Trendy Topics

Control Solutions with FPGAs

Paper Title Page
WEP012 A Crystal Centering System with a FPGA Based Position Control Approach for EMBL Beamlines at PETRA III 192
 
  • M. DiCastro, S. Fiedler, A. Pazos, F. Ridoutt, U. R. Ristau
    EMBL, Hamburg
 
  The EMBL is located at the DESY site in Hamburg and operates 5 beamlines at the DORIS III sotorage ring. Currently the EMBL Hamburg is in charge to build three new beamlines at the new PETRA III high-brilliance synchrotron radiation source which will commence user operation in 2009. In this paper a reconfigurable FPGA based control solution is presented to monitor and analyze in real time beamline experiments. The hardware is suitable to acquire fast and high sensitive electronic signals, analyzing them for feedback closed loops. The system is included in the TINE control system and can be remotely controlled and configured. The control hardware consists of a National Instrument PXI crate equipped with a real time controller and R-series FPGA. The Labview real-time object oriented programming to control the system is presented as well as the adaptation of the hardware to various applications. The solution is shown starting from simulation and then testing on the existing DORIS test beamlines used for PETRA III.  
slides icon Slides  
poster icon Poster  
WEP013 Integration of ALMA Common Software and National Instruments LabVIEW 195
 
  • K. Žagar, A. Žagar
    Cosylab, Ljubljana
  • B. Bauvir, G. Chiozzi, P. R.M. Duhoux
    ESO, Garching bei Muenchen
 
  Among the candidate technologies for the Extremely Large Telescope (E-ELT) are ALMA Common Software (ACS) and LabVIEW. ACS is a CORBA-based control system infrastructure that implements a container-component model. It allows developers to focus on development of components that define application logic, with ACS-provided containers addressing infrastructural issues of distributed control systems such as remote procedure calls, logging, configuration, etc. LabVIEW is a commercial solution provided by National Instruments which allows rapid construction of user interfaces and control loops. Control loops can execute on Windows and Linux operating systems, as well as real-time control systems and FPGA circuits. In this paper, we present an approach for integration of ACS and LabVIEW. We accessed ACS from a LabVIEW user interface (both sending of data into ACS, and receiving data from ACS). Also, we accessed a real-time LabVIEW process (parts of which were executing in FPGA) from ACS – again in both directions. From the LabVIEW perspective, the approach is platform-independent as it is based on a Simple TCP/IP Messaging protocol.  
slides icon Slides  
poster icon Poster