
SURVEYING SOFTWARE TECHNOLOGY FOR ACCELERATOR
CONTROL SYSTEMS

Thilo Friedrich, MAX-lab, Lund and KTH Stockholm, Dept. of Machine Design, Sweden
Prof. Martin Törngren, KTH Stockholm, Dept. of Machine Design, Sweden

Abstract
Virtually all accelerator based research facilities

nowadays use a mixture of software libraries, tools,
protocols and development techniques to address the
facilities’ various control system* requirements effi-
ciently. Many of these technologies are open-source and
shared between laboratories to various extents. Motivated
by the planning of MAX-lab’s new light source project,
the MAX IV facility, we have conducted a state-of-the-art
survey of these technologies, which will serve as a
knowledge base for upcoming design decisions. This
paper provides a summary of the topics and conclusions
of our survey. In this scope the survey compares software
technologies with respect to user features (scientific
analysis and operation requirements), quality require-
ments (integration, performance, services, reliability,
security, safety), and other issues. Control system design
goals are beneficial long-term effects on future
improvements, development costs and maintenance costs.

THE MAX IV PROJECT
MAX-lab [1] is currently in the late proposal phase for

a new synchrotron light source facility called MAX IV
[2], built in Lund, Sweden. The new facility provides
synchrotron radiation of high quality over a broad spectral
range, stretching from IR to hard X-ray regions.
Additionally, a Short Pulse Facility (SPF) provides
intense, short x-ray pulses in the femtosecond domain.

The MAX IV facility design includes three 3rd
generation storage rings operated at different electron
energies. The main MAX IV light source is a new low-
emittance storage ring, operated at 3.0 GeV with 20
straight sections, which is optimized to approach
theoretical limits for hard x-rays in its energy domain.
The existing MAX II and MAX III storage rings are
transferred to the new MAX IV site and receive an
upgrade. MAX II, operated at 1.5 GeV, covers the soft x-
ray region; MAX III, 700 MeV, hosts UV beamlines. A
Short Pulse Facility provides intense, short x-ray pulses in
the femtosecond domain. A 3 GeV LINAC will serve as
injector for the storage rings in top-up mode, and as
electron source for the short pulse beamline. The LINAC
is constructed such that it can be upgraded to a seeded
FEL facility in a future second phase.

The over-arching, emerging requirement for the
development of the MAX IV facility’s IT infrastructure is
the necessity of an overall lean, resource-efficient design.
MAX-lab has in the past been dependent on primarily
cost-efficient solutions for IT development and

* here used synonymously to ‘domain specific IT infrastructure’.

maintenance, and will be so in the future. Still, as a user
facility, MAX-lab endeavours to provide a competitive
level of research quality for the MAX IV experiment
users, and a reasonable perspective for continuous future
improvements accompanying the long-term plans.

The composition of software technologies can provide
us with useful toolkits to implement the desired features
with acceptable quality properties. Hence we surveyed
project related state-of-the-art software technologies.

DOMAIN SPECIFIC SOFTWARE
We have surveyed some domain-specific software

frameworks in respect to the foreseeable requirements of
the MAX IV IT infrastructure. The application domain
includes the digital part of information processing,
including data acquisition systems and the integration of,
or exchange with, scientific analysis software. Our initial
framework-related requirements are the availability of an
integrative layer for desirable hardware platforms,
operating systems and programming languages, a
communication system with name resolution, application
development support, an archive system, an alarm system,
behaviour scripting support and administrative tools. We
chose to look at open-source frameworks used at light
sources: EPICS [3], TANGO [4], TINE [5] and DOOCS
[6], the latter two being used in a multi-accelerator and
linac-FEL environment. Realizing that all these
frameworks would provide the framework-related
requirements, we tried to discover technical arguments
relating to our specific needs. In the following, we will
outline some characteristics we perceived as notable.

For application development support for non-
programmers, “jddd” offers a wide range of possibilities
for user-built synoptic displays (geographical, functional,
logical views) [7]. Enabling user customization for
sophisticated applications is demonstrated by the
ACOP+COMA concept [8]. Following an ambitious
workbench approach, CSS [9] aims at an extendable,
homogenous provision of various services. Beyond
permanent archiving services, notable (quasi built-in)
framework features are command archiving, temporary
archiving [10], local archives, an event (post-mortem)
archive infrastructure [5], and snapshot management
tools, e.g. [10]. The communication systems’ common
data types are predefined [3, 4], and additionally
customizable for TINE [5]. The overall throughput
performance benefits from built-in multi-casting from
each node [5], interesting especially where high data load
sources have several data sinks. An application example
is the advanced, feature-rich video system used at PITZ
for beam studies [11]. System scalability for our needs is
less influenced by network performance, but rather by

