
INTEGRATING FIREWIRE CAMERAS INTO THE EPICS CONTROL
SYSTEM

M. Dach, P. Jałocha, Paul Scherrer Institut, Switzerland

Abstract

A technical challenge in many scientific experiments is
to capture and process images. There are potentially many
solutions in this domain. One which seems to be cost
effective, with high performance, is to use firewire (IEEE
1394) cameras. These types of cameras are easily
connected to the PCs by mean of the firewire bus. We
present a concrete solution based on firewire cameras'
integration into the EPICS control system. Our solution
allows for image capturing, processing and image
distribution using Channel Access and HTTP protocols.

INTRODUCTION

Image capturing and processing has always been
an important requirement in accelerator environments.
Cameras are used mainly for diagnostic purpose at
accelerators to observe the beam profile and beam
position. There are also used in beam line experiments to
setup, position and visualize samples.

For many years we have been using analog
cameras at the SLS (Swiss Light Source in Switzerland).
These cameras have had limited resolution. In addition,
there was also noise from the analog cable linking the
camera and a (remote) frame grabber. Only limited set of
parameters could be remotely controlled for such
cameras. To control, for example, the shutter time it was
necessary to build dedicated hardware which was used to
generate vertical and horizontal synchronization pulses.
An attractive alternative for us was the introduction of
firewire cameras which were much easier to interface and
integrate with the EPICS control system.

Firewire cameras are connected to the system by
means of the firewire (IEEE 1394) bus. The images
captured by the cameras are digitized locally and
transferred to the server in the digital form. The firewire
bus is not only used for image distribution but as well for
remote cameras configuration and control.

The firewire bus is an international standard. It
supports data transfer rates of up to 400Mbps in IEEE
1394a, and up to 800Mbps in IEEE1394b. A single IEEE
1394 port can be used to connect up to 63 external
devices. In addition to its high speed, IEEE1394 also
supports isochronous data - delivering data at a
guaranteed rate. This makes it ideal for devices that need

to transfer high priority data in real-time, such as video
devices. The IEEE1394 bus supports both Plug-and-Play
and hot plugging, and also provides power to peripheral
devices.

SLS IMPLEMENTATION

The goal at SLS was to integrate the firewire
cameras with the EPICS based control system. We were
searching for high performance and cost effective
solutions. The EPICS control system is based on a client-
server architecture and uses Ethernet as a communication
medium. In order to connect the firewire cameras to such
a control system it is required to introduce a bridge node
which supports firewire and Ethernet connectivity.

We have finally converged upon an
implementation using a PC computer with the Linux OS
as a firewire server. The EPICS (toolkit) version 3.14.*
onwards is well suited for Linux and PC computers.
Linux operating system itself (kernel 2.6.*) has all
required drivers for firewire bus. Appendix A lists the
hardware and software components.

The preliminary version of the firewire server
was using one camera per server. This solution was
however not very effective and elegant so a multi-camera
server has been developed. The firewire bus (like the
USB bus) allocates the address for all connected nodes at
run time. It is not possible a priori to know in advance
which device has the given address on the bus. The only
means to identify the firewire devices connected to the
bus is to refer to them by the serial numbers which are
unique.

The improved version of the server can theoretically deal
with up to 63 cameras connected (Figure 1). Each camera
is identified in the server by its given name. The camera
names are associated with unique serial numbers using an
ORACLE RDBMS. At start up the firewire server reads
the serial numbers from all connected cameras and finds
corresponding human readable names in the ORACLE
RDBMS. Next, the server generates the EPICS DB to
incorporate all connected cameras to the system. In
addition a master client GUI application is created, in
order to support control for the cameras.

Proceedings of PCaPAC08, Ljubljana, Slovenia TUY03

Classical Topics Control Software: Applications and Tools

61

Figure 1: Integration of firewire cameras to EPICS based control system.

The purpose of the firewire server is multifold:

• control all cameras connected to the firewire bus:
o switching the image acquisition on/off
o selecting camera mode of operation
o setting various camera parameters such

as: exposure time, gain,
external/internal trigger and many
other.

• provide end users with:
o raw or compressed images and
o beam parameters such as: the beam

profile and beam position.

An algorithm is implemented in the firewire
server to calculate the beam profile and beam position,
enabling the end user to obtain a few parameters of the
beam instead of the entire image. This approach reduces
network bandwidth requirements. The firewire server is
multithreaded. Each camera connected to the bus is
served by the acquisition thread. An acquisition thread is
dynamically launched when the camera is put to the
image acquisition mode. When the acquisition is stopped
then the dedicated acquisition thread is terminated.

The firewire server is fully integrated with the
EPICS control system; every camera is controlled in
terms of EPICS channels. The grabbed (raw) images are
stored in EPICS waveform channels. EPICS, however, is
not well suited to transfer big chunks of data like images.
The EPICS waveform channels which are used to hold
images have statically defined sizes. The possibility to
adjust the EPICS channel size would be especially useful
when dealing with the compressed images or video
streaming. The EPICS channel access protocol does not
allow that unfortunately.

The firewire server has a built-in thread which
acts as web server (Figure 2). The web thread is used to
deal with jpeg compression which significantly reduces
the network traffic. The firewire server can then provide
the end user with:

• raw images using EPICS channel access protocol
or

• compressed images using http protocol.

Figure 2: Firewire server internal functionality.

TUY03 Proceedings of PCaPAC08, Ljubljana, Slovenia

Classical Topics

62

Control Software: Applications and Tools

SUMMARY

At the SLS is used the firewire server
implementation based on PC computers under Linux OS.
Each firewire server can deal with up to 63 cameras
connected to the firewire bus. The firewire server runs as
a multithread process which is fully integrated to the
EPICS control system. It is capable of performing image
processing to calculate the beam profile, beam position
and also image compression. The firewire server uses
software and hardware components which are listed in the
Appendix below:

Appendix A: Hardware and software utilized

Hardware:

Cameras: Flea and Flea2 cameras by Point Grey
 (Resolution 0.8 or 2.0 Mega Pixels)
Servers: PC computer: Pundit 2.8 GHz

Software components:

Server side:

• operating system: Scientific Linux 5
 (kernel 2.6.18)
Linux drivers:
o ieee1394: Core of the IEEE1394

 subsystem.
o raw1394: Higher level driver

 module for bus access.
o video1394: Fast DMA frame

 transfer driver.
o ohci1394: Low level host card

 driver.
Linux libraries
o libraw 1.3.0: Low level user

 interface to access raw1394 module
o libdc 2.0.0 rc-5: API to access firewire

 cameras
• Oracle 9.2
• EPICS infrastructure 3.14.8.2

o Auto save and restore 4.2.1

Client side:

• medm based GUIs for EPICS raw data images
• any type of the web browser to view compressed

images or for video streaming.

Proceedings of PCaPAC08, Ljubljana, Slovenia TUY03

Classical Topics Control Software: Applications and Tools

63

