RS B 789 IS S /AISIES e

BV e Y el e VaVeal e a¥Y e

2 VaSYS W E W IEENEIEVEVa V. e VaS U o Y. WalVel Ve ==

Elliott Wolin
PCaPAC 2008
Ljubljana, Slovenia

Outline

Introduction
What is Publish/Subscribe Messaging
What is cMsg

Client view

Developer view
Performance

Conclusions

Jefferson Lab: Newport News, Virginia

6 GeV Continuous
Electron Beam
Accelerator Facility

Superconducting
RFQ’s

Three existing

experimental halls

Approved 12 GeV
upgrade and new hall
$310M

GlueX experiment:
200 kHz trigger

3 GB/s off detector
300 MB/s to tape

GlueX Experiment

Search for mesons with
gluonic excitations

200 kHz trigger rate
Deadtimeless readout
15 kB event size

3 GB/sec to L3 farm
Factor 10 L3 rejection
300 MB/s to tape

2. What is Publish/Subscribe Messaging

Asynchronous, distributed, location transparency
Distinct from client/server — no notion of “service” or “service provider”

Producers: publish or send messages to “subjects”
“launch-and-forget” mode
many producers can publish to the same subject

Consumers: subscribe to subjects and supply callbacks
“subscribe-and-forget” mode
many consumers can subscribe to the same subject

A process can be both a consumer and producer
a process can even receive messages it produces!

— Deceptively simple, but very powerful!

See Wikipedia article under “Publish/Subscribe”

subscribe

‘ publish subscribe .

subscribe

subscribe

subject “x”

publish
subject “x”

3. What is cMsg - client view

A complete publish/subscribe messaging system

Very simple API (unlike CORBA and others)
C/C++, Java

Many Unix flavors, VxWorks
Has some synchronous capabilities
Highly customizable and extendable

- Can satisfy all your messaging needs! &

To send a cMsg message

#include <cMsg.hxx>

// connect to system via Universal Domain Locator
cMsg c(UDL, “myName”, “My description”);
c.connect();

// create and fill message
cMsgMessage msg;
msg.setSubject(“mySubject”);
msg.setType(“myType”);
msg.setText(“This is my text”);

// send message
c.send(msg);

To receive a cMsg message

#include <cMsg.hxx>

// connect to cMsg system

cMsg c(UDL, “myName”, “My description”);
c.connect();

// subscribe to subject/type combination and start receiving

c.subscribe(“mySubject”, “myType”, new myCallback(), NULL);
c.start();

// do something else...

Where callback is:

class myCallback : public cMsgCallback {

void callback(cMsgMessage *msg, void* userArg) {
cout << “Message subjectis: " << msg->getSubject() << endl;

3. What is cMsg - developer view

Framework for deploying multiple underlying
IPC packages
plug in “domain” handlers at client level

Proxy server facility
Plug in “subdomain” handlers at server level
Server written in Java

UDL specifies domain, server, and subdomain

Domains

Implemented in client
Java, C/C++

File domain — write to a file
CA domain — Channel Access (get/put/monitorOn/Off)

cMsg domain — connect to proxy server

Here message is transported to server and handed off to
subdomain handler within server

Others, easy to write new ones

Subdomains
Implemented in cMsg domain server
Java only

LogFile — many processes write to common file
CA — Channel Access (get/put/monitorOn/Off)
Database — execute database commands
Queue — read/write to database-based queue

cMsg — full pub/sub + synchronous IPC
UDL: cMsg://host:port/cMsg/namespace

Others, easy to write new ones

DB

Client

Domain

Database

Another
Client

Client

cMsg Server

CA
Subdomain

cMsg
Subdomain

Queue
Subdomain

Queue system

cMsg Message Rates

Producer -> Java Server -> Consumer, 1Gigabit Ethernet

#—# Java Local

B—a C [ocal

O—= Java Network

O0—0 C Networl

&—a C MNetwork, vxWorks on MVMEG100

---- 1 Gigabit Ethernet Limit \

]
o
o

]
o
[ui]
= i
@ i
m -
o
8
(]

o
=

100 1000 10k 100k 1M 2M
Message Payload (bytes)

1

=l

cMsg Message Rates

Producer -> Java Server -> Consumer, 1Gigabit Ethernet

IIIIIII| | IIIIIII| | | IIIIII| | I L LITIIT I I T TTTTIT I I T T TTTTT
#—8 Java | ocal

B—8 C Local

o—0 Java Network

O—O C Metwork

& C Network, veWorks on MVIMEE100

> \
B
",
RN
i

AN
\ N\

N
2=
3
.
0]
g
]
4]
=

|

-
™

10 100 1000 10k 100k
Message Payload (bytes)

=

V. Conclusions

cMsg

Includes a complete publish/subscribe package
Simple C/C++ and Java API’s

Highly customizable and extensible

~ramework for deploying IPC systems

Powerful proxy server

Very good performance
Free

-> Download from: ftp://itp.jlab:.org/pub/coda/cMsg

Backup Slides

Universal Domain Locators

UDL specifies your messaging “world”

In general (in analogy to URL):

domainName://domainString?p1=v1&p2=v2&...

Examples:

FILE://myfile.txt // file domain
CA://channelName?addr list=list // channel access domain

Note: UDL is specified at runtime

IPC and Controls problem: too many protocols!

mSQL cmlog

- Database Database
FASTBUS

VME ivat rivate

dp_tcl _
—_ = P @mlogServer)

-

- i —
¢ UNIX/LINUX

—
=

~
o

N

Network: Ethernet -
FDDI private

ATM

Svynchronous features:

cMsgMessage response = c.sendAndGet(msg, myTimeout);

// timeout exception thrown if no message arrives within timeout

Utilities — all are short programs

cMsglLogger — subscribe, write msg to
database/file/screen

cMsgQueue — subscribe, read/write to database
or file system

cMsqgGateway — subscribe to two domains and
Cross-post

cMsaCommand — read command-line
parameters, send message

Others...

cMsg Message Rates

Producer -> Java Server -> Consumer, 1Gigabit Ethernet

#—=# Java Local
=—=a C |ocal

o—=0 Java Metworlk
O—0 C Metwork
&—b G Metwork, vxWorks on MVMEG100 | |

300 MB/s

160 MB/s
125 MB/s

100 MB/s
60 MB/s

)
e
3
.
o)
g
wu
]
=

Message Payload (bytes)

