Surveying Software Technology for Accelerator Control Systems

MAX-lab / KTH Stockholm

Content

- Introduction MAX-lab and MAX IV
- Domain-specific frameworks
- Emerging Issues
- Conclusion

MAX-lab

Swedish National Laboratory for Synchrotron Radiation based Science, Accelerator Physics and Nuclear Physics

16-20 beamlines in use

MAX II ring	1.5 GeV	soft x-rays	10 straight sec.
MAX III ring	700 MeV	VUV	8 straight sec.

MAX IV

MAX IV ring	3.0 GeV	hard x-rays	20 straigh sec.
MAX II ring	1.5 GeV (moved)	soft x-rays	10 straight sec.
MAX III ring	700 MeV (moved)	VUV	8 straight sec.
Linac	3 GeV	injection (FEL upgrade)	short photon pulse beamline

Survey motivation

- staff size is small, will remain relatively small
- currently few for computing systems

➤... no integrative control layer

Survey scope:

• MAX IV IT infrastructure

domain-specific frameworks

• development support

Domain specific software frameworks

- domain-specific character (synchrotrons, FELs)
- open-source
- > EPICS, TANGO: used at several light sources
- TINE & DOOCS: used in a multi-accelerator and FEL environment

Basic requirements – first conclusion

- integration support
 - desirable hardware platforms, OS, programming languages
- communication system
 - name resolution, meta-data
- development support for applications and control server
- archive system, alarm system
- behavior scripting support
- administrative tools
 - ... ok, all provide this in some way.

>... worst decision would be to remain independent.

- Application development
 - thin clients, (for end-user development): jddd
 - thin/rich client development: ACOP+COMA
 - workbench approach: Control System Studio (CSS)
- beyond historical archiving:
 - local command archiving (TANGO)
 - local data archives (TINE)
 - event (post-mortem) archive infrastructure (TINE)

- Scalability (number of systems)
 - for us, less a network performance question than about...
 - hierarchy concepts
 - modularization (object/device orient., focus on system-of-interest)
 - namespaces (for name resolution)
 - alternative names (redirection/gateways/aliasing)
 - system administration tools (browsing the system)
- Control Server / hardware integration
 - code generators: VDCT, POGO, Server Wizard, …
 - hardware interfacing: asyn, CDI, abstract classes
 - using existing drivers, EPICS driver base being the largest

- Performance, high data loads
 - built-in multicasting from all nodes, including acknowledgement (TINE), useful e.g. for ...
- Video system developed for PITZ/XFEL
 - features for beam analysis, DAQ and camera integration
- Security
 - malware, intrusion is a network administration issue
 - access restriction for critical devices is desirable, available (EPICS, TINE) or on the way (TANGO)

- Safety
 - hard real time tasks (e.g. protection systems) are seperate, can be integrated sufficiently for control, archiving, etc.
- Usability of the produced systems
 - mainly application dependent, but toolkit can be limiting
- Dependability
 - availability, robustness, recoverability of existing solutions appear as sufficient for our foreseeable needs

- Beamline control issues
 - beamline frameworks: synApps, GDA, Soleil approach, ...
- FEL specific issues
 - global feedback loops
 - global synchronization
 - data acquisition
 - instrumentation and experiment equipment
 - ➤ addressed by DOOCS, user operation

... there is certainly more out there.

Advanced requirements, second conclusion

- Different frameworks may give us different bonuses
- choosing a framework for technical reasons demands a sufficiently detailed requirements analysis with a finalized validation.
- out of our reach
 - (intentionally) vague requirements (FEL upgrade)
 - beamline requirements change

Development Process Support

... in this course, a shift in our scope occurs

- *from the technology properties*
- to the structures and processes of the development and engineering ...
- Information management
 - Product Document /Lifecycle Management tool
 - office documents, CAD, other files
 - provides access, consistency and change management
 - for control systems group: central repository for specifications, manuals, published appl.'s, measurement data, etc.

Development Process Support

Requirements and Specifications

- needs suitable information structure
 - different stakeholders' perspectives
 - allow top-down, bottom-up, middle out developments
 - prioritization
- professional requirements engineering software (Borland CaliberRM) software is used
 - consistency, traceability, change history, Worddocument export
 - intended for few software and system architects

Development Process Support

<u>Control system simulator:</u>

- real applications and services
- simulated control servers, using a physics models
 - general staff training
 - verification: more realistic test environment (complex communication, services, error injection)
 - validation of an application design, toolkit, complex functionality; finding new requirements
 - building and deployment procedure
- future use: reduce impact on on-going operations
- possible in all frameworks

Beamline oriented standardization

A <u>beamline control package</u>, as generic as feasable.

Area	Goal	
Building blocks for IO types (hardware with software interface)	re-use, reduce # of hardware and software diversity	
functional libs (calculations, optics,)	re-use, reduce # of libs	
integrated systems (x-ray mirror, pumps)	re-use, reduce systems diversity	
Scan system, integrative BL components	top-up mode, etc., same for all BLs	
BL data acquisition and management system	record all, export on demand	
GUI builders and scripting tools suitable for non-programmers	shift workload, improve autonomy of experts	
services at beamlines: history & snapshot & building and deployment	same on all BLs	

Conclusion

Emerging, primary issues:

- managing the new degree of complexity
- standardization
- improving non-expert's user autonomy
- >guideline development
- >domain-specific framework not yet decided

Thanks to the community!