
THE TINE COMMON DEVICE INTERFACE IN OPERATION

Philip Duval, Honggong Wu, DESY, Hamburg
Uwe Ristau, EMBL Hamburg

Abstract
The Common Device Interface (CDI) [1] is the primary

device layer used in the TINE [2] control system. It
offers a generic, database-driven view of a server’s
hardware, where a hardware address, irrespective of the
underlying bus, simply appears as a named device, which
is accessed via the TINE client API. To date, CDI-
supported busses include several CAN implementations,
RS232, TwinCat [3], Libera [4], Siemens PLC, as well as
the DESY in-house bus SEDAC. In this paper, we report
on the latest features of CDI and more importantly on the
first experiences of using CDI in operations, primarily in
the PETRA3 pre-accelerator chain and in DC, Servo, and
stepper motor control at the EMBL beam lines.

INTRODUCTION
The Common Device Interface was first presented in

significant detail at PCaPAC 2006 at which time it was
undergoing test commissioning on a few selected
subsystems. Since that time it has undergone extensive
tests and is now in use in the field in the pre-accelerator
chain for DORIS and PETRA3, namely DESY2,
LINAC2, and PIA as well as in motor control at the
EMBL Hamburg beam lines. Numerous new features,
bug fixes, and general experience have ensued during the
course of the past two years. These will all be highlighted
below. But first we digress into a brief review.

CDI is loosely coupled to TINE [2] in that although it
makes use of routines from the TINE library, it does not
itself depend on the TINE protocol. Nonetheless it offers
a CDI-native API which is TINE-similar, and by and large
TINE developers will want to make use of precisely the
same TINE client API calls as used when accessing data
from any other end-point in the control system.

CDI operates on a plug-and-play basis, where adding a
new bus interface plug to CDI only involves writing a
new bus interface plug. The CDI shared library needs
only to be compiled and installed once for the platform in
question. When the library loads, it will look for a CDI
bus manifest file which provides a list of bus plug
libraries, which are also loaded. If the bus-plug library
loads successfully, it will register its name and all
dispatch handlers with CDI, which itself has no a priori
knowledge of any hardware bus interface.

After the manifest has been read, CDI reads a CDI
device database and registers all templates, devices and
device information contained within. Essentially, one can
name and access hardware addresses in a common
manner via CDI, and by applying the appropriate masks,
bitfields, and calibration rules one can sometimes go
rather far in supplying a ‘finished’ device server by
configuring a CDI database. This is especially true when
CDI is used in a TINE control system, in which case a de-

facto ‘hardware’ device server is automatically generated
providing a direct TINE interface to the hardware, where
the CDI devices appear as TINE devices and bus
operations appear as TINE properties.

NEW FEATURES

Templates
One of the most important and sought after features

added to CDI since last reported is the addition of
templates to the database. Imagine a power supply
controller (PSC) with 30 addressable registers each
receiving a CDI device name in the CDI database. Then
having 100 such PSCs would require 3000 individual
entries in the database! Instead it is now possible to
identify a PSC type via a template providing field names
for each of the address register offsets, and a template
name (e.g. “PSC”) describing the template. Then the 100
PSCs can be entered as 100 individual entries, each of
type “PSC”. The individual CDI devices and device
names are automatically generated, with names such as
“psc1.status” or “psc2.setpoint”, etc. depending on the
template field names (“status”, “setpoint”, etc.) and PSC
names (“psc1”, “psc2”, etc.).

The DC, Servo, and stepper motor control at the EMBL
makes heavy use of CDI Templates, where the addition of
new controllable stepper motor to the system is merely an
extra line in the CDI database.

Figure 1: An example CDI database showing a template
entry, MonAdc and several device modules which use this
template.

