
INTERFACING EPICS IOC AND LABVIEW FOR FPGA ENABLED COTS 
HARDWARE 

A. Veeramani, K.E. Tetmeyer, National Instruments, Austin, TX, U.S.A. 
R. Sabjan, A.Zagar, Cosylab, Ljubljana, Slovenia 

 
Abstract 

Several attempts have been made to integrate EPICS 
functionality with National Instruments LabVIEW. With 
existing EPICS code, labs want to reuse the code while 
still being able to use LabVIEW to interface with FPGA 
enabled embedded controllers and other COTS hardware. 
In this paper, we will show how we can run EPICS IOC 
simultaneously with LabVIEW on VxWorks based 
hardware. We will go into the implementation details and 
the benchmarks that will be obtained from the LANSCE-
R project at Los Alamos National Labs. We will also 
examine ways to implement a Channel Access(CA) server 
natively in LabVIEW. This will open up the opportunity 
to use a variety of IO and different operating systems that 
LabVIEW can interface with. The native LabVIEW CA 
server will implement all Channel Access functionality 
exposed by a standard EPICS IOC such as synchronous 
and asynchronous publishing of data, alarm processing, 
and response to connection requests by CA clients. We 
will finally cover the programming of FPGA allowing for 
custom solutions. 

Several attempts have been made to integrate EPICS 
functionality with National Instruments LabVIEW.  
Notably, the Spallation Neutron Source implemented a 
shared memory based interface that allows LabVIEW to 
interface directly with an EPICS IOC [1].  GSI 
implemented LabVIEW and EPICS DIM interfaces to 
allow the two execution systems to interact [2] [3].  These 
solutions provide various levels of interaction between 
LabVIEW and EPICS entities, but many users have 
expressed interest in a more integrated solution that 
allows LabVIEW VIs to interact directly with EPICS 
networks.  To this end, we propose the inclusion of a 
Channel Access Server (CAS) for LabVIEW and 
LabVIEW Real-Time.   

LABVIEW TECHNOLOGY 
BACKGROUND 

National Instruments LabVIEW is a cross-platform, 
high-level, and general purpose programming language.  
It is used in a wide range of test and measurement, control 
system, and embedded applications.  LabVIEW is 
supported on a variety of platforms including Microsoft 
Windows (2K, XP, Vista), Linux, and Macintosh.  
LabVIEW Real-Time, the embedded systems solution for 
LabVIEW, is supported on Pharlap and VxWorks targets 
on hardware platforms such as CompactRIO and PXI. 

LabVIEW includes a shared variable engine (SVE) 
execution system that runs along-side LabVIEW and 
LabVIEW Real-Time applications. The SVE provides a 

generalized mechanism for LabVIEW applications to 
interact in a distributed manner with other LabVIEW and 
3rd party applications.  LabVIEW application developers 
use a simple read/write API to access shared variables on 
a LabVIEW block diagram.  Shared Variables classified 
as “memory tags” are bound to networked data sources 
such as other shared variables, OPC tags, or EPICS 
process variables. 

 

Figure 1: LabVIEW Shared Variable Nodes 

The SVE uses a plug-in architecture which makes it 
possible to interface with a wide range of data protocols.  
LabVIEW already includes Channel Access client support 
which is implemented using this plug-in architecture.   

BRIDGING LABVIEW AND EPICS 
There are several ways to integrate LabVIEW and 

EPICS to take advantage of the numerous commercially 
available hardware that are available through LabVIEW. 
This paper discusses in detail two ways: 

• Cohabitation of EPICS and LabVIEW Real-Time on 
the FPGA-based platform – NI CompactRIO 

• Channel Access (CA) server in LabVIEW enabling 
any LabVIEW enabled hardware to appear as an 
EPICS node 

COHABITATION OF EPICS AND 
LABVIEW REAL-TIME 

The approach discussed here involves running a full 
EPICS IOC on cRIO’s vxWorks operating system 
alongside with LabView Real-Time. A prototype of this 
solution was developed and is in use in the Los Alamos 
National Laboratory. 

The main requirements for the system were: 

• System must run full EPICS IOC on the VxWorks 
platform 

• The FPGA must be configurable using LV FPGA 
• The two main processes (LV RT and EPICS) must 

be able to efficiently exchange data using different 
data types and arrays 

• System must be configurable without a need for re-
compilation of the EPICS source code (use of text 
configuration files) 

 

Proceedings of PCaPAC08, Ljubljana, Slovenia TUX01

PCaPAC Traditional Topics Application of Commercial Control Systems and Applications

43



Architecture and Design 
It was decided to base our work on the Windows-based 

shared memory approach implemented by Spallation 
Neutron Source [1]. An important decision was to set 
priorities of all EPICS related tasks lower to those of LV 
RT. 

 
Figure 2:  Basic co-habitation architecture 

Due to simplicity of the prototype, it was decided that 
the shared memory would only provide separate memory 
blocks for each data-type. Additionally, no event-based 
communication was implemented, thus relying on the 
polling only.  

Implementation 
Several issues required attention during 

implementation. First, we needed to change the 
CompactRIO’s default VxWorks image to include NFS 
(network file system) and NTP (network time protocol) 
support. The NTP was even required to have a smooth 
EPICS compilation for the platform without source 
modifications. NFS was mainly used for convenience to 
speed up development time as it eliminated file copying 
for every change. 

We tested several EPICS modules that are very popular 
and common. We did not experience any challenges with 
general modules such as the asyn driver and stream 
device. However, we experienced challenges with the 
sequencer (on the Windows side of the compile) and the 
VxStats package. We left the sequencer out of the 
package and only a small sub-set of VxStats functions 
was used. 

