
THE HTTP ‘BLACK BOX’ PROTOCOL FOR CONTROL AND DATA
ACQUISITION AT JET ∗

C.H.A. Hogben, F.S. Griph, P.J.L. Heesterman, M. Beldishevski, K. Kneupner, R.M.A. Lucock
and JET EFDA contributors†

Abstract

The CODAS (Control and Data Acquisition System) and
IT department of UKAEA Culham has developed a com-
munication protocol for centralised simultaneous data ac-
quisition, control and monitoring of a large number of pro-
cessors. It is developed around the Hypertext Transfer Pro-
tocol (HTTP)[1] standard.

The protocol has now been in use for about 5 years. It
is intended to allow parallel, collaborative developments to
take place, by defining communication interfaces between
systems, while allowing the internal details of each imple-
mentation to remain opaque. For this reason, it is referred
to as the ‘black box’ protocol.

The paper outlines the main factors that led to this pro-
tocol choice, and the benefits and experience gained.

The paper briefly describes the functionality of the pro-
tocol, and explains how it is being used on a variety of plat-
forms, including Windows, Linux; on PC, VME, and PLC
hardware.

PROJECT BACKGROUND

JET[2] is the world’s largest Tokamak to date, and has
been in operational use since 1983. Sited at Culham,
Oxfordshire, UK, it is operated by the United Kingdom
Atomic Energy Authority (UKAEA) on behalf of the Eu-
ropean Fusion Development Agreement (EFDA)[3].

Today the main role of JET is to support the ITER[4]
project with engineering and physics. This requires a
steady integration of a large number of equipment upgrades
with the existing plant.

CODAS[5] comprises the hardware and software neces-
sary to perform experiment setup, controlled execution of
pulsed experiments and retrieval and storage of the result-
ing experimental data.

SCOPE OF THE PROTOCOL

Since 2000 there has been a need to effectively integrate
a rapid increase in new JET instrumentation. The added
equipment is often developed by remote collaboration and
delivered in kind from EFDA associations. This requires a
well defined interface to CODAS. The ‘black box’ appli-
cation protocol was developed to provide such a compre-
hensive interface. The only aspect of the CODAS to plant

∗This work has been performed under the European Fusion Develop-
ment Agreement.

† See the Appendix of F. Romanelli et al., Fusion Energy Conference
2008 (Proc. 22nd Int. Conf. Geneva, 2008) IAEA, (2008)

interface not covered by the protocol is the integration with
JET hardware triggers and reference clock, which require
direct electrical interfacing.

Collection of Experimental Data

The primary intention of the ‘black box’ protocol was to
provide an interface for systems that acquire measurement
data from the JET experiment. The sequence of events for
data acquisition is as follows:

• Pre-pulse, at which the system is armed to acquire
data. This event normally carries with it some param-
eters to characterise the data acquisition, for example
the number of acquisition triggers to expect from the
hardware;

• The JET pulse, during which the instrument acquires
data into its own local storage (memory or disk);

• Post-pulse, during which some systems may need to
save data from volatile memory to disk;

• Data collection - during which the data acquired dur-
ing the pulse is transferred to the central data ware-
house.

Status and State Monitoring

The JET equipment operational status has a narrow def-
inition: either it is good or there are one or more reasons
why the instrument will malfunction, if the next pulse is
initialised or triggered at that very moment. The status is
used by the Engineer-in-Charge and the Diagnostic Coor-
dinator to decide whether a new pulse can be initialised or,
if the initialisation has succeeded, whether the pulse can be
triggered to proceed under automatic timing control.

In addition JET equipment state-variables are used by
applications in the control room to display or monitor the
equipment state. For example a voltage or pressure may be
displayed to the end-user on a mimic or be used to raise
alarm conditions when equipment need attention.

Setting Parameters

There is a common requirement for control room staff
to be able to change various settings of a system. These
parameters need to be sent to the system, and read back to
verify that the update was successful.

Logging

In order to provide the HTTP server and the JET plant
equipment with a way to log information on the CODAS
subsystem, a logger interface is provided.

Proceedings of PCaPAC08, Ljubljana, Slovenia TUP021

Classical Topics Control Software: Applications and Tools

131



TCP/IP Networking

When the design of the protocol began in 2001, it had be-
come clear that Ethernet for the datalink layer and TCP/IP
for the network/transport layer would be the dominant net-
working technologies for the new JET systems under con-
sideration. Thus any software interface would be based
upon those foundations.

