Proceedings of PCaPACO8, Ljubljana, Slovenia

WEYO01

A METHODOLOGY FOR CONTROL SYSTEMS GUI PROTOTYPING -
A CASE STUDY"

M. Risoldi, D. Buchs, Université de Geneve, Geneva, Switzerland
L. Masetti, CERN, Geneva, Switzerland
V. Amaral, B. Barroca, Universidade Nova de Lisboa, Caparica, Portugal

Abstract

Implementing Graphical User Interfaces (GUls) for
complex control systems (CS) implies many development
challenges, especially for prototyping and refining. We
propose to improve current practices by introducing a
model-based, domain specific approach to GUI develop-
ment. Our methodology is founded on the assumption that
most information to be used for GUI prototyping can be de-
rived by the CS specification itself. We use model transfor-
mation techniques for automatic generation of a GUI from
a domain specific model. We apply the methodology to the
CERN CMS Tracker Cosmic Rack as a case study.

INTRODUCTION

Modeling GUIs for control systems has requirements
which are sometimes hardly met by general-purpose pro-
gramming languages. The need to express domain features,
together with the need of paradigms familiar to the domain
experts, lead to the demand for domain specific languages
(DSLs). While DSLs exist for specifying interactive user
interfaces, our work exploits a few characteristics of the
control systems domain to skip the GUI specification over-
all, while concentrating on describing the system to be con-
trolled. At the same time, our method provides a system
simulator, used for model checking and evaluation at times
when the real system is not available. The methodology is
centered on a DSL called Cospel (Control system SPEcifi-
cation Language) and on model transformation techniques
and is described in [4]. In this article we overview the
methodology and apply it to a case study in the HEP field,
the CERN CMS Tracker Cosmic Rack.

METHODOLOGY OVERVIEW

There are a few problems in building GUIs for complex
control systems. Among them, a main one is that the people
who actually know the system in detail (system engineers)
are often not those who develop the GUI (software engi-
neers). This introduces inefficiencies and potential lack of
comprehension in GUI developers. This is even more a
shame, as a lot of information needed for GUI develop-
ment is already known by system engineers, who simply
lack experience or time to translate that to a working GUI.
We propose a development methodology to improve this
situation. Resumed in Fig. 1, the methodology starts with
gathering the existing information (1) about the system in a
Cospel model (2). Using this language, a system engineer

*Work supported by the Hasler Foundation of Switzerland and Por-
tuguese FCT project PTDC/EIA/65798/2006

Trendy Topics

can use familiar concepts to describe the system he knows,
not worrying about the interface. Models can be validated,
and structural properties can be checked on them.

System
Simulator

Partial system
System (CO-OPN)

specifications
(files, DBs...) \
specification

System /' (Cospel language) % Visual &
knowledge

Interaction Model

C .
CMmunicatioy,

Transformation GUI Engine

Load

(informal) (Database)

©) © @

Figure 1: Methodology overview

In the third step of Fig. 1, the Cospel model is trans-
formed to two artifacts: a visual and interaction model
(made of all model information relevant to the GUI) and an
executable system simulator. The latter is useful because
for various reasons (cost, time, unfinished status) the real
system may not be available for evaluating the GUI against
a reactive system. The model transformation is an auto-
matic, push-button operation requiring no special training
or knowledge. The simulator can be used to verify be-
havioural properties of the model, as it has formally defined
semantics including concurrency and transactionality. It is
made in the CO-OPN language[1], from which in turn Java
code is automatically generated.

The last step is the GUI generation. A GUI engine writ-
ten in Java loads the visual model, and automatically gives
a three-dimensional representation of it. One can navigate
the system in a spatial way by moving the observer point
around, or follow the system hierarchy for a structural navi-
gation. Commands can be input by selecting objects. States
are represented as object colors. The engine also loads the
simulator and communicates with it via a driver, sending
command and receiving events, so that the real experience
of using the GUI with the system is simulated. At this point
the software engineer can work on this already functional
prototype to gather user feedback and adapt the GUI. At
the end of the prototype stage the driver can be substituted
with one for the real system.

