
GSI OPERATING SOFTWARE MIGRATION OpenVMS TO Linux

R. Huhmann, G. Fröhlich, S. Jülicher, V. RW Schaa, GSI, Darmstadt, Germany

Abstract

The current operating software at GSI has been devel-
oped over a period of more than two decades using Open-
VMS now on Alpha-Workstations. Parts of this complex
software will have to be integrated within the control sys-
tem of the new FAIR accelerator. To ease future mainte-
nance a migration to Linux is considered a precondition.
For porting to Linux a set of libraries and tools have been
developed covering the necessary OpenVMS (referred to as
VMS in the paper) system functionality. The interoperabil-
ity with FAIR controls applications is achieved by adding
a simple but generic middle-ware interface to access the
ported software in a service-like manner from modern Java
applications.

GENERAL ASPECTS

Presently the operating software runs on a cluster of
DEC-Alpha machines, Alpha is today a brand of Hewlett-
Packard. The computers’ OS is OpenVMS. The user in-
terface is realized by X-Window and Motif based clients,
beside some hardware display and control units like LED,
knobs, keys and so on. As a first step of migration the for-
merly used relational database system has been replaced
by a ORACLE 10g SQL system on a Linux cluster. The
operating software is mainly written in F77 with DEC For-
tran extensions, lots of VMS specific system calls are used,
the X11 event scheme is embedded in the VMS system
event scheme. The interprocess communication is based
on VMS system API and on GSI proprietary APIs realized
with VMS system functionality. The whole system is em-
bedded in a complex VMS environment.

On Linux, modern techniques can be used for future de-
velopments. An increase of maintainability and a unique
platform for operating shall be achieved. Additionally,
using Linux makes it much easier to connect to systems
which will be used for the new FAIR accelerator facility.
Migration shall take place on application level, i.e. appli-
cations are ported to Linux but the VMS run time envi-
ronment is not to be simulated, especially no DCL (DEC
Command Language) or related stuff shall be part of the
migrated system. Due to the huge amount of existing ap-
plications software porting shall be achieved with minimal
source modification. Additionally run time data from the
operating software shall become accessible via interpro-
cess communication for modern Java applications, again
with minimal source modification.

TECHNICAL ASPECTS

This section covers main aspects of porting VMS spe-
cific Fortran software to Linux. Due to the limited size of
this paper it is impossible to mention all aspects or to go in
much detail.

DEC Fortran Extensions

DEC Fortran was established as a quasi standard which
exceeds and improves the Fortran77 specifications. It cov-
ers a lot of compiler directives and language extensions to
increase possibilities for Fortran programmers. An exam-
ple is the type STRUCTURE to create composed data objects
like struct in C. Other important examples are the com-
piler directives %REF, %LOC, %VAL which enable the For-
tran programmer to use pointers. Luckily most of the ex-
tensions are supported by main Fortran compiler manufac-
turers. We tested successfully the Intel Fortran compiler
for Linux. Some missing features, e.g. testing for existing
arguments in the parameter list of a function, have to be
replaced by suitable Fortran90 constructs.

VMS System Libraries

In order to retain the source code structure essential parts
of the VMS Runtime Libraries had to be implemented
on Linux. Although some commercial products offer a
very complete and well documented implementation of the
VMS runtime library for Unix based systems the evaluation
of this products failed due to some incompatibility in tech-
nical detail which would have implied major source code
modification.

To establish the needed VMS functionality a generic
plain-C API (called ix) was developed using POSIX and
SYSV system calls. Above ix a limited VMS System API
is set up (called vx), supplying a Fortran Interface and VMS
status return codes. This library is still under construction
and offers currently the most important parts of the VMS
System Service calls used at GSI.

Events The support for event driven architectures is
a key feature of the VMS System Services (beside asyn-
chronous system callbacks). Virtually any asynchronous
system task may notify completion via event propagation.
In this paradigm the application waits in a main receive
loop for any event which has been set up and supplied to
an asynchronous execution branch. When the event is trig-
gered the waiting application is interrupted and supplied
with the information which event was triggered to process
any appropriate action.