REVIEW OF OTHER ALTERNATIVES

When deciding on a protocol, our primary motivation
was data collection; other aspects followed later. Our goals
were several: to allow black box implementers to interface
to JET easily; to allow efficient transfer of data; to enable
robust handling of error conditions.

Before choosing HTTP, we drew on our past experience
with a message protocol, and considered several alterna-
tives for the new protocol.

Past Experience with a Custom Message Protocol

Our previous efforts at interfacing PC-based instrumen-
tation systems to CODAS involved using an existing mes-
sage protocol used within the JET project. This protocol is
layered on TCP/IP and uses small, fixed-size headers and
binary data items. A number of drawbacks were identified:

• The use of binary data caused difficulties due to dif-
ferences in byte ordering between computer architec-
tures.

• A full low level protocol stack needed to be ported or
re-implemented.

• The message protocol was primarily designed for
small messages, not for large streams of data. The
support libraries require a complete message to be as-
sembled in memory by both the sender and receiver.
Without significant changes to these libraries, collec-
tion of a large amount of data in a single message
was therefore impractical. Instead, multiple messages
were used, which incurred considerable performance
penalties.

File Transfer Protocol (FTP)

The early PC implementations used a file-based mecha-
nism to communicate between the message server and the
application: the server wrote a file to request the applica-
tion to arm for a pulse; the application wrote its acquired
data to another file to be read by the server. This led us to
consider a simple network equivalent using FTP.

The perceived advantages were: elimination of the mes-
sage server layer; use of standard FTP server software. The
disadvantages: it would not be easily extensible e.g. for er-
ror reporting; a file-based backend would be assumed; FTP
is an awkward protocol to implement, both client-side and
server-side. A separate data port is required, and multiple
transactions are needed to establish a session.

Remote Procedure Call (RPC)

We considered several forms of RPC. Advantages: po-
tential re-use of existing software support. Disadvantages:
no obvious cross-platform standard; all we examined car-
ried a significant infrastructure burden; as with our existing
message protocol, they were not designed for large data
streams; we would still have to design an application layer.

Custom Protocol

We could have designed our own protocol as a layer on
top of TCP/IP. Advantages: we could make it as simple as
we needed - an exact fit to our requirements. Disadvan-
tages: a careful design would be needed to allow for pos-
sible future extensions in many directions; with no third-
party software available, black box implementers would
have to code from the ground up.

BRIEF PROTOCOL DETAILS

The black-box system acts as an HTTP server and soft-
ware on the CODAS computers as HTTP client. Each in-
terface supported by a server (e.g. status or logging) cor-
responds to a Uniform Resource Locator (URL) or, in the
case of data acquisition, a related set of URLs. A method
call on an interface is implemented as a GET or POST re-
quest to the URL, with parameters passed using the same
mechanism as submitting a web form with multiple fields.
As per the HTTP specification[1], a GET must not change
server state; when state is changed, a POST must be used.

Full details of the protocol are available elsewhere[6].

Polled Monitoring

For monitoring of state or status, an HTTP GET is used.
A state request obtains a simple plain text response, of
which each line contains one item name and its value. A
status request obtains either an empty response, indicating
that the instrument is operational; or a ‘Structured Reason’
(see later) containing one or more error reports.

Setting Parameters

When a user modifies one or more parameters, they are
sent to the instrument using a POST request. This is chosen
because there is a consequential state change on the server.
Read-back uses a GET, equivalent to state monitoring.

Data Acquisition

Data acquisition is initiated by one or more POST re-
quests, typically one corresponding to a module and one
for each channel. The parameters include details such as
the pulse number, and how many sample triggers are to
be expected. POST requests are also used to signal events
such as completion of a pulse or an aborted pulse.

Data collection is a GET request for each channel; the
server returns either the collected data or a Structured Rea-
son for any data acquisition error.

TUP021 Proceedings of PCaPAC08, Ljubljana, Slovenia

Classical Topics

132

Control Software: Applications and Tools



Structured Reasons

The ‘black box’ protocol uses a representation of unde-
sirable states and processing exceptions called Structured
Reasons[6]. A Structured Reason report is hierarchical,
combining explanatory text and Uniform Resource Identi-
fiers (URI)[7] to pin-point the exact location and nature of
a problem. This is used both when monitoring the equip-
ment readiness for a pulsed experiment and when returning
reasons why the requested data were not available. It is
serialised using the Extensible Markup Language (XML).

