PROCESSING OF LARGE DATA SETS: EVOLUTION, OPPORTUNITIES AND CHALLENGES*

Ivanka Valova, ICSR, Bulgarian Academy of Sciences, Sofia, Bulgaria Monique Noirhomme- Fraiture, Institut d'Informatique, FUNDP, Namur, Belgium

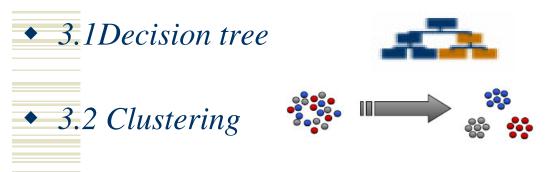
*Work supported by Local Organizing Committee of PCaPAC 2008

This article discusses modern technologies and concepts for processing of large data sets.

- > OLAP (On-line Analytic Processing)
- > DM (Data Mining)
- » SDA (Symbolic Data Analysis)
- > IFL (Intuitionistic Fuzzy Logic)

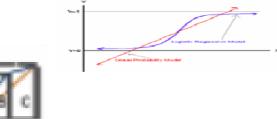
Comparative analysis – MOLAP and ROLAP

Table 1. The Codd`s rules for OLAP


В	F1-Multidimensional	F2-Intuitive Data Manipulation
Basic	Conceptual View	-
Features	-	
	F3- Accessibility: OLAP as a	F4-Batch Extraction vs
	Mediator	Interpretive
	F5-OLAP Analysis Models	F6-Client Server Architecture
	F7-Transparency	F8- Multi-User Support
S	F9-Treatment of Non-	F10-Storing OLAP Results:
Special	Normalized Data	Keeping Them Separate from
Features		Source Data
	F11- Extraction of Missing Values	F12- Treatment of Missing Values
R Reporting Features	F13-Flexible Reporting	F14-Uniform Reporting Performance
	F15-Automatic Adjustment of Physical Level	
D Dimension Control	F16- Generic Dimensionality	F17-Unlimited Dimensions & Aggregation Levels
WILLIN	F18-Unrestricted Cross-Dimensional Operations.	
	110-OHOMIOROGOTOBELINGINIOPUIGION	

Architectures	Benefits	Drawbacks
	Fast performance	N on-scalable
MOLAP	Smaller as compared with ROLAP	
	Maintains easily D-structures with	Lack of common technology
	high cardinality data	
	Maintains easily unbalanced	Lack of common terminology
	hierarchical D-structures	
	MOLAP queries are very powerful and flexible within OLAP	More difficult navigation related with access to cardinality data
	processing	
	Scalable	Difficult maintenance
ROLAP	Familiar technology	Upgrade of RDBMS
	Flexibility	Not suitable for maintenance of many
		unbalanced hierarchical D-structures

Data Mining (DM)


DM – *deriving of valid, previously unknown information from large databases and using it at taking of critical business decisions.*

Most frequently used DM methods, being realized in modern software products are as follows:

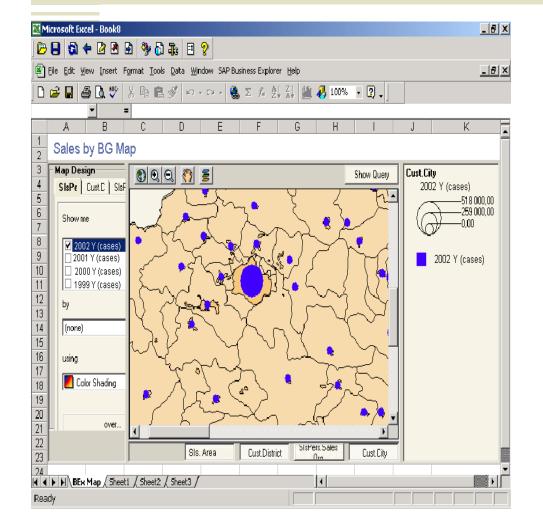
• 3.3 Weighted Score tables and Regression (linear regression and nonlinear regression)

• 3.4 ABC Analysis (Pareto analysis)

 3.5. Association analysis (affinity analysis or Market Basket Analysis (MBA))
To obtain maximum effect, users must use such methods

To obtain maximum effect, users must use such methods that are most suitable for a certain organization.

Visualization of aggregated data


- Tools for graphic presentation and visualization are important help engines for data preparation and their importance in terms of data analysis is not to be underestimated.
- Visual analysis allows the discovery of overall trends but also smaller hidden patterns.
- Models, links and missing values are frequently perceived easier, when displayed graphically, than if presented as list of figures or text.

Pros and cons in use of aggregates:

- •Aggregates improve performance at runtime of certain query, but increase loading time.
- •Aggregate must be checked regularly whether additional data is missing or not.
- •When to be compressed associated aggregates upon entering of data or after the data was already loaded in database?
- •Aggregates allow fast access to data in reporting mode.

Visualization of aggregated data

Fig. 2 Map presentation using pie chart - The size of circles in individual regions shows different volume of sales of certain goods. Fig. 3. Example of superposition of stars. 8 stocks value for three different weeks.

Allow Al

This representation has been used to visualize a symbolic object varying with time.

Application of new methodologies-SDA and IFL

SDA

The French scientist Edwin Diday defines "Symbolic Data Analysis" (SDA) as the extension of standard Data Analysis. The data descriptions of the units are called "symbolic" when they are more complex than the standard ones due to the fact that they contain internal variation and are structured.

Intuitionistic Fuzzy Logic (IFL)

IFL can be used in evaluation of the models for large data set. IF Set is defined as follow:

 $A=\{\langle x, \mu A(x), \nu A(x) \rangle / x \in E\},\$

Where E is fixed set, functions $\mu A: E \rightarrow [0,1]$ and $\nu A: E \rightarrow [0,1]$ give degree of membership and non-membership of the element $x \in E$ to set

A.

Set A is subset to E and $\forall x \in E: 0 \le \mu A(x) + \nu A(x) \le 1$.

Value $\pi A(x)=1-\mu A(x)-\nu A(x)$

gives the degree of non-determinacy of the element x:E to the set A.