

DIVERSE USES OF PYTHON ON DIAMOND
 Michael Abbott, Tom Cobb, Ian Gillingham, Mark Heron

Diamond Light Source, Oxfordshire, UK.

Abstract
Diamond Control Systems Group has used Python for a range of control system applications. These
include scripts to support use of the application build environment, client GUIs and integrated with
EPICS as EPICS Channel Access servers and concentrators. This paper will present these applications
and summarise our experience.

Channel Access Bindings Control System User Interface Python in Simulations
A graphical user interface has been implemented at Diamond,
based on the QT interface with Python (PyQt) and Channel
Access bindings. The screenshot below shows an example of
this applied to a photon beam front-end.

The following class diagram highlights the design pattern
adopted to facilitate the implementation of widgets with
specific characteristics. Only three widget classes are shown
as examples in this diagram.

The EPICS Channel Access (CA) interface is via the Python
Channel Access package (see Section 1). An example
implementation (from Diamond's Front Ends interface) is
abstracted in the EpicsSVGGraphic class. The application
framework implements the modern QT scene/view
framework. The view layout is specified by subclassing
QtGui.QGraphicsView, instantiating all widgets in the
constructor, defining their positions and setting their PV
identifiers.
When EpicsSVGGraphic is instantiated, it subscribes to
updates of the given EPICS PV, by supplying its callback
function to the CA interface. Update processing, specific to a
graphical widget, is realised simply by overriding the base-
class callback. For instance, a valve widget will change the
fill-colour of the graphical element, depending on the new
valve status.
All widgets derived from EpicsSVGGraphic, also inherit full
clipboard copy functionality (XDND protocol), tooltips and
context menus.

Driver Support

Asyn Port

Device Support

Record Support

EPICS Database

Real Device

Client Tools

Driver Support

Asyn Port

Device Support

Record Support

EPICS Database

Simulated Device

Client Tools

Asyn Port

Device Support

Record Support

EPICS Database

Simulated
Driver

Support

Client Tools

EPICS based photon beamlines at Diamond are increasingly
using Asyn as an interface layer between Device and Driver
Support. This abstraction allows the low level driver to be
replaced with a simulation without modifying the upper
levels of the structure. These simulations support early
testing, not only of high level applications including EDM
panels and GDA for data acquisition, but also core modules
such as Asyn and Stream Device.

Python modules have been written to simulate a device in
two different ways. The first method is used for serial
(RS232, RS485, simple TCP/IP) devices. The second is used
for more complicated devices like cameras or scaler cards.
By embedding python in the Linux IOC, both classes can be
instantiated in the simulation startup script.

class my_serial(serial_device):

 # set a terminator and internal val
 Terminator = "\r\n"
 val = 1

 def reply(self, command):
 # return reply to <command>
 if command=="?":
 return self.val
 else:
 self.val=command
 return "OK"

class my_asyn(pyDrv):

 # supported list of asyn commands
 commands = ["A","B","C","D"]
 # internal dictionary of values
 vals = {"A":1,"B":"BEE","C":3.4,"D":[1,2,3,4]}

 def write(self,command,signal,value):
 # write <value> to internal dict
 self.vals[command] = value

 def read(self,command,signal):
 # return value from internal dict
 return self.vals[command]

Simulated Device
The Python class serial_device wraps either a TCP server or
a Linux pseudo serial port, deals with I/O and terminators,
and provides scheduling functionality. The programmer is
required to code a reply method suitable for the device.
Below is the code for a device that has one internal value. It
can be read by sending "?" and written by sending anything
else.

Simulated Driver Support
The Python class pyDrv registers itself as an Asyn port with
a variety of interfaces, provides scheduling and callback
functionality and handles type conversion to and from
Python native types. The programmer is required to code
suitable write and read methods. The code below is for a
simple example that keeps an internal dictionary object of
values, and allows access to these via a series of commands.

The catools library provides three functions for
access to EPICS “process variables” over channel
access:

caget(pvs, …)
Returns a single snapshot of the current value of
each PV.

caput(pvs, values, …)
Writes values to one or more PVs.

camonitor(pvs, callback, …)
Receive notification each time any of the listed PVs
changes.

Library version specification required for dls libraries
from pkg_resources import require
require('cothread')

import cothread
from cothread.catools import *

Using caput: write 1234 into PV1. Raises exception
on failure
caput('PV1', 1234)

Print out the value reported by PV2.
print caget('PV2')

Monitor PV3, printing out each update as it is received.
def callback(value):
 print 'callback', value
camonitor('PV3', callback)

Now run the camonitor process until interrupted by Ctrl-
C.
cothread.WaitForQuit()

Working with Values

There are two types of values returned by catools
functions: “augmented values” and “error codes”.
The caput function only returns an error code
value (which may indicate success), while caget
and camonitor will normally return augmented
values, but will return an error code on failure. (To
be precise, camonitor delivers values to its
callback function.)

The following fields are common to both types of
value: .ok and .name. This means that is is always
safe to test value.ok for a value returned by
caget or caput or delivered by camonitor.

Augmented Values

Augmented values are normally Python or numpy
values with extra fields: the .ok and .name fields
are already mentioned above, and further extra fields
will be present depending on format requested for
the data. As pointed out above, .ok is only false for
error returns.

Four different types of augmented value are
returned: strings, integers, floating point numbers or
arrays, depending on the length of the data requested
— an array is only used when the data length is >1.

In almost all circumstances an augmented value will
behave exactly like a normal value, but there are a
few cases where differences in behaviour are
observed (these are mostly bugs). If this occurs the
augmentation can be stripped from an augmented
value value by writing +value — this returns the
underlying value in all cases.

The type of augmented values is determined both by
parameters passed to caget and camonitor and
by the underlying datatype. Both of these functions
share parameters datatype, format and count
which can be used to force the type of the data
returned.