MOY03 Proceedings of PCaPAC08, Ljubljana, Slovenia

Classical Topics

16

Status Reports and Control System Overviews

system structuring properties such as hierarchy concepts,
object orientation, browsing services, redirection, gate-
ways, aliasing, etc., as these impact practical complexity-
handling. The development and integration of distributed
control servers using varying technologies is supported by
framework specific code processors (VDCT [12], POGO
[4], Server Wizard [5], etc.). For hardware platform or
field bus integration, generic interfaces exist (asyn [3],
CDI [5], abstract classes [4], etc.). Driver availability can
be sped up by using or customizing existing drivers, with
the EPICS driver base [3] being the largest.
Interoperability between protocols can be achieved by
various methods [13]. Commercial, domain-specific
suppliers support various frameworks reasonably [12,
14]. Version management and automated deployment can
be realized with all frameworks. Systems for safety
(accelerator, personnel, vacuum, equipment, etc.) and
synchronization are recommended to use dedicated signal
lines for hard real time tasks, and can be integrated for
control, monitoring and archiving tasks reasonably well.
For our foreseeable requirements, the dependability pro-
perties (availability, robustness, recoverability) of existing
solutions appear as sufficient. Usability properties of the
produced system (learnability, task efficiency, memora-
bility, understandability, subjective satisfaction) are first
of all application dependent, but can be constrained by the
choice of application development toolkits. While mal-
ware and intrusion related security is more of a systems
administration problem, write access restrictions help to
prevent errors due to user mistakes or programming errors
[5]. Issues related to beamline control can be addressed
by e.g. synApps [3], GDA [15], Soleil’s systems, BLISS
[4]. Issues related to FEL routine operation (global
feedback, synchronization, DAQ, FEL instrumentation
and experiment equipment) are addressed within the
DOOCS framework [6, 16]; others will follow (e.g. [17]).

Conclusions on Frameworks
It becomes clear that our possibilities will be limited

rather by our resources than today’s hard limits of the
frameworks. In other words, we think that any framework
would do us an excellent job, though in various respects.
Further we conclude that choosing a control system
framework for specific technical reasons, a sufficiently
detailed requirements analysis with a finalized validation
would be needed. Such can be the case e.g. for sub-
systems with known real-time demands. However, we do
not see this possibility to be realistic for the integrative
layer of the MAX IV project, given among other reasons
the (intentional) vagueness for the FEL upgrade, and its
derived requirements on the IT infrastructure. While a
choice motivated by technical properties may be a sound
for other facilities, it is currently not in our reach.

Realizing the general strength of the discussed options,
we are increasingly shifting our focus to other aspects,
risks and opportunities related to development of the
systems and software engineering for MAX IV [18]. The
development processes and their relations to various
software technologies are outlined in the next section.

DEVELOPMENT PROCESS SUPPORT
Here, we describe the anticipated control system and

software development for the early project stages. Further
we describe design guidelines intended for cost reductions
on the mid-term or long-term time scale.

We intend to establish a multidisciplinary control
system group as a pool of specialists with appointed
contact persons for technical groups or project specific
communication. Project management tools are matter of
further investigation, e.g. [19].

The MAX IV project challenges MAX-lab with a
significant organizational growth, project complexity and
successive information management issues. We investi-
gate using a Product Document or Live-cycle Manage-
ment System (PDM/PLM) for the electronic data organi-
zation, e.g. [20]. For IT systems development such can
serve as a central document repository (specifications,
user manuals, ‘published’ applications, CAD, measured
data, etc.), providing document access, consistency and
change management. Project specific “sandboxes” are
desirable for restricted remote access by involved
stakeholders (out-sourced projects, research groups, etc).

We are presently developing an information structure
able to structure systems and software requirements [21]
and specifications consistently, prioritized, traceable and
in relation to the various stakeholders’ perspectives. The
requirements structure needs to be suitable for concurrent
top-down, bottom-up and middle-out developments, re-
flecting starting points such as feature requests and use
cases, equipment integration requests and service-centred
approaches. Currently the Borland CaliberRM [22] soft-
ware is used. The requirements database is intended to be
maintained only by a limited number of system architects
in the control system group. Word documents containing
specifications can then be exported using templates.

We consider it advisable to start the implementation of
a control system simulator at an early time within the
MAX IV construction phase, before the installation of
actual hardware systems. A control system simulator
consists of control system framework components of all
kinds (applications, services, local control servers, etc.),
except that local control servers are internally either
dummies or connected to a software-based dynamic
physics model of the accelerator machinery. Physics
modelling can be based on MATLAB, including the
accelerator model, with all frameworks. The simulator
development would be advantageous for staff training,
software verification and validation, as it enables a more
realistic, complex system environment.

Beyond systems verification of applications, services or
control servers by test code, test scripts etc. in a stand-
alone fashion, a control system simulator can enable
testing complex communication situations, service
functions and data processing of more realistic data.
Errors and failures can be injected in controlled ways, and
their propagation and treatment can be tested and
practiced. The probability for delays during machine
commissioning can be reduced.