MOX02 Proceedings of PCaPAC08, Ljubljana, Slovenia

Classical Topics

4

Status Reports and Control System Overviews

To rebuild such a paradigm on Linux the ix-API
utilizes the pthread cond functions for signaling and
waiting for events. Each ix-event object gets a list
of listeners. A listener corresponds to a set of ix-
events which can be waited for (SYS$WFLOR), imple-
mented with pthread cond timedwait(). Triggering an
event (SYS$SETEF) leads to signaling all its listeners via
pthread cond signal().

Timer VMS allows to couple timers to events. An
elapsed timer triggers the event which can be received in
the application.

On Linux the ix-API realizes timers with a Unix system
call select() in one separate thread. The select() function
covers synchronous I/O multiplexing, i.e. listens for I/O
conditions to emerge (e.g. socket ready to read). Addition-
ally a timeout can be given when the function shall return
to caller. The VMS timers (SYS$SETIMR) are inserted in
a time-sorted list and select() is called with a appropriate
timeout to meet the first timer in the list. When elapsed,
the corresponding event will be triggered, i.e. the waiting
thread is signaled.

In parallel the same select()-thread is used in the ix-API
to cover the asynchronous I/O of the VMS System Library
and the event based interprocess communication.

Global Section Of course, single node global sections
(SYS$MGBLSC, SYS$CRMPSC) are easily to realize with
Unix shared memory.

But there are some specialities to take care of. It is com-
mon use on VMS to map an initialized memory region (F77
COMMON BLOCK) to a named global section. If it is the
first mapping, the value in memory is that of the initializa-
tion and of course may be altered afterward by the appli-
cation. Any further mapping from other applications even
to initialized memory will yield the current values of the
global section.

We use POSIX file-based shared memory, but for count-
ing mappings we additionally have a dummy SYSV shared
memory, its id is stored in the file header (see figure 1).
This is to ensure that for the first mapping the contents of
mapped memory is saved to shared-file. For any successive
mapping the memory is overwritten by shared-file contents.

Message Compiler On VMS a tool called Message
Compiler processes special-format text files with mappings
from system-wide error condition numbers and names to
message texts. It generates code which is linked to appli-
cations. The error numbers are used in a signal generat-
ing routine (LIB$SIGNAL) which prints the corresponding
message (optionally processing supplied arguments) and
causes a program exit in case of a severe exception con-
dition.

On Linux the Message Compiler was implemented to be
compatible with the original message text files. It creates
a library for resolving the message texts and builds include

Figure 1: Global section

files for Fortran and C with the defined error condition con-
stants and their values. Additionally it generates a Linker
Script to retain the possibility to use the error condition
numbers as symbolic constants declared as EXTERNAL and
which values can be retrieved in Fortran code by the %LOC
directive resolved at linking time.

X11 Integration

For the migration of Fortran X11-Clients one needs a
wrapper library to map the so called Non-C-Binding X
functions to the Linux X library. This is straight forward
and reduces mainly to differences in the call strategy for
Fortran and C. Only a few functions differ slightly in pa-
rameters and functionality. For Motif it is even simpler
since VMS uses the same C-API. After compilation (which
produces either lower or upper case function symbol names
with appended underscore) one has to map with the tool
objcopy the symbol names to the correct names found in
the Motif library.

Further procedure depends upon the usage of X11 and
Motif event processing. Currently at GSI two paradigms of
X11 programming are used on VMS:

The first one adds a timer with lowest acceptable interval
to the set of utilized VMS events. All triggered VMS events
are processed in a central event receive loop. In the timer
elapsed routine all pending X11 events are processed in
a do-while loop using XtAppPending(), XtAppNextEvent()
and XtDispatchEvent(). On Linux this has been replaced by
a thread which consumes and processes pending X events.
Processing of these events is mutex synchronized with the
processing of the ix-events.

