
NETWORK ANALYSER FOR THE EPICS CHANNEL ACCESS PROTOCOL 

A. Žagar, K. Žagar, Cosylab, Ljubljana, Slovenia 
K. Furukawa, KEK, Ibaraki, Japan 

R. Rechenmacher, Fermilab, Batavia, Illinois, USA 

 
Abstract 

In this paper, we present a tool which allows capturing 
Channel Access (CA) traffic directly off the network and 
interpreting the contents with a graphical or textual user 
interface. The tool is the widely used Wireshark (former 
Ethereal) network capture and analysis application, for 
which we have implemented a plugin that parses 
(dissects) contents of CA network packets. The tool is 
freely and openly available for several operating systems, 
and we have built and tested the CA plugin for Windows, 
Linux and Darwin (Mac OS X). We first describe the 
Wireshark framework, followed by the steps needed to 
implement a dissector plugin. Then, we explain how to 
install and use the Wireshark application and the CA 
dissector. Afterwards, we present the features and 
limitations of our CA dissector implementation. Finally, 
we present some examples where we have found the tool 
to be useful. 

INTRODUCTION 
Wireshark [1] is a packet sniffer and network protocol 

analyzer running on most computer platforms, including 
Windows, OS X, Linux, and UNIX. It is entirely written 
in C and is freely available as open source, released under 
the GNU General Public License version 2. In June 2006 
it was renamed from Ethereal due to trademark issues. 

For capturing packets, Wireshark uses pcap library that 
allows sniffing traffic from many different network types, 
including Ethernet, IEEE 802.11, PPP, bluetooth and 
USB. Captured traffic can be stored and opened from 
trace files. Besides natively supported tcpdump (libpcap) 
format also other trace file formats can be used, such as 
snoop, Microsoft Network Monitor, etc. 

For analysis of captured traffic, Wireshark ships with 
support for dissection of hundreds of different protocols. 
To extend its initial feature set, Wireshark also provides 
support for plugins. In next section we will explain how 
we have implemented a dissector plugin capable of 
dissecting Channel Access network traffic. 

Graphical user interface is based on the cross-platform 
GTK+ widget toolkit and along with the TShark 
command line frontend provides a tool for network 
troubleshooting, analysis, software/communication 
protocol development and education. 

EPICS Channel Access (CA) [2] is a network protocol 
used by EPICS. It provides mechanisms for automatic 
discovery of input-output controllers (IOCs) hosting 
EPICS records (typically via UDP/IP broadcasts), polling 
or publish-subscribe based read/write access to EPICS 
record values (process variables – PVs), etc. 

All channel access messages are composed of header 
that is always present, followed by an optional payload. 
With version CA_V49 of Channel Access protocol, the 
maximum message size was extended from 16384 to 
4294967255 bytes. Figure 1 shows the message header 
compared to the extended message header. Due to 
backward compatibility, the regular message form is still 
valid and should be used whenever the payload size does 
not exceed 16368 bytes. Extended form is recognized by 
the 2nd,3rd, 6th and 8th bytes of the message header. 

Detailed protocol specification can be found at [2]. 
Original implementation of the CA dissector plugin for 

Wireshark (at that time still Ethereal) was implemented 
by Ron Rechenmacher [3]. It was not a complete solution, 
because only some of the most common CA message 
types were partially supported and build was no longer 
compatible with the latest versions of Wireshark. 

OBJECTIVES 
First objective was to make existing solution work with 

the latest version of Wireshark and see what exactly was 
missing. Then, message parsing was implemented 
according to the specifications [2]. So far, only regular 
message form is supported. Finally, CA session extraction 
needed to be fixed. Original solution was extracting 
sessions only based on source and destination port. In CA, 

 
Figure 1: Header of a Channel Access message 

TUP008 Proceedings of PCaPAC08, Ljubljana, Slovenia

Classical Topics

96

Control Software: Applications and Tools



however, ports do not uniquely identify a session. Fields 
like CID (Client ID), SID (Server ID) and Subscription 
ID needed to be taken into account, as well. 

IMPLEMENTATION 
Wireshark is entirely implemented in C. Although it is 

not object-oriented, it provides enough modularity to 
easily add support for new dissectors or additional trace 
file formats. Such support can either be statically linked 
into Wireshark, or delivered as a separate library file that 
gets automatically loaded at runtime just by having it 
located in Wireshark's plugins directory. 

Implementing a plugin requires some changes of the 
Wireshark build in the original source tree and adding the 
directory containing the plugin's source code in the 
plugins directory. Both, patch for the Wireshark 
sources and the archive containing the CA plugin 
implementation, can be found at [4]. 

Aside of several documentation files and build-related 
files that normally require little adjustment, the plugin 
consists of the following relevant source files: 

• moduleinfo.h defines the module/plugin version 
and name. 