CASE STUDY DESCRIPTION

The CMS experiment at CERN is a large particle de-
tector installed along the Large Hadron Collider facility.
Its Silicon Strip Tracker component is a complex system
made of about 24000 silicon detectors, organized in 1944
power groups. These have several environmental and elec-
tric parameters to monitor. Tens of thousands of values
and probes have to be controlled by the Tracker Control
System[2]. For our case study, we took an early prototype

Development and Application Frameworks

151

WEYO01

Control Control
Group 1-5/ |Group 6-10|
I [

Power Power | | Control Control || Power Power
roup 10 " (Group 1| [Channel| |Channel|(Group 11] " (Group 20

Figure 2: Cosmic Rack hierarchy

of the Silicon Strip tracker, called the Cosmic Rack (CR).
This is equivalent to a section of the full tracker, mantaining
the same hierarchical complexity, but with a reduced total
number of components. The hierarchical structure of the
CR s in Fig. 2. Each component is characterized by a finite
state machine (FSM) with 4-8 states, and several transi-
tions. There are rules stating how components change state
according to the state of their sub-components. For each
component we have a list of possible commands to send,
and we know how these commands should affect the state
of the component. Components also have properties, like
temperatures or currents, and we have information about
which threshold values should trigger alarms. Finally, we
have the mechanical engineering information, telling us the
shape, size and position in space of the components. Note
that all this information is something one normally has al-
ready when treating a complex control system. They have
not been created especially for the purpose of creating a
GUI, but are simply structural, safety and input/output fea-
tures of the system.

MODELING THE COSMIC RACK

Data about the system was already present in an
electronically-usable format, and it would have been possi-
ble to process it automatically to generate the model. How-
ever, for the sake of this study we created a model of the
CR from scratch, pretending that the existing information
is only available in non-electronic format.

The main concepts used in the Cospel language are those
common to the control systems domain. A System is made
of Objects, which are its individual components. Each Ob-
ject has a Type, which describes features common to all
objects of that type. Separating these two concepts helps
reusability and agility of specification. Types are associ-
ated to FSMs, which are made of States and Transitions.
Types also describe Properties with threshold values for
alarms; Commands and Events; and geometrical Shape of
objects. Objects on the other hand have a Position in space,
and hold information about the hierarchy (an object can
have one Parent and/or several Children). Note that also
types have hierarchical information: according to the struc-
ture in Fig. 2, the Control Group type states that its chil-
dren are one Control Channel and ten Power Groups. This
is used to guide and validate the hierarchy of objects, who
have to respect this template.

As Cospel has been defined using the ECore
formalism[3], it was possible to automatically gener-
ate a simple editor for it using Eclipse!. Fig. 3 shows a

Uhttp://www.eclipse.org
Trendy Topics
152

Proceedings of PCaPACO08, Ljubljana, Slovenia

screenshot of the editor, containing a partial specification.
We can see the object CG6-10 (one of the two control
groups), its type CTRL-GRP, and its FSM FSMControl-
Group. The object, selected, shows its properties in the
bottom panel. Namely, we see its association with its type,
its parent (not on screen in the figure) and its name. It also
contains its absolute coordinates in space.

«» *cosmicrack.cospel 3

L Resource Set
v o platform: /resource /CosmicRack/cosmicrack.cospel
¥ < Specification CosmicRack
¥ < Object CG6-10
4+ Absolute Coordinates
4 Geomfile cube
w < Type CTRL-GRP
» <4 Command off
<= One Child In 5tate Rule
4+ Contains 1 CTRL-CHN
4+ Contains 10 POWER-GRP
¥ < FSM FsMControlGroup
<4 Transition ON-CTRL-TO-0OFF
< State OFF in FSMControlGroup
< 5State ON-CTRL in FSMCentrolGroup

Seleclion] Parenr| Lisr| Tree|TabIe | Tree with Columns

= Properties 2

Property Value

Childobject of atom

Name = CG6-10

Parent 4 Object CosmicRack
Rotation

Type 4+ Type CTRL-GRP

Figure 3: Cospel editor: a partial specification

We see the type has hierarchy templates (Contains...). It
also has a rule (One Child...), saying how objects of this
type must change state when one of their children goes to
a given state (e.g. if one child goes to error, the object also
should go to error). It is possible to define rules of kind
One child is in state or All children are in state. We are
currently working on defining rules based on percentages
of children in a given state.

The screenshot also contains an FSM called FSMCon-
trolGroup, with the related States and Transitions.

Associations between elements of the language can sim-
ply be made via the property panel. Copy and paste, as
well as drag and drop, are supported to make large arrays
of objects, or reuse pieces of specification. It is possible to
validate the specification directly in the editor, to know if it
is coherent and complete.

Note that, while this automatically generated editor is
functional, it is possible to create richer and more usable
editors. In particular, techniques like GMF can be used to
give a visual syntax to parts of the specification like FSMs
(which would speed operations up noticeably). So there is
still space for improvement.