BENEFITS AND EXPERIENCE

The choice of HTTP as the basis for the protocol carried
a number of advantages, and no significant disadvantages.

Rich and Easily Extensible

The nature of the HTTP protocol meant that the JET
‘black box’ protocol could be implemented as a very ‘thin’
layer on top, specialising the semantics for our needs.

HTTP also provides several easy ways to extend the in-
formation transferred. Firstly, an HTTP response contains
an arbitrary number of header lines; it is easy to add a be-
spoke header line to convey an item of metadata. Secondly
the use of MIME type to describe the content of the mes-
sage body allows for specialised data formats to be used
while remaining within the standard.

The ease of use of the textual part of the response is com-
plemented by the ability for the message body to contain
binary data, thus maximising the use of the network band-
width available for large volumes of data. Furthermore,
where bandwidth is the limiting factor, the protocol allows
compression to be negotiated between client and server, at
the expense of processor power. (Though this has not been
needed at JET, it would be straightforward to introduce.)

Widely Deployed Standard

The fact that HTTP is a widely deployed standard (un-
derpinning the World Wide Web) carries other benefits:

• There is a likelihood that developers, both at JET
and at collaborating partners, have familiarity with
the standard, resulting in a gentler learning curve than
would be the case for a less popular or novel protocol.

• There are several robust and well-supported open
source and commercial HTTP implementations avail-
able, for a variety of programming languages and plat-
forms, both for the server side (black box), and for
the client side (CODAS, and black box testing). This
affords much flexibility for black box implementers,
who may have varied constraints arising from their
particular instrument.

Current State

We have nearly 80 deployments of the ‘black box’ pro-
tocol in use. There are more than 60 HTTP servers on

Windows PCs and nearly 20 HTTP servers on Linux based
systems, that implement the ‘black box’ protocol. Several
more HTTP servers are planned. The Windows PCs nor-
mally use an application framework developed at JET us-
ing a combination of Microsoft IIS or Java and C++[8].
Linux black box implementations exist using Apache, Tcl
and Python. A PLC implementation is planned.

The CODAS HTTP client has been implemented on So-
laris using software components. These have been de-
ployed into configured control applications using the Codas
Component Framework (CFW)[9]. The General Acqui-
sition Program (GAP)[10] contains another HTTP client,
independently implemented using the Curl open source
library[11].

DISCUSSION

The approach we adopted has proven successful in in-
terfacing a number of externally developed systems to JET,
and could be useful for other collaborative ventures. The
key features are these:

• Distill the sets of interactions down to a handful of
simple interfaces or aspects

• Define the interfaces but leave implementation details
opaque

• Base on a well-known non-proprietary transport layer
for maximum familiarity by developers and availabil-
ity of tools and software

• Where possible, provide reference implementation(s)
and test tools.

REFERENCES

[1] R. Fielding et al., “Hypertext Transfer Protocol
- HTTP/1.1”, IETF RFC 2616, September 2004,
http://www.ietf.org/rfc/rfc2616.txt

[2] http://www.jet.efda.org

[3] http://www.efda.org

[4] http://www.iter.org

[5] H. van der Beken, et al., “CODAS: The JET Control and Data
Acquisition Systems”, Fusion Technology 11(1), pp. 120-137

[6] C.H.A. Hogben, F.S.Griph, “Interfacing to JET Plant Equip-
ment Using the HTTP Protocol”, Aug. 2008, EFD-R(08)001,
http://www.iop.org/Jet/article?EFDR08001.pdf

[7] T. Berners-Lee, R. Fielding, L. Masinter, “Uniform Resource
Identifiers (URI): Generic Syntax”, IETF RFC 2396, August
1998, http://www.ietf.org/rfc/rfc2396.txt

[8] P.J.L. Heesterman, et al., “The JetFsm Data Acquisition
Framework, and Proposed Usage for ITER”, PCaPAC, Oc-
tober 2008

[9] F.S. Griph, C.H.A. Hogben, M.A. Buckley, “A generic com-
ponent framework for real-time control”, IEEE Trans. Nuc.
Sci. 51(3), June 2004, pp 558-564

[10] H. van der Beken, et al., “Data acquisitions at JET – expe-
rience and progress”, IEEE Trans. Nuc. Sci. 36(5), October
1989, pp 1639-1646

[11] http://curl.haxx.se/libcurl/

Proceedings of PCaPAC08, Ljubljana, Slovenia TUP021

Classical Topics Control Software: Applications and Tools

133