Proceedings of PCaPAC08, Ljubljana, Slovenia MOY03

Classical Topics Status Reports and Control System Overviews

17

In particular for accelerator control applications (or
application toolkits) used for commissioning it is
desirable to have the first validation iterations by users
(operators, accelerator physicists) early on. Preferred
means of validation are reviews of requirements
documentation and architectural design documents by
users. Succeeding iterations using a control system
simulator allow to validate the application design, the
functionality, and to elicitate new requirements. For the
FEL upgrade, a control system simulator may be useful to
minimize disturbances of the on-going operation.

A potential for cost reductions lies in consequent
standardization to reduce the number of systems types,
which the staff has to cope with, in order to reduce staff
training, development and maintenance diversity. We
consider to offer a generic, but feature-rich toolset to the
beamlines, addressing common experimental or scientific
requirements. The standards would further be applied to
the accelerator domain. The standardization candidates:

• Hardware acquisition and building blocks: Only
defined commercial-of-the-shelf IO modules are used
in defined building blocks, incl. software interfaces.

• Libraries for control and data formats of similar
beamline devices are standardized across beamlines,
e.g. optics libraries, interpolation tables, etc.

• generic control servers (e.g. for x-ray mirrors, vacuum)
• a generic, feature-rich multi-axis scan system

addressing problems specific to the facility’s
accelerators (e.g. handling top-up interruptions)

• a generic data acquisition and management system
• a high-level system behaviour scripting application,

useable both for beamlines and accelerators
• GUI builders for non-programmer staff
• standard services for histories, system snapshots and

configuration management
• standard building, versioning and deployment system

Problems with standardization guidelines could emerge
from conflicts with an otherwise very desirable, creative
laboratory culture, where individuals push smaller
projects with great personal initiative, and thereby
naturally choose hardware, software etc. of their personal
preference. Similarly, this applies to outsourced sub-
systems (avoidance of solution specification). The best
ways to compromise or convince in this respect is subject
to discussion.

By providing users with software tools for building
control applications and scripting physical behaviour [23]
which are suitable (syntax, entity structure) for non-
programmers, user autonomy can be enhanced, shifting
workload from the control system staff to users on a
medium- and long-term time scale. This also passes
things to scientists or machine operators, who are better
acquainted with their equipment and professional
intentions. Finally, we have to consider changes in our
user community, resulting in more visiting research
groups who are less trained with our experimental
facilities; hence, such tools have to enable good support
for incorporating help and sanity tests.

CONCLUSION
For MAX IV, major design considerations are still in

flow, and further contemplation based on recent
perspective changes is needed to consolidate in a compre-
hensive program. We now consider project risks related to
domain-specific software frameworks as relatively low,
and expect them in other domains. The elaboration and
validation of development guidelines for the development
approach, standardization, user autonomy, etc., appears to
be a prospective approach for technology decisions and to
expose potential project risks which are probably higher
than domain-technology related risks.

A great help in our on-going learning process has been
a variety of contacts with many experts in the domain,
who shared their knowledge, experiences and advice with
MAX-lab. We wish to express our sincere gratitude and
appreciation of these efforts, and hope for further
opportunities to learn from the wealth of experience in the
community.

REFERENCES
[1] www.maxlab.lu.se
[2] www.maxlab.lu.se/maxlab/max4/
[3] www.aps.anl.gov/epics/
[4] www.tango-controls.org/
[5] TINE as an accelerator control system at DESY.

Bartkiewiecz, Duval. Meas. Sci. Technol. 18 2007.
also: tine.desy.de

[6] doocs.desy.de; see: Status of the FLASH Free Elec-
tron Laser Control System. Rehlich. ICALEPCS 07

[7] ”jddd”: A Java DOOCS display for data display for
the XFEL. Sombrowski et al. ICALEPCS 07

[8] The run-time customization of Java rich-clients with
the COMA class. Bacher et al. ICALEPCS 07

[9] Control System Studio. Hatje et al. ICALEPCS 07
[10] Status of the Tango Archiving System. Pierre-Joseph

et al. ICALEPCS 07
[11] Status of a versatile Video System at PITZ, DESY-2

and EMBL. Weisse et al. ICALEPCS 07
[12] www.cosylab.com/solutions/particle_accelerators
[13] The Babylonization of Control Systems Part II.

Duval et al. ICALEPCS 03.
[14] Libera Brilliance, Software, on www.i-tech.si
[15] www.gda.ac.uk/
[16] The Data Acquisition System of the FLASH facility.

Agababyan et al. ICALEPCS 2007.
[17] FERMI@Elettra. Conceptual Design Report.
[18] Systems Engineering. Coping with Complexity.

Stevens et al. Prentice Hall 1998.
[19] Management System tailored to Research Institutes.

Verstovsek et al. ICALEPCS 07.
[20] www.metataxa.com/icat.asp (lab. tailored tool)
[21] Software Requirements. Styles and Techniques.

Soren Lauesen. Addison-Wesley 2007.
[22] www.borland.com/us/products/caliber/rm.html
[23] A Graphical Sequencer for the Soleil Beamline

Acquisitions. Abeillé et al. ICALEPCS 07.

MOY03 Proceedings of PCaPAC08, Ljubljana, Slovenia

Classical Topics

18

Status Reports and Control System Overviews