Calibration Rules
The original set of CDI device calibration rules has

been significantly expanded, and now includes the
possibility of ‘reverse-‘calibrating bus input data. One is,
of course, always able to access the raw, unadulterated
data from the hardware via CDI, if necessary. However, a
‘finished’ number from the hardware can often be
obtained by applying a set of simple operations
configured in the database. In addition to the standard
arithmetic operations, these operations now include all
manner of bit operations. An external function library (if
included in the CDI manifest) can also provide a

WEZ01 Proceedings of PCaPAC08, Ljubljana, Slovenia

Classical Topics

154

Control Hardware and Low-Level Software

calibration dispatch routine which can be as complex as
desired. Calibration rules however do have the constraint
that the calibration operations can only manipulate a
single data item read from the bus, and therefore are
independent of any other data read from the bus (i.e. one
cannot calibrate “a” based on the value read from “b”). In
addition care must be taken to make use of bit operations
and arithmetic operations in a consistent manner.

TINE Release 4 Compliant
CDI is now fully compliant with TINE Release 4.

Among other things, this means that the length of a CDI
device name can now be 32 characters. TINE accepts up
to 64 character names, but due to CDI group access, a
limit of 32 characters was imposed. In addition, CDI also
accepts bitfield entries in the CDI database. By using a
bitfield, any bit or bit pattern read from the bus can be
identified and addressed by name. To be sure, the data
item read from the bus is held as an integer type and can
also be read back as such if required. In analogy with
templates, bitfields are named and registered inside the
database, and can themselves be used within a template.
Registered bitfield devices appear as CDI devices
decorated with the bitfield field names. The un-decorated
device will deliver the entire integer to the caller. In any
case, the entire bitfield integer is always transferred, the
appropriate masks and shifts occurring on the client-side.
Multiple calls to the same bitfield entity collapse to a
single call. The use of bitfields in write operations is not
directly supported, as it is impossible for CDI to know a
priori how to deal with those bits not contained in the
input bitfield. Nonetheless the database can be
configured where applicable to assign the same bitfield-
decorated device name to input registers (with the
appropriate masks) so that in many cases named bitfields
can also be used in write operations.

Figure 2: An example CDI database showing two bitfield
entries, BF1 and BF2 as well as two device modules
which assign their bus readback values to these bitfields.

Bus Names
A trivial but import new feature to CDI is the ability to

name a field bus line. Consequently the bus ‘name’ that a
particular device lives on can be queried. If no
information is supplied in the CDI database to this end,
the answer might be something on the order of
‘CANPeak.Line1’, which would essentially be the same
answer given for a query of the bus ‘type’, which at least
identifies the device as residing on the CAN bus line 1.

However, the CDI database can now supply more
informative names such as ‘PSCs-North-hall’, which
might assist in trouble shooting.

Property-Query Precedence
As noted above, when used with the TINE control

system, CDI offers an auto-generated device server,
whereby the CDI devices can be accessed via a set of
standard bus operation properties (i.e. methods).
Primarily, the standard set of CDI ‘hardware’ server
properties include the bus operations “SEND” and
“RECV” (as well as various atomic operations involving
both “SEND” and “RECV” in combination) along with
properties delivering pure information (e.g.
“BUSADDR”, “BUSNAME”, etc.). At first glance, this
would appear to yield a classic device server where the
‘devices’ are simply given by the complete set of CDI
devices and each of these supports all available
properties. However, consider the following: CDI
template device names are composed of a base name
decorated with the template fields which individually
respond to bus properties such as “RECV” or “SEND”.
In most cases, the template field can be regarded as an
attribute of the base device. Therefore, CDI also registers
the template fields as properties, which are valid only for
those base devices which make use of the template.

In TINE this amounts to using ‘property-query
precedence’, which means that the CDI ‘hardware’ server
in principle offers a different ‘device’ list for each
selected property. Thus if one or more templates have a
field ‘status’, then a property ‘status’ is registered, and if
selected in a browser will instruct the browser to acquire
all (base) devices which support this property.

Figure 3: Browsing a CDI hardware server with the TINE
‘Instant Client’ selects a template field Pressure which
shows up as a property applicable to three ‘devices’ : Pia,
Gun, and Weiche.

