
INTEGRATION OF RENOVATED NETWORKING MIDDLEWARE INTO A
RUNNING CONTROL SYSTEM ENVIRONMENT

U. Krause, L. Hechler, K. Herlo, K. Höppner, P. Kainberger, S. Matthies, G. Schwarz,
GSI, Darmstadt, Germany.

Abstract
Currently the proprietary networking middleware in the

GSI control system is replaced by a CORBA based re-
design. Rebuilding all controls components is out of
scope, so existing applications as well as device specific
front-end software still have to be used. The renovated
middle layer has to fit between the former application’s
device access interface and the front-end framework.
Providing similar functionality as before was a major
design aspect therefore. Compatibility requested some
extensions to the original approach, while the new
outline, targeting more flexibility and clarity, lead to
additional capabilities for future usage of the system.

INTRODUCTION
Accelerator installations are operated for long time,

which may span decades. During this period, progress in
hardware and software platforms for the control system is
evident. Basic components some day are no longer
available or are no longer sufficient for the growing
demands. From time to time a new generation of controls
platforms have to be introduced. While the primary task
then is to assure the established functionality, adaptation
to a more recent environment gives the change to upgrade
the system significantly and to enhance its functionality.

CONTROLS RENOVATION
Starting Point

The GSI control system originates from the mid 80s. It
uses VME computers for the front-end equipment control
and OpenVMS workstations on the application level.

Figure 1: GSI Control System

Communication is by an in-house network protocol,
implemented on raw Ethernet packets. A characteristic of
the GSI system is to split the front-end layer: An
equipment control layer, providing real-time reaction with

short delay times, and a non real-time presentation layer
to model all equipment in a unique manor and to handle
the remote access. Both are implemented on different
boards which operate tightly coupled.

Not unusual at the time when it was designed, the
components are closely related to specifics of the hard-
and software platforms. Even worse, multiple
interconnections lead to confusing dependencies between
front-end and application layer. Modifications in one area
often request adaptation of modules all over the system.
Substantial upgrades of the core were avoided therefore.

As a result, the system depended on the platforms
originally chosen. Only special 68k VME boards on the
front-end and OpenVMS on the application level are
supported. The device presentation boards are no longer
available for years and have to be replaced urgently.
Additionally, the limitation to VME and OpenVMS is a
severe handicap for integration of new controls demands.
A more open structure is badly needed.

Strategy
A project was started to replace the outdated VME

boards. However, instead of simply porting the existing
structure to a new type of hardware, a more substantial
renovation was aimed for: Opening of the rigid structures.

Structural modifications must not disturb handling of
the machines. Since commissioning, accelerator operation
was more and more refined, now regularly serving, on a
pulse to pulse base, typically five experiments in parallel
from three simultaneously operated ion sources.

Controls software, as well on application level as on the
front-ends, was extended continuously to achieve such
flexible operation. Re-implementing this functionality
from scratch is out of scope – the effort would be far too
high. Prerequisite in the renovation therefore is to keep
the existing specific software.

The outline of the GSI control system shows a way to
do so. Accelerator equipment is modelled, on the front-
ends, in the nowadays well established object oriented
view as devices with properties. Remote access from the
operation layer software is via a common call interface.
On the front-ends, each property is implemented as a
separate function, called User Service Routine (USR).
USRs have a common interface to the system core. The
USRs, together with the software on the equipment
control layer, implement the specifics of device
equipment.

Basic idea of the renovation is to keep the remote
access interface on one end and the existing USRs, and
the equipment control boards with their software on the
other side. Within these boundaries, in a Gordian knot
approach, the software was rebuilt completely.

Proceedings of PCaPAC08, Ljubljana, Slovenia MOW03

Classical Topics Control Software: Applications and Tools

37

For the renovated system, PowerPC VME boards
running Linux were chosen. CORBA as well established
middleware was preferred to in-house developments.

Outline of the Renovated System
In the new front-end structure, the devices are

implemented as C++ objects. Properties too are modelled
by objects which are attached to the devices. With some
adaptations the existing USRs are integrated in the
properties as their execute method.

Management of the device objects, like instantiation
and monitoring, is done by a new device manager service.

The CORBA based remote access supports
synchronous as well as asynchronous commands and
subscriptions. Access is by a new object oriented client
interface. It is available for Java, and on Linux and
Windows for C++ and Python. On OpenVMS, the former
procedural call interface is still available, implemented as
a wrapper on top of the new one.

Status of Renovation
The renovated system was introduced in the facility

several months ago. Installed now in 6 out of a total of 43
VME crates, it showed its suitability during regular
machine operation. No modification of the application's
software was needed; re-linking with the new remote
access library was sufficient.

Step by step, after adapting the USRs for each of the
remaining 50 equipment types, the new system will
replace the old system in all front-ends.

BENEFITS OF RENOVATION
Primary focus for the renovation was, as a must, to

provide the established functionality of the former
system. Using nowadays techniques for development led
to several enhancements, compared to the original
implementation.

Further improvements were addressed explicitly when
limitations of the old system showed up clearly during the
project. Opportunity was taken to smooth and clean the
system. Additionally, some specifics of the existing
system were not considered sufficiently when work
started, and had to be handled additionally.

Both increased the originally estimated effort
significantly, but on the other hand provided a more solid
implementation and additional options for the future.

Portability
The manifold interconnections between front-end and

application layer have been the major obstacle to
advancements of the control system core. In the renovated
system the new modules are far more decoupled.

This was seen when the system, developed for the
VME environment, depending on functionality of the
real-time equipment control layer, was adapted to
standard desktop computers to have a more comfortable
testing environment. With some shortcuts, a
demonstration could be made operational in short time.

