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GlueX Experiment

Search for mesons with 
gluonic excitations

� 200 kHz trigger rate

� Deadtimeless readout

� 15 kB event size

� 3 GB/sec to L3 farm

� Factor 10 L3 rejection

� 300 MB/s to tape



2. What is Publish/Subscribe Messaging

� Asynchronous, distributed, location transparency
� Distinct from client/server – no notion of “service” or “service provider”

� Producers: publish or send messages to “subjects”
� “launch-and-forget” mode
� many producers can publish to the same subject

� Consumers: subscribe to subjects and supply callbacks
� “subscribe-and-forget” mode
� many consumers can subscribe to the same subject

� A process can be both a consumer and producer
� a process can even receive messages it produces!

→ Deceptively simple, but very powerful! ←

See Wikipedia article under “Publish/Subscribe”
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3.  What is cMsg – client view

A complete publish/subscribe messaging system

� Very simple API (unlike CORBA and others)

� C/C++, Java

� Many Unix flavors, VxWorks

� Has some synchronous capabilities

� Highly customizable and extendable

� Can satisfy all your messaging needs! 



#include <cMsg.hxx>

// connect to system via Universal Domain Locator
cMsg c(UDL, “myName”, “My description”);
c.connect();

// create and fill message
cMsgMessage msg;
msg.setSubject(“mySubject”);
msg.setType(“myType”);
msg.setText(“This is my text”);

// send message
c.send(msg);  

To send a cMsg message



#include <cMsg.hxx>

// connect to cMsg system
cMsg c(UDL,  “myName”, “My description”);
c.connect();

//  subscribe to subject/type combination and start receiving
c.subscribe(“mySubject”, “myType”, new myCallback(), NULL);
c.start();

//  do something else…

To receive a cMsg message



class myCallback : public cMsgCallback {

void callback(cMsgMessage *msg, void* userArg) {
cout << “Message subject is:   " << msg->getSubject() << endl;

}

}; 

Where callback is:



3.  What is cMsg – developer view

� Framework for deploying multiple underlying 
IPC packages

� plug in “domain” handlers at client level

� Proxy server facility

� Plug in “subdomain” handlers at server level

� Server written in Java

� UDL specifies domain, server, and subdomain



� Domains
� Implemented in client
� Java, C/C++

� File domain – write to a file
� CA domain – Channel Access (get/put/monitorOn/Off)

� cMsg domain – connect to proxy server
○ Here message is transported to server and handed off to 

subdomain handler within server

� Others, easy to write new ones



� Subdomains

� Implemented in cMsg domain server

� Java only

� LogFile – many processes write to common file

� CA – Channel Access (get/put/monitorOn/Off)

� Database – execute database commands

� Queue – read/write to database-based queue

� cMsg – full pub/sub + synchronous IPC
○ UDL:  cMsg://host:port/cMsg/namespace

� Others, easy to write new ones
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IV.  Conclusions

� cMsg

� Includes a complete publish/subscribe package

� Simple C/C++ and Java API’s

� Highly customizable and extensible

� Framework for deploying IPC systems

� Powerful proxy server

� Very good performance

� Free

� Download from: ftp://ftp.jlab.org/pub/coda/cMsg
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Universal Domain Locators

UDL specifies your messaging “world”

In general (in analogy to URL):

domainName://domainString?p1=v1&p2=v2&…

Examples:

FILE://myfile.txt                                  // file domain
CA://channelName?addr_list=list      // channel access domain

Note:  UDL is specified at runtime
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cMsgMessage response = c.sendAndGet(msg, myTimeout);

// timeout exception thrown if no message arrives within timeout 

Synchronous features:



� Utilities – all are short programs
� cMsgLogger – subscribe, write msg to 

database/file/screen

� cMsgQueue – subscribe, read/write to database 
or file system

� cMsgGateway – subscribe to two domains and 
cross-post

� cMsgCommand – read command-line 
parameters, send message

� Others…