A set of special LabVIEW VIs was implemented taking 
advantage of the shared library call node. On the EPICS 
side a device support module was developed for each 
supported data type. 

Benchmarks 
We measured the performance for round-trips of data 

pairs. We used two variables, where LV was increasing 
one of them if they were equal and EPICS was trying to 
level them by increasing the second one. Thus we 
obtained a measurable transfer rate. 

 

Figure 3: Data transfer rate and CPU usage for integer 
pair exchange. 

The Figure 3 shows four data series. Two of them (blue 
and green) depict CPU usage that increases linearly with 
the requested data rate until it reaches the vicinity of 
100%. The remaining series depict the percentage of 
successful data trips. EPICS tasks were set to lower 
priorities and were starved of CPU time thus failing to 
finish the full circle of the data roundtrips on some 
occasions. 

The maximum data exchange rate was obtained using 
arrays – we reached 2-3 MB transfer rate, which seems to 
be sufficient for the proposed application. 

Future Scope 
Prototype demonstrates a simple interaction between 

LabVIEW and EPICS both running on the same cRIO 
machine and VxWorks operating system. It lacks 
interrupt/event driven mechanism to provide more 
synchronous and responsive messaging between both 
systems. Instead communication is based on setting and 
polling values of predefined shared variables contained by 
an independant shared library acting as a middleman.  
Such concept was taken from the SNS solution of 
LabVIEW Shared Memory Interface to EPICS IOC, 
which serves a similar purpose only for different 
operating system, i.e. Microsoft Windows. In the SNS 
solution, shared memory is based on memory-mapped file 
implemented in Windows API. Our prototype is in fact 
even simpler and is using statically allocated memory that 
can due to VxWorks' primitive memory management be 
accessed from any process running on the same system. 
Protection against concurrent access has not yet been used 
nor tested although it will be required in the future. 

NATIVE CHANNEL ACCESS SERVER IN 
LABVIEW  

A new Channel Access (CA) server in LabVIEW will 
allow LabVIEW or LabVIEW Real-Time developer to 
write a LabVIEW-based application that integrated 
seamlessly with existing EPICS networks.  

TUX01 Proceedings of PCaPAC08, Ljubljana, Slovenia

PCaPAC Traditional Topics

44

Application of Commercial Control Systems and Applications



In order to allow LabVIEW-based control applications to 
participate in EPICS-based control systems National 
Instruments will develop a Channel Access Server plug-in 
for the Shared Variable Engine that exposes Shared 
Variables as EPICS Process Variables.   

This proposal will allow users to implement all the 
control functions using the function blocks in LabVIEW 
and use the Chanel Access (CA) server plug-in for the 
Shared Variable Engine that would be developed to 
expose the Shared Variables as EPICS Process Variables 
(PVs).  

 
Figure 4: LabVIEW RT on a Channel Access Network  

 

Process Variable Naming 
Maintaining unique PV names is necessary when 

implementing a distributed EPICS control system.  In 
contrast to the flat PV namespace used in the CA 
protocol, LabVIEW utilizes the DNS name of the 
computing target to define a hierarchal namespace for 
shared variables.  It is necessary to provide a mapping 
between these two name representations.  

  
The network path for a shared variable in a LabVIEW 

application would have the general form: 
 
\\TargetName\Library Name\Variable Name 
 
Internal to LabVIEW, users can access the variable 

using this path.  Since Channel Access uses a flat 
namespace for process variables, the LabVIEW Channel 
Access Server could publish a process variable in the 
general form: 
 

VariableName.FieldName 
 

where the field name could correspond to those fields 
defined by LabVIEW shared variables, such as 
description and alarm values and limits.  The LabVIEW 
developer would be responsible for configuring which 
shared variables to publish via Channel Access and to 
provide a mapping to a PV name.  One option is to handle 
this mapping automatically with-in LabVIEW by 
maintaining some form of the hierarchy structure.  For 
example, PVs could have the general form:  
 

TargetName:LibraryName:VariableName 

An alternative is to provide the user with a mechanism 
to pre-pend an arbitrary string to the variable name, such 
as: 

 
UserString:VariableName            
 
Under this type of naming option, the application 

developer would be responsible for de-fining unique PV 
names within and between targets since LabVIEW’s 
native namespace mechanism would no longer detect 
name collisions.   

  
Figure 5: Use of LabVIEW Shared Variables. 

 
This proposal outlines a method for integrating 

additional EPICS support into LabVIEW utilizing 
communications via the Channel Access protocol.  It is 
intended to allow LabVIEW developers to create 
applications that interact with existing EPICS systems 
while allowing the developer to continue to use the full 
power of LabVIEW. 

Another appealing alternative to these above two 
solutions would be a hardware implementation for the 
control system connectivity. This would be accomplished 
by developing a cRIO extension module with a separate 
CPU that would run an open operating system (e.g. 
Linux) and EPICS and would communicate with the main 
CPU through the cRIO bus and FPGA. 

REFERENCES 
[1] D. Thompson, W. Blokland, “A Shared Memory 

Interface Between LabVIEW and EPICS,” 
http://epaper.kek.jp/ica03/PAPERS/TU514.PDF 

[2] D. Beck, H. Brand, “Control System Design Using 
LabVIEW Object Oriented Programming,” http://ics-
web4.sns.ornl.gov/icalepcs07/TPPA01/TPPA01.PDF 

[3] “LabVIEW DIM Interface,” http://wiki.gsi.de/cgi-
bin/view/CSframework/LVDimInterface#Native_inte
rface_LVDimInterface 

.

Proceedings of PCaPAC08, Ljubljana, Slovenia TUX01

PCaPAC Traditional Topics Application of Commercial Control Systems and Applications

45


