
FIRST EXPERIENCES WITH A DEVICE SERVER GENERATOR FOR
SERVER APPLICATIONS FOR PETRA III

J. Wilgen, DESY, Hamburg, Germany

Abstract

In recent control systems at DESY, a device server
generator and framework is used for the production of
device servers in the TINE/Java environment. The
generator significantly simplifies development and
provides a standardized architecture for device server
programs.

INTRODUCTION
In previous control systems at DESY, device servers

were written in Visual Basic or C. Most of them were
customized very individually, although simple one-way
template generators existed [1]. Due to the change to Java
and object orientation, more powerful means became
available which made it possible to generalize device
server tasks as far as possible. This reduces effort in
producing device servers since programmers can
essentially focus on the implementation of the device
functionality. In addition, common libraries and
standardized program structures are used, which unifies
device servers to a certain degree and consequently
simplifies their maintenance.

Figure 1: The Production Workflow.

Figure 1 shows the workflow of a device server

programmer. Programmers usually begin a device server
project by using a GUI program, the device server wizard.
With the device server wizard the device interfaces, the
groups of devices, the initialization parameters and the
TINE [2] interface configuration are defined. All these
data together form the device server model, from which
code can be generated. The code generator is also part of

the device server wizard. The generated code provides the
necessary bridges between the business logic, the TINE
interface and the generic device server framework.
Additionally, Java classes and interfaces are generated for
each device interface. Some of them are templates which
can be edited or modified by the programmer.

The device specific code can be edited with a text
editor or an IDE like NetBeans or Eclipse. Round-trip
engineering is possible in case the device interface or the
configuration needs to be changed later on. The changes
can be made in the device server wizard and the code can
be re-generated without destroying modified classes.

Figure 2: The Basic Model.

The device server framework relies on a basic model

which is shown in figure 2. A device server has device
groups which contain devices of the same interface. A
device interface can contain properties, i.e. values which
can be read or written, and operations, i.e. methods which
may have input and output data. The depth of the
hierarchy is limited because it is necessary to map the
object hierarchy to a TINE interface.

Figure 3: Constituents of a Device Server.

Design and Configure
Generate Code

Edit and Deploy

Device Server

Device

Device

Device Interface

Property

Operation

*

*

*

*

* << interface >>

To be implemented
by the programmer

Initialization Data
Device Database

Written Code

Model
Server Definition
and Configuration

TINE Interface

Framework Library
Generic Code

Generated Code

uses reads uses uses

extends calls

implements
sets up

TINE Library

uses

uses

TUP013 Proceedings of PCaPAC08, Ljubljana, Slovenia

Classical Topics

108

Control Software: Applications and Tools

In most practical cases, this limitation is not a problem.
Beyond the basic model there are also more complex
concepts like group controllers, which are not discussed
here.

The final device server program consists of various
constituents as shown in figure 3. The core is the generic
device server framework which is contained in the device
server library. The generated code mainly implements the
TINE interface, and the written code implements the
device interface which itself is also generated. The device
server program also needs the device server model at
runtime.

In order to initialize the devices, initialization data must
be provided. The device server framework assumes that
initialization data can be accessed via JDBC. This makes
it possible to support a wide range of file formats and
database systems. In our case, most device servers use
local CSV files with a commercial JDBC driver.

EXPERIENCES
The accelerators DESY II and Linac II have been

commissioned with new control systems in 2008. The
majority of the device servers has been built with the
device server generator.

Due to its generalized structure, the device server
framework cannot support all features of TINE, which has
been considered in [3]. After a few extensions had been
made to the original concept, this didn’t turn out to be a
problem. Up to now, the available functionality proved to
be absolutely sufficient.

Our expectations were that the device server generator
should be suitable for about 60-70% of device server
tasks. For DESY II and Linac II, 32 of 39 Java device
servers, about 80%, were produced with the generator by
7 of 8 programmers.

A survey among the programmers yielded that all who
have used the device server generator clearly prefer it
over manual server programming. However, exact
comparison with previous projects is often hardly
possible, since many colleagues have not previously
written device servers with TINE and Java. Nevertheless
the majority agrees that the device server generator
significantly saves time, makes production of device
servers easier, and makes device servers better
maintainable.

The device server generator is suitable for a task if the
subject matter can be described with the basic model.
Most programmers regard the basic model as well-suited
for device server tasks, but most also know use cases
where they would prefer simple arrays of values instead
of having sets of devices. For very simple tasks, the
device server generator may sometimes appear a bit
oversized. Nonetheless, this does not prevent it from
being used.

Of course there are also issues which leave room for
improvements. Currently, all data which belong to a
device server model are held in a single XML file because
of their strong interrelation. The model consists of
interface definitions, server configuration and TINE

configuration. This is normally no problem, but in some
special cases more flexibility is needed. On the other
hand, a separation of these data would also have an effect
on the device server wizard GUI, which would become
more complicated and harder to use.

The fact that code needs to be re-generated whenever
properties have been changed can sometimes be
annoying, but is unavoidable when code is generated.
This problem can only be solved by a totally generic
framework a la tomcat, which would require much more
development effort. In this context, the idea of defining
the device interfaces solely in the program text by using
Java annotations is also worth having a look at.

CONCLUSION
The device server generator has proven to be a very

productive tool in the DESY II and Linac II control
systems. Its acceptance exceeds previous expectations.
Although further improvements would certainly be
possible, the current version fulfils our needs and will be
used for device server production in the upcoming
PETRA III control system. In principle, due to the dual
concept of generated and generic code, the device server
generator could even be ported to other platforms and
languages. Which further developments will be made
depends on the needs and plans of future projects.

REFERENCES
[1] P. Duval, V. Yarigin, “The Use of Wizards in

Creating Control Applications”, ICALEPCS
Proceedings 2001, San Jose, California, THAP026.

[2] P. Duval, TINE (Thee-fold Integrated Network
Environment); http://tine.desy.de.

[3] J. Wilgen, P. Duval, “A Device Server Generator for
Control Systems”, PCaPAC 2006, Newport News,
USA;
http://pubdb.desy.de/fulltext/getfulltext.php?lid=1377
&fid=2776.

Proceedings of PCaPAC08, Ljubljana, Slovenia TUP013

Classical Topics Control Software: Applications and Tools

109