In such cases, a call to a template instance ‘device’ plus
template field ‘property’ is fundamentally equivalent to
calling device <instance>.<field> plus property
“RECV.CLBR” (read operation) or property
“SEND.CLBR” (write operation).

Proceedings of PCaPAC08, Ljubljana, Slovenia WEZ01

Classical Topics Control Hardware and Low-Level Software

155

New Diagnostics
The CDI hardware server now offers several properties

which aid in diagnosing and tracking hardware problems.
These include such properties as “BUSSCAN” (scan the
given bus for attached hardware), “BUSERRORS”
(display current bus error statistics), and “LINESTATUS”
(give current hardware line information). Similarly the
hardware server itself directly offers diagnostic functions
at the command line.

Figure 4: Getting diagnostic information at the command
line from a running CDI server. The above is running in
the foreground on windows. However even if running in
the background on Linux or windows, the CDI server can
be attached (using the TINE attachfec utility) to yield the
same diagnostic information.

Database Managers
Under construction at the moment is a database

manager to help create and maintain the CDI database.
Currently the server developer must use a spreadsheet
application (such as EXCEL) to manage a CDI database.
As the possibility for introducing inadvertent errors
(through copy and paste) is non-negligible, such a
database manager will be a welcome utility. However, a
database consistency checker does exist.

CDI IN ACTION
The PETRA3 accelerator is scheduled for

commissioning beginning 2009. Currently the pre-
accelerators LINAC2, DESY2 and PIA are making
extensive use of CDI in the field and serving as a test bed
for tracking down problems, analyzing use-cases, and
identifying missing features. With these three
accelerators, there are approximately 35 CDI servers in
operation, providing a hardware interface for most aspects
of the control systems, from magnets to RF modulators.
These servers are PCs running primarily on Windows XP

or Linux, or PC104 cards running embedded Linux
(ELINOS). In most cases the servers deal with CanOpen
devices or various flavors of the in-house serial bus
SEDAC, and in some instances, a bus plug to a Siemens
PLC. In PETRA3 accelerator control, it is planned to use
the CDI TwinCat bus plug for motor control. Indeed this
is already the case at EMBL-Hamburg. In the latter case,
both TINE and CDI are running embedded on
WindowsCE.

The original conceptual design of CDI assumes that
CDI constitutes a common device access layer for a TINE
device server, where the necessary business logic,
synchronization, process control, etc. takes place. In
practice we have seen that, due to templates and the
powerful calibration features of CDI, roughly half of the
CDI servers being used in LINAC2 and DESY2 have
direct interfaces to client-side control applications. This
is particularly true for the RF subsystems.

During the initial commissioning phase of LINAC2 in
June, some concurrency problems involving
asynchronous grouped data acquisition were identified
and resolved. During this same period, CanOpen driver
problems on the PC104 were also identified, and as TINE
Release 4.0 was being commissioned essentially
simultaneously, assigning ‘blame’ for system failures was
sometimes a challenging and trying experience!

Operations in these accelerators have been remarkably
smooth since August of this year. In fact, the most recent
bug discovered in the CDI package involved a
millisecond counter that wrapped every 24 days following
server start. This bug was of course immediately isolated
and fixed, but required itself a certain level of stability in
order to surface!

CONCLUSION
CDI is still a ‘work-in-progress’, but has achieved the

required level of stability for operations. The immediate
‘TO-DO’ list includes commissioning the CDI database
manager and providing documentation for CDI on the
TINE web page. Both of these aspects should be finished
(to first order) within the next three months.

REFERENCES
[1] Duval and Wu, “Using the Common Device Interface

in TINE”, Proceedings PCaPAC 2006.
[2] http://tine.desy.de
[3] http://www.beckhoffautomation.com.
[4] http://www.i-tech.si/products.php

WEZ01 Proceedings of PCaPAC08, Ljubljana, Slovenia

Classical Topics

156

Control Hardware and Low-Level Software

