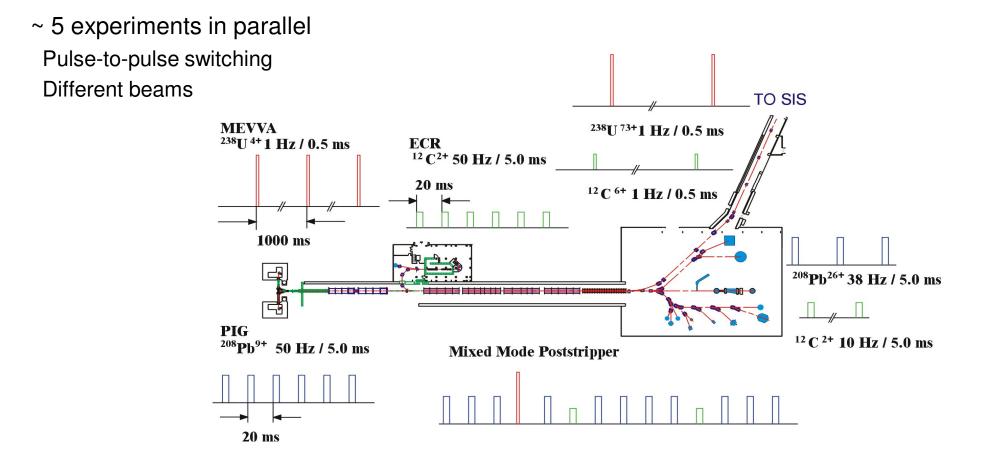


Integration of Renovated Networking Middleware into a Running Control System Environment

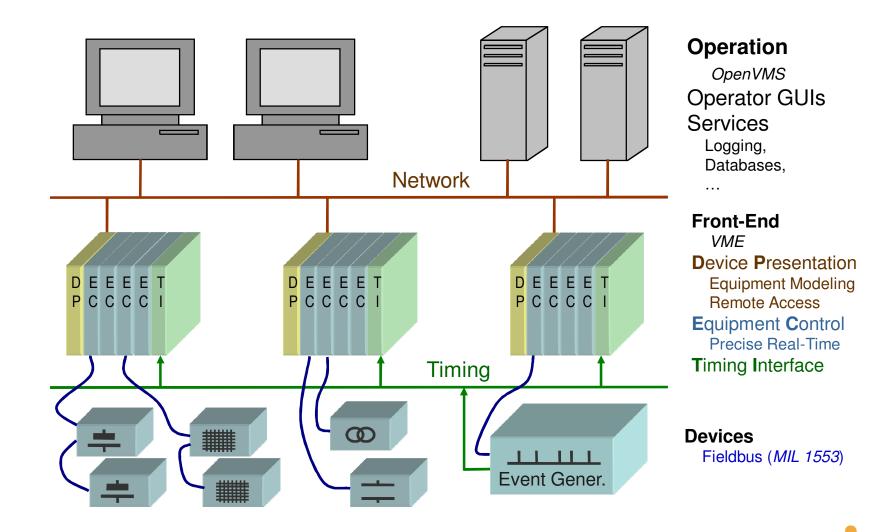
U. Krause GSI Darmstadt



GSI Accelerators

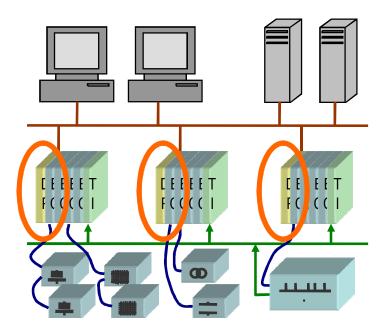
G 5)

Accelerator Operation


Control system: Support operation

Operation's applications, equipment control

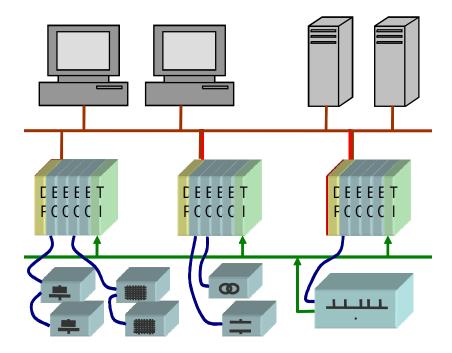
PCaPAC 2008



Control System Outline

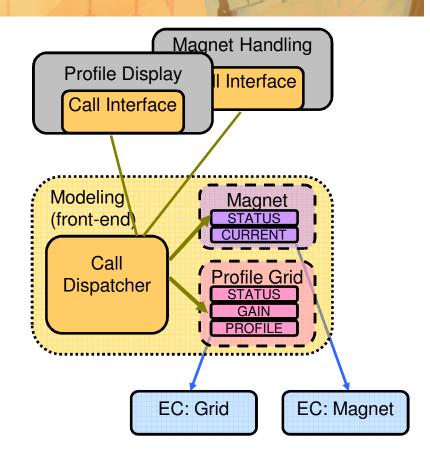
Starting Point

- Controls commissioned 1987
- Accelerator operation refined
 - Operation's applications
 - Equipment handling
 - Front-end SW adjusted, tuned
- Modernizations postponed
 - Cross connections
 - Change one area, adapt rest of system
 - In-house components
 - Home-made network protocol
- Limited to original platforms
 - Specific VME-boards (M680x0)
 - OpenVMS