The other paradigm utilizes the Motif main event loop
XtAppMainLoop() for X11/Motif and VMS system event
processing. That implies the usage of XtAppAddInput()
which links a data source to a user specified callback. Pa-
rameters are operating system dependent. On Unix based
systems the source parameter is a file descriptor used as
source of data, on VMS it is an event id. The problem
is solved by a own implementation of XtAppAddInput(). It
supplies the native Motif XtAppAddInput() with a single in-

Proceedings of PCaPAC08, Ljubljana, Slovenia MOX02

Classical Topics Status Reports and Control System Overviews

5

ternal pipe as data source and creates a mapping from the
supplied event id to the supplied callback. A general hook
function for the ix-events is set which writes the id of trig-
gered events to the internal pipe. When data is available in
the pipe the supplied native Xt-Callback reads the event id
from the pipe and dispatches the user callback found in the
mapping table.

GSI Specific APIs

The implementation of some functionality hidden by
GSI-specific APIs is completely replaced on Linux.

Interprocess Communication The GSI-API for Inter-
process Communication on VMS is written in Modula-
2 and transfers binary data packets between applications.
It utilizes VMS system mailboxes, events, communication
servers and raw Ethernet network communication.

To provide its functionality on Linux the implementa-
tion is replaced by peer-to-peer network communication
through TCP/IP sockets and utilizes the ix-event architec-
ture. To implement the addressing scheme of the network
packets (i.e. a unique name set up at application runtime) a
server registers a mapping of the name to TCP/IP host and
port information.

Alarm System The implementation of the GSI-API
for device and process alarming will be replaced.

Device Access The GSI-API for device access on
VMS is written in Modula-2 and realized by communica-
tion servers and raw Ethernet network communication.

On Linux the API implementation is replaced by a wrap-
per to the new Corba based object oriented device access
interface.

Interface to Java pplications

This section describes an approach to connect the op-
erating software after migration to Linux to the currently
designed Java environment of the new FAIR control sys-
tem. Keeping that in mind the following constraints should
be regarded:

• minimal source code modification for existing Fortran
applications

• flexible data structures on application level

• simple and generic interface to avoid API adaptations

• C/C++/Fortran Server-API and a Java Client-API

To fit these constraints a so called universal value archi-
tecture (uv) was developed which implements a kind of di-
rectory service. Using uv each Fortran application is able
to represent specific value structures as a tree analogous
to a hierarchical file-system (see figure 2). A tree-node is
called file. Beside other properties each file has a name
and a value, which is either of primitive data-type (boolean,
byte, integer, long, double, string), or an array of primitive

data-type, or a list of files which is called folder, or a spe-
cial value-type (event-queue, mount-point). Each node in
the tree is named in a unique way by its absolute path name
starting with the root-node. The uv architecture implements
internally a publisher-subscriber pattern to inform clients
(subscriber) about changes of the server (publisher) which
may be initiated by another client or by the server locally.

Figure 2: Example of a uv structure

Publisher The Server-API for the Fortran application
allows to set up and change the value tree-structure (like
adding files and folders to a file-system) and to set and
change locally the numerical values of the leave-nodes.
Services like tree transfer of a read result, value changes by
clients, sending value change notifications to clients, pro-
cessing structure changes and subscriptions are hidden in
the implementation of the API and transparent for the ap-
plication. Value changes initiated by a uv-client are notified
to the application via callback.

Subscriber The Client-API for the Java application is
to read the value tree structure or subtree structures. It
subscribes to folders for receiving structure changes or to
leave-nodes for receiving numerical value changes or to
event-queues for receiving event objects. It allows to set
values of leave-nodes of an uv-server.

CONCLUSIONS

The status of the project has shown the technical fea-
sibility of migration respecting the constraints of minimal
source code modification and interoperability with Java ap-
plications. The developed libraries and tools build a solid
basis for migration. Further efforts will be made to inte-
grate the current Operating Software into FAIR controls.

REFERENCES

[1] OpenVMS RTL Library (LIB$) Manual, OpenVMS System
Services Reference (SYS$) Manual

[2] Linux manual pages and for POSIX: IEEE Std 1003.1, 2003
Edition, Standard for Information Technology – Portable Op-
erating System Interface (POSIX), The Open Group Base
Specifications Issue 6, Copyright (C) 2001-2003 by the In-
stitute of Electrical and Electronics Engineers, Inc and The
Open Group

A

MOX02 Proceedings of PCaPAC08, Ljubljana, Slovenia

Classical Topics

6

Status Reports and Control System Overviews