Encouraged by this, a solid implementation was build
by re-arranging modules and adding functionality which
is, in the VME environment, provided by the real-time
layer. This stand-alone system then could be ported to the
Windows operating system too in short time. While Linux
is the preferred system for the controls, at least the
Windows clients interface is requested in some locations.

While the GSI system for long time was limited to
VME-Systems only, it is now well prepared for other
platforms. A first usage of the new capability was to
integrate Cosylab's MBox stepping motor driver in the
controls environment [1].

Encapsulated Networking
Good modularization is essential for flexibility. Care

should be taken that networking does not introduce
unintended coupling between front-end and operation’s
applications. Therefore the communication modules are
encapsulated. Both applications and device specific front-
end software are clearly separated from any networking
implementation, no CORBA specifics are seen.

Such encapsulation will allow modifying the
networking without affecting the applications. Switching
to another protocol, like SOAP, can be handled internally.
Even several protocols in parallel can be supported then,
an option for future extensions of the system.

Access Control
After thoughtless access to real accelerator devices an

access control system had to be added to the originally
open GSI control system. Users may access devices only
when specific rights are granted.

The access control was implemented in the applications
access interface and was based on internals of the remote
communications. With the renovated middle layers, a new
implementation was needed. In the new system access
control is handled in the front-end devices. Rights
information is provided by a key mechanism [2].

The new implementation provides several rights levels,
according to the criticality of properties. Handling is
simplified by declaring groups of users, equipment types
and single devices. Rights can be defined for such groups
now instead of administrating each user and each
equipment type individually.

Data Container
The former procedural remote access interface

originally supported single data or arrays of base

Figure 2: Migration to new Controls Outline

MOW03 Proceedings of PCaPAC08, Ljubljana, Slovenia

Classical Topics

38

Control Software: Applications and Tools

numerical integer and floating point types. Different byte
orders and float representations on client and server side
are converted automatically.

The need to combine integers and floats in one access
led to introduction of a raw data format in which the
bitwise data representation is exchanged. Conversion of
data representation had to be left to the applications – a
very error prone procedure.

The new implementation uses general data container
objects. They may hold any sequence of the basic data
types. Type information is stored additionally, which
allows type-save extraction at the receiver side.
Automatic conversion to any of the supported data types
can be requested when data are extracted

Code Generator
Properties often exchange not only single values, but

multiple data. In many cases these data are no arrays but
structures, in which each element has its special meaning.
For clarity descriptive names then should be used. So the
wish came up to use names to access the data container
elements instead of array indices only.

A formal XML description of the properties and their
data was developed. From this description code frames
and adapter classes are generated.

The code frames provide the connection to the property
implementations. All formal code, needed to integrate the
specific code into the new general property objects is
generated automatically.

Adapter classes handle property data. Type safe setter
and getter methods for the data elements of the container
are generated. The method’s names correspond to the
names of the data elements, given in the formal
description. This allows handling a data element only by
its name, not bothering about its absolute position in the
data container.

An additional benefit is consistent documentation. A
textual description of property and data, to be used by the
application developers, is generated automatically.
Separately written descriptions, always likely to be
outdated, will no longer be needed.

Subscription Service
The existing system allowed grouping of commands for

different devices, if connected on the same VME node, in
one remote access call. All such single requests are
executed in the front-ends one after the other as one
block. This ensures a kind of data synchronization.

In the new approach, device objects are independent.
Each device executes requests separately, loosing any
synchronization. This takes effect especially for
subscription to event triggered execution. While
synchronization is assured by the timing system, start of
subscription now may happen in different cycles,
resulting in data shift by one cycle.

Data synchronization by grouping commands used only
a side effect in the existing control system, barely
fulfilling the real needs. A since long requested more
profound solution could no longer be postponed.

A subscription service, as an add-on on the client
interface, correlates data from any set of devices in one of
the timing areas. It groups, for different devices,
responses from event subscription according to their
system wide cycle identifier, distributed by the timing
generator. Missing responses are identified and the
requesting process is informed.

While the original correlation by combined commands
was restricted to devices connected to the same VME
crate, the new subscription service can handle any
combination of devices in one timing area. This will
simplify applications development, which is faced with
more demands for data correlation, like for true
transmission measurement following single bunches on
their way through the beam lines.

CONCLUSION
Control systems operate in a moving environment.

Underlying soft- and hardware platforms develop
constantly, new technologies rise, and well established
components some day become obsolete. New equipment
is installed in the accelerators, more complex operation
modes have to be supported, and more advanced machine
control and better diagnostics is requested.

Reaction to the growing needs became more and more
difficult in the GSI control system. The huge base of
specific hand- and software installations however forces
to stay with the system: Effort for re-implementing the
specifics again in another system would be too high.

The communication layer renovation opened a way out
of the dilemma. The solid general architecture allowed to
cut out a severe hindrance to modernization, and to
replace it by a more flexible state of the art element. Even
more, not only preserving the established features, new
functionality and more options could be added. Step by
step exchange in short shutdown periods, keeping the
majority of the controls unaffected at each single step,
holds risk for machine operation low.

The renovated communication shows that evolutionary
modernization of a control system, developed long time
ago, is possible. Migration steps don’t need to be small,
whole core layers may be exchanged without requesting
long interruptions in accelerator operation.

With the new system further upgrades like migrating
operation's applications to Linux can start. The new core
now opens ways of interoperation with other systems,
preparing the integration of the existing accelerators as
injector into GSI’s planned FAIR facility.

REFERENCES
[1] K. Herlo, “Stepping Motor Control for Septum Plate

Positioning”, this workshop
[2] S. Matthies et al, “Access Control in the Renovated

GSI Control System: A Combined Name- and Rights-
Server”, this workshop

Proceedings of PCaPAC08, Ljubljana, Slovenia MOW03

Classical Topics Control Software: Applications and Tools

39