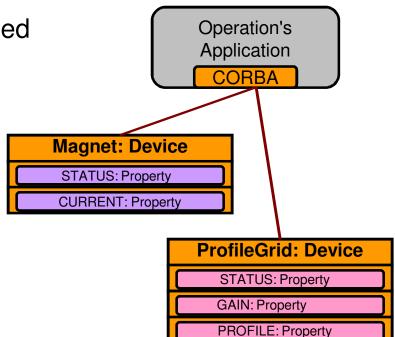
- Device Presentation
 - Out of stock since long
 - Replacement urgent

Device Presentation Controller


- Replace board, keep system?
 - Keep old structure
 - Conserve limitations
- New control system?
 - Re-Implement specifics again?
 - Front-end
 - Operations applications
- Re-build communication layers
 - Device presentation SW
 - Network SW
- Keep other controls elements

Software Outline

- Operation's applications
 - Common call interface
- GSI equipment modeling: Represent as
 - Devices
 - Magnets, profile grids, ...
 - with properties
 - STATUS, CURRENT, ...
- Property-implementation
 - Functions on device presentation board
 - Equipment specifics
 - Tightly connected to equipment controllers


Rebuild Communications

- Equipment modeling: Truly object-oriented
 - Device-class
 - Hosting property-objects
- Remote access: CORBA
- Front-end: PowerPC / Linux

Fit into remaining elements:

- Operation's applications
- Equipment controller

Use existing property implementation

Integration

Previous call interface: Shell on top of CORBA Existing property implementation: Execute-method of property-object

PCaPAC 2008

Status

- New communication core is operational
 - Installed in 6 out of 43 VME crates
 - Handling 7 out of 70 device types
- Negligible impact on accelerator operation
- Installation crate by crate
 - In shutdown-times (4 per year)
 - After front-end SW is adapted

Achievement

- Established functionality provided again
 - Existing functionality was primary goal
- Using modern VME-board
- Hard work Progress?
- Development with nowadays knowledge
 - and nowadays technology
- New communications core:
 - Drawbacks of previous implementation avoided
 - Clearer, more solid
 - Higher flexibility
 - Simpler handling, ease of development

Platforms

Front-end server:

- Target: Linux PowerPC-VME
 - Joined with equipment controller
- Devices without timing control:
 - Dependency on EC removed
 - Trigger: Fast hack, for easier testing
 - Linux server
 - Windows server

Client access: Linux, Windows C++, Java, Python Former call interface: OpenVMS (Linux) Fortran, Pascal, Modula-2, C

microIOC M-Box: Motion control

- Embedded Linux controller
- Installed: GSI front-end server

First device, directly connected to network

Established Property Data

- Wide spectrum of data types
 - 8, 16, 32 bit signed / unsigned int
 - 32, 64 bit float
- Single value and array
- Automatic conversion client ⇔ server
 - Byte order client/server
 - Any type to any type
- Added: Mixed types
 - Different types in same access
 - Raw binary format
 - Conversion by application

Wish:

Comprehensive set of device data

In one access

Often: int and float

Element	Туре
status	unsigned long
currents (ref)	float
currenti (act)	float

Data Container

Device data: Container Object

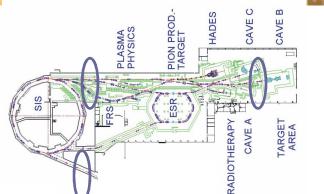
- Any sequence of base types
- Insert / extract data
 - Single elements
 - Arrays
- Data combined with type-information
- Extraction:
 - Type-check
 - Automatic conversion, if requested

AccData
0x37a42d unsigned long 47.11
0.815 float [2]
"version 2.17" <i>string</i>

Code Generator

- GSI: 70 equipment types
 - ~20 specific properties each
 - Adaptation fully hand-made?
- Formal property-description
 - Name, data types, ...
 - As XML-Files
- Generate automatically
 - Frames for connection to device-classes
 - Setter/getter for property data
 - Address by name
 - Paper-documentation
 - For operations developpers

<data>


```
<value type="ULong"
name="masterStatus"></value>
<value type="Float32"
name="currents"></value>
<value type="Float32"
name="currenti"></value>
</data>
```

dataP->masterStatus(mdp->mSts.ulong); dataP->currents(sRfcP->origCurrentS); dataP->currenti(locCurrent);

Subscription Service

- Need for data correlation
 - Different devices
 - Same cycle
- Previously: Side effects used
 - Block-commands
 - Several devices in one access
 - Devices on same VME crate
 - No longer possible
- Subscription service:
 - Arrange subscribed data
 - According to cycle ID
 - On top of access interface

Device A	Device B	Device C
Cycle 16	Cycle 16	
Cycle 17	Cycle 17	Cycle 17
Cycle 18		Cycle 18
Cycle 19	Cycle 19	Cycle 19
	Cycle 20	Cycle 20
	Cycle 21	

Conclusion

- Evolution of long existig system
 - Evolution: Not always small step
 - Big modification
 - Change is localized
 - Most controls parts kept untouched
 - Compatible: Installation are by area
 - Low risk for accelerator operation
- Significant step foreward
 - Flexible state-of-the-art core
- · Solid basis for future
 - Further upgrades
 - Migration OpenVMS \Rightarrow Linux
 - Interoperation with other systems
 - Integration into FAIR facility

Thanks to team

- L. Hechler
- K. Herlo
- K. Höppner
- P. Kainberger
- S. Matthies
- G. Schwarz