CREATING THE SYSTEM SIMULATOR

Once the specification of the system is complete, we can
use it for generating its formal executable model. This
is achieved as a push-button operation, which takes the

Development and Application Frameworks

Proceedings of PCaPACO8, Ljubljana, Slovenia

Cospel specification and inputs it to an ATL? transforma-
tion library. This library is a set of declarative rules, match-
ing each element of the Cospel model and creating a cor-
responding element of the CO-OPN model. The CO-OPN
model is then transformed into executable Java code. This
gives the possibility of simulating the system response to
the GUI. Information used for the system simulation is the
system’s hierarchy and complete behavioural information
(FSMs, commands, events, properties, rules). Note that the
simulator generation is optional: if the user only wants the
GUI prototype, he can choose to just generate that, and skip
modeling all the behavioural part.

CREATING THE VISUAL MODEL

The choice of what to have in the visual model was
driven by a few assumptions. First, if we want to moni-
tor an apparatus, it would be reasonable to have the GUI
visualize the system’s state. Second, if components must
receive certain commands, the GUI should provide means
to send them. Third, if the system is complex it would
help to have some structured representation of it. Fourth,
as some issues with control systems are spatially-related
(e.g. overheating), it would be helpful if the system repre-
sentation was spatial. For these reasons, information used
for the visual model is the system’s hierarchy, the declara-
tions only of states, commands, events and properties, and
geometrical data. The visual model is stored in a database,
and again is obtained via a push-button transformation of
the Cospel model to SQL queries.

GUI PROTOTYPE

The GUI prototype is created by a GUI engine (written in
Java) which loads the visual model and uses it to show the
system under control. We chose to use a three-dimensional
representation, as we are also exploring the contribution of
spatial perception to navigation in complex systems. Note
that other types of interfaces are also possible, the most ob-
vious being a tree-like visualization of the system (a quite
common metaphor in the field).

Users can move in the 3D scene and navigate levels of
the hierarchy. They can click objects to investigate their pa-
rameters, and send them commands. Object states are rep-
resented as colours; this gives an at-a-glance understanding
of the overall system situation. At all times a tree with the
system hierarchy is available as a quick way to move to a
given object. A stereoscopic visualization mode is avail-
able if immersion is desired.

When loading the visual model, users can also choose to
load the system simulator (if it was generated). This initial-
izes a communication driver which instantiates the simula-
tor; it routes commands from the GUI to the system simu-
lator, and events in the other direction. One can thus send a
command, and see the system state change following state
change events from the simulator. At any time, the com-
munication driver can be substituted by a custom driver for

Zhttp://www.eclipse.org/m2m/atl/
Trendy Topics

WEYO01

interfacing the actual system under control. One simply
needs to fill a pre-made code skeleton with the correct pro-
cedures for communicating with the system.

The result for the CR GUI prototyping process is shown
in Fig. 4. The visualization is at the level of Power
Groups (the long, rectangular structures). Object col-
ors represent states. The currently selected Power Group
(PG_Layer_3_Rod_2) is showing its property panel, with
buttons (off, on_lv, ...) for sending commands to the ob-
ject.

Hierarchy [T-FeTe]]

osmicRack Models _View _Options

> -
© Ctrl_Channel_1_§
G_La

O PG_Layer_5_Rod_2

© Ctrl_Channel_6_10
© PG_Layer_6_Rod_1

Figure 4: The GUI for the Cosmic Rack

CONCLUSION

We presented a methodology for automatically generat-
ing a Control System GUI prototype from pre-existing in-
formation about the system. This use case confirmed appli-
cability of the approach to a complex control system, and
the feasibility of GUI generation. The next steps of this
work will focus on scaling to a larger system (the full CMS
tracker) and improving ergonomics of the generated GUI.

REFERENCES

[1] O. Biberstein, D. Buchs, and N. Guelfi. Object-oriented nets
with algebraic specifications: The CO-OPN/2 formalism. In
G. Agha, F. D. Cindio, and G. Rozenberg, editors, Advances
in Petri Nets on Object-Orientation, LNCS, pages 70-127.
Springer-Verlag, 2001.

[2] A.Dierlamm, G. H. Dirkes, M. Fahrer, M. Frey, F. Hartmann,
L. Masetti, O. Militaru, S. Y. Shah, R. Stringer, and A. Tsirou.
The CMS tracker control system. Journal of Physics: Con-
ference Series, 119(2):022019 (9pp), 2008.

[3] W. Moore, D. Dean, A. Gerber, G. Wagenknecht, and P. Van-
derheyden. Eclipse Development using the Graphical Editing
Framework and the Eclipse Modeling Framework. IBM Red-
Books, February 2004.

[4] M. Risoldi and D. Buchs. A domain specific language and
methodology for control systems gui specification, verifica-
tion and prototyping. In 2007 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC 2007),
23-27 September 2007, USA, pages 179-182. IEEE Com-
puter Society, 2007.

Development and Application Frameworks

153