• plugin.c implements a couple of methods that 
register the methods that do the actual dissector 
registration and initialization. These other methods 
are implemented in packet-ca.c. 

• packet-ca.c is the actual dissector 
implementation. Besides registration and 
initialization methods mentioned above, this source 
file also provides the method that does the actual 
dissection (dissect_ca). This method is 

performed by Wireshark in two iterations. In first 
iteration it only collects the basic data about all the 
packets displayed in the list of packets (see figure 2) 
and extracts the CA sessions (called conversations in 
Wireshark). The second iteration parses the packet 
details displayed only for the selected packets (the 
tree in the figure 2). 

Limitations 
Implementation of CA plugin for Wireshark makes it 

easy to analyse the CA traffic on the network. It dissects 
all CA packet header information, i.e. requests and 
responses with all their parameters, in compliance with 
the CA protocol specification from [2]. Note, however, 
that this specification document might not be fully 
compliant and updated with the current versions of the 
actual protocol implementations. 

Dissector also tracks PV/Channel names along the 
virtual circuits based on the packets' client, server or 
subscription IDs which is indispensable for human-
readable analysis. Yet, it lacks support for payload and 
extended message header dissection, however, absence of 
these features has not been found too limiting so far. 

INSTALLATION 
Binary installation package is currently available for 

Windows, Linux and MacOSX (x86/ppc). To install, 
proceed as follows: 

• Install normal Wireshark 0.99.8 or 0.99.7 
• Install CA plugin binary into Wireshark's plugins 

directory [4] 
To build the plugin from source: 

 
Figure 2: Wireshark with CA Sniffer 

Proceedings of PCaPAC08, Ljubljana, Slovenia TUP008

Classical Topics Control Software: Applications and Tools

97



• Install GTK+ and pcap libraries 
• Get Wireshark (0.99.8 or 0.99.7) [1] 
• Extract CA plugin source into Wireshark directory 
• Apply patch 
• Commence with normal building procedure  (see [4] 

for details) 

USAGE 
Simple usage instructions: 
• Start Wireshark 
• Adjust capturing properties [Capture → Options 

(Ctrl+K)]: select the correct interface and optionally 
set the capturing filter (aside the 'Capture Filter:' 
button you may enter “port 5064 or port 5065”) 

• Start capturing [Capture  → Start] 
• Generate EPICS CA traffic on the network 
• Stop capturing [Capture  → Stop (Ctrl+E)] 
• Apply display/analysis filter (aside the 'Filter:' 

button). 
Some useful analysis filter examples: 
• ca.cmd=1 

displays only CA_PROTO_SEARCH messages 
• ca.chanName=="fred" 
ca.channel=="fred" 
messages related to a PV named “fred” 

• ca.channel matches "^VAC:IP.*:Pressure" 
ca.channel contains "VAC:IP" 

USE CASES 
CA protocol dissector for Wireshark is primarily useful 

for troubleshooting of EPICS deployments and 
development. 

In this section, we present some hints on the usage of 
the CA protocol dissector: 

• Combination with CA Snooper may enhance 
network trouble shooting, especially when more 
information is required than just record name 
resolution requests. 

• Filtering of packets is extremely useful (the 
Expression button in the Wireshark user interface), 

as it reduces the clutter and allows the user to focus 
only on relevant packets. In particular, filtering by 
channel name and source/destination IP addresses 
are frequent. 

• tshark can be used to capture packets, which can 
later be analyzed with Wireshark. This allows also 
for unattended capturing. 

Currently, the Wireshark’s CA dissector does not yet 
parse the data contents of the packet. Usually, this feature 
is not needed, as once networking issues are resolved, 
classical CA tools can be used to obtain the data more 
conveniently. 

CONCLUSION 
Fortunately, EPICS Channel Access and 

implementations that use it are now very stable and 
mature, thus it is only rarely required to look “under the 
hood” at what is going on at the network. Nonetheless, 
when an in-depth look into network-level activity was 
required, one had to have a thorough understanding of the 
structure of CA messages and the operation of the CA 
protocol. 

With the dissector that we have developed, we hope 
that this task will now be greatly simplified, as most CA 
messages are now understood by the Wireshark tool and 
presented in a user-readable form. Furthermore, higher-
level analysis of the communication is performed, so that 
instead of connection-specific channel IDs one sees 
channel names. 

REFERENCES 
[1] Wireshark, http://www.wireshark.org 
[2] EPICS Documentation: Channel Access, 

http://www.aps.anl.gov/epics/docs/ca.php 
[3] Channel Access Protocol Specification, 

http://epics.cosylab.com/cosyjava/JCA-
Common/Documentation/CAproto.html 

[4] Wireshark with EPICS Channel Access Dissector,  
http://www-linac.kek.jp/cont/epics/wireshark/

  
 
 

TUP008 Proceedings of PCaPAC08, Ljubljana, Slovenia

Classical Topics

98

Control Software: Applications and Tools


