1024 characters

� Templates
� define and register instances of address patterns

� Bitfields

� name any bit or bit pattern

� registered like templates (use “MASK” information)

� templates can contain bitfields

� Group or Single Reads
� can ask for (array of) simple format (e.g. int or float)

� can ask for (array of) value-status pairs

� can ask for (array of) name-value-status triplets

CDI Templates and Bitfields

Bitfield

“READ”

e.g. Device name : S21Trgt.Status.PowerOK

Template

“TrgtRvlvr”

CDI New Features …

� Templates

� Imagine …

� PSC module with 30 address registers

� 300 PSCs -> 9000 database entries ?

� PSC template + 300 PSCs -> 330 database entries!

� CDI device names

� <instance>.<field>

<template field> ~ attribute

=> also registered as property !

Instances of

template “SLED”

CDI New Features

� Calibration rules
� RULE_RECV

� Mathematical operations (the usual stuff)
� Bit operations (XOR, AND, NOT, shift, etc.)
� Message (convert to text according to bit pattern)
� External function
� Applies to “RECV.CLBR” (and template field

properties)

� SEND_RECV
� Mathematical operations
� Bit operations
� de-calibrate prior to sending out
� Applies to “SEND.CLBR” (and template field

properties)

CDI New Features

� BUS Names

� What bus is “M2AdcPia.rstTrg” on ?

� CDI knows automatically something like

“SEDUSB-line1”

� i.e. the SEDUSB line 1 attached to the FEC.

� But this can be given a more descriptive

name!

� e.g. “PiaBPMs” (a more appropriate field bus
name)

CDI Database Manager

� Currently

� Make the database spreadsheet by hand !

� Copy-and-paste-and-edit is error prone

� (cdi.log will tell you what’s wrong)

� But: there is a database consistency checker!

� COSYLAB (Igor) is ‘almost finished’ with a real

CDI database manager !

CDI and Device Servers …

� Best practice …
� create CDI database
� test the hardware i/o
� write/generate device server

� CDI device names may or may not have anything to
do with server device names
� D2BPM.cdi/M1AdcD2.adcSta -> DESY2/BPM/NW24

� use CDI in-process to access the hardware

� But often …
� use CDI hardware server as device server

� ~ 50 % !

� use CDI out-of-process
� the other ~ 50%

CDI

dev svr

client

CDI dev svr

client

CDI + TINE

� 1) Device Server activates the CDI hook …
� TINE client API
� Calls to “/localhost/cdi/…” feed thru to CDI
� Calls to “/<context>/<cdi server>/…” also feed thru to

CDI if
� <context> = <my context>
� <cdi server> = <my cdi server>

� in-process

� or 2) Device Server does not activate CDI hook …
� Calls to “/localhost/cdi/…” fail
� Calls to “/<context>/<cdi server>/…” find the server

and behave normally
� out-of-process (i.e. remote)

Using the CDI Hardware server

� Restrict write access !

� Asynchronous data acquisition !

� asynchronous data links start asynchronous cdi
“listeners” !

� all clients for a data readback collapse to a
single listener.

� profit most efficiently the from CDI threading
model.

� Synchronous

single transactions

CDI in Action …

� LINAC2, DESY2, PIA using CDI for operations since July/August

� 35 CDI servers

� Mostly varieties of CAN or SEDAC

� Equal mix of Win XP and Linux or ELINOS

� ~ 15 with direct links to console applications

� EMBL

� Multi-layer Monochromator

� Motor control

� TwinCat (Beckoff)

� Now running smoothly !

� Concurrency problems eliminated

� Most recent bug: millisecond counter wraps every 24 days!

Summary

� All desired functionality in place !

� Used in operations since July 2008

� Many CDI “hardware” servers in use as de-facto

device servers

� CDI “loosely” coupled to TINE

� TO-DO List

� Finish database manager

� Documentation !

� http://tine.desy.de -> CDI

