
Elliott Wolin

PCaPAC 2008

Ljubljana, Slovenia

Outline

1. Introduction

2. What is Publish/Subscribe Messaging

3. What is cMsg

a) Client view

b) Developer view

c) Performance

4. Conclusions

Jefferson Lab: Newport News, Virginia

6 GeV Continuous
Electron Beam
Accelerator Facility

Superconducting
RFQ’s

Three existing
experimental halls

Approved 12 GeV
upgrade and new hall
$310M

GlueX experiment:

200 kHz trigger

3 GB/s off detector

300 MB/s to tape

GlueX Experiment

Search for mesons with
gluonic excitations

� 200 kHz trigger rate

� Deadtimeless readout

� 15 kB event size

� 3 GB/sec to L3 farm

� Factor 10 L3 rejection

� 300 MB/s to tape

2. What is Publish/Subscribe Messaging

� Asynchronous, distributed, location transparency
� Distinct from client/server – no notion of “service” or “service provider”

� Producers: publish or send messages to “subjects”
� “launch-and-forget” mode
� many producers can publish to the same subject

� Consumers: subscribe to subjects and supply callbacks
� “subscribe-and-forget” mode
� many consumers can subscribe to the same subject

� A process can be both a consumer and producer
� a process can even receive messages it produces!

→ Deceptively simple, but very powerful! ←

See Wikipedia article under “Publish/Subscribe”

producer
publish

consumer

consumer

consumer

subscribecMsg
system

subscribe

subscribe

producer
publish

subject “x”

consumer

consumer

consumer

subscribecMsg
system

subscribe

subscribe

subscribe

subject “x”

producer

producer

producer/
consumer

3. What is cMsg – client view

A complete publish/subscribe messaging system

� Very simple API (unlike CORBA and others)

� C/C++, Java

� Many Unix flavors, VxWorks

� Has some synchronous capabilities

� Highly customizable and extendable

� Can satisfy all your messaging needs! 

#include <cMsg.hxx>

// connect to system via Universal Domain Locator
cMsg c(UDL, “myName”, “My description”);
c.connect();

// create and fill message
cMsgMessage msg;
msg.setSubject(“mySubject”);
msg.setType(“myType”);
msg.setText(“This is my text”);

// send message
c.send(msg);

To send a cMsg message

#include <cMsg.hxx>

// connect to cMsg system
cMsg c(UDL, “myName”, “My description”);
c.connect();

// subscribe to subject/type combination and start receiving
c.subscribe(“mySubject”, “myType”, new myCallback(), NULL);
c.start();

// do something else…

To receive a cMsg message

class myCallback : public cMsgCallback {

void callback(cMsgMessage *msg, void* userArg) {
cout << “Message subject is: " << msg->getSubject() << endl;

}

};

Where callback is:

3. What is cMsg – developer view

� Framework for deploying multiple underlying
IPC packages

� plug in “domain” handlers at client level

� Proxy server facility

� Plug in “subdomain” handlers at server level

� Server written in Java

� UDL specifies domain, server, and subdomain

� Domains
� Implemented in client
� Java, C/C++

� File domain – write to a file
� CA domain – Channel Access (get/put/monitorOn/Off)

� cMsg domain – connect to proxy server
○ Here message is transported to server and handed off to

subdomain handler within server

� Others, easy to write new ones

� Subdomains

� Implemented in cMsg domain server

� Java only

� LogFile – many processes write to common file

� CA – Channel Access (get/put/monitorOn/Off)

� Database – execute database commands

� Queue – read/write to database-based queue

� cMsg – full pub/sub + synchronous IPC
○ UDL: cMsg://host:port/cMsg/namespace

� Others, easy to write new ones

CA
Domain

DB
Domain

cMsg
Domain

User
Code

Database

EPICS
CA

Client cMsg Server

cMsg
Subdomain

CA
Subdomain

Queue
Subdomain

Another
Client

Another
Client

Queue system

CA

Client

Client

IV. Conclusions

� cMsg

� Includes a complete publish/subscribe package

� Simple C/C++ and Java API’s

� Highly customizable and extensible

� Framework for deploying IPC systems

� Powerful proxy server

� Very good performance

� Free

� Download from: ftp://ftp.jlab.org/pub/coda/cMsg

Backup Slides

Universal Domain Locators

UDL specifies your messaging “world”

In general (in analogy to URL):

domainName://domainString?p1=v1&p2=v2&…

Examples:

FILE://myfile.txt // file domain
CA://channelName?addr_list=list // channel access domain

Note: UDL is specified at runtime

cMsg

Single Board Computer

FASTBUS
VME
CAMAC

ROC rcServer

EB

ROC

Network: Ethernet
FDDI
ATM

UNIX/LINUX

DISK/
TAPEET

User Proc.

RunControl
GUI

ER

cdev

dp_tcl

mSQL
Database

msqld cmlogServer

cmlog
Database

IPC and Controls problem: too many protocols!

SmartSockets
private

privateprivate

ET

ET

cMsgMessage response = c.sendAndGet(msg, myTimeout);

// timeout exception thrown if no message arrives within timeout

Synchronous features:

� Utilities – all are short programs
� cMsgLogger – subscribe, write msg to

database/file/screen

� cMsgQueue – subscribe, read/write to database
or file system

� cMsgGateway – subscribe to two domains and
cross-post

� cMsgCommand – read command-line
parameters, send message

� Others…

