
ANALYTIC EXPRESSIONS FOR LONGITUDINAL SCHOTTKY SIGNALS
FROM BEAMS

WITH GAUSSIAN MOMENTUM DISTRIBUTION

V. Ziemann, The Svedberg Laboratory, S-75121 Uppsala, Sweden

Abstract

We calculate closed analytic expressions for the longitudi-
nal Schottky Signals from beams with gaussian momentum
distribution. All dispersion integrals can be evaluated in
terms of complex error functions. Using a Pad´e approxi-
mation for the error functions allows very rapid evaluation
of the Schottky spectra.

1 INTRODUCTION

In ref. 1 and 2 expression are deduced for the longitudinal
Schottky spectrum at thep−th harmonic for a beam under
the influence of cooling, characterized by the cooling rate
ν and a longitudinal impedanceZ‖
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where the dielectric functionε(Ω) is given by
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The gaussian distribution functionψ(ω) is defined by

ψ(ω) =
1√
2πσ

e−
(ω−ω0)2

2σ2 . (3)

The dispersion integralsI(Ω) andJ(Ω) can be evaluated
analytically in terms of the complex error functionw(z)
[3] which is shown in the appendix and are given by
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Having calculated the dispersion integrals in closed form
allows us to directly fit eq. 1 to data and extract physical
parameters such as frequency spreadσ or the damping rate
ν from measured schottky spectra. We propose to use the
following fitting function
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The fitting parametersA,B, . . . , F have the following in-
terpretation

A = offset or base line
B = amplitude of the signal
C = frequency spreadpσ = pω0ησp

D = center frequency ofp−th harmonicpω0

E = scaled damping rate =ν/pσ

F + iG = scaled impedance =12π
qη

γ0β2
0

I0Z‖/p

m0c2
ω2

0
σ2

Note that in this representation the fit-parameterE alone
describes the effect of damping and thatF + iG ∝ ηZ‖I0
alone describes the effect of the impedance.1

2 QUALITATIVE FEATURES

In this section we will exploit eq. 6 and generate longitu-
dinal Schottky spectra that allow us to deduce the beam’s
properties directly from the shape of spectra similarly to
the discussion in ref. 1.

• In the absence of damping (E = 0) and collective
effects (F + iG = 0) the schottky spectrum is given
by the momentum distributionψ(Ω/p).

• In the absence of impedance (F + iG = 0) the cool-
ing rate does not affect the schottky power spectrum
as can be seen from eq. 6, where the entire term in ab-
solute values vanishes. Note that the damping rate still
enters indirectly, because it affects the equilibrium en-
ergy spread and consequently the frequency spreadσ
as well.

• The effect of cooling is most pronounced at low har-
monics as can be seen from the definition of the fit-
parameterE = ν/pσ.

• A large capacitive impedance (G > 1 below transi-
tion) causes the Schottky spectrum to exhibt double
peaks as can be seen in Fig. 1.

• Adding a resistive impedance (F < 0 below transi-
tion) causes the low frequency peak to be higher at the
expense of the high frequency peak.

• Adding damping, e.g. due to electron cooling, will
cause to smooth out the effect of the impedance and

1Obviously the same type of parametrisation can also be done for beam
transfer functions.
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Figure 1:The effect of a finite capacitive impedance on the
longitudinal Schottky spectrum.
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Figure 2:The effect of damping or cooling on the longitudi-
nal Schottky spectrum in the presence of a finite capacitive
impedance (G = 2). Note that the damping counter-acts
the collective effects.

will make the spectrum more similar to an unper-
turbed gaussian with a narrow valley in the center.
This is illustrated in Fig. 2.

After having discussed the qualitative features of longitu-
dinal Schottky spectra we will discuss the feasability of fit-
ting measured spectra to eq. 6.

3 FITTING SCHOTTKY SPECTRA

In order to test the feasability of determining the seven
parametersA,B, . . . , G from directly fitting eq. 6 to data
we generate a longitudinal Schottky spectrum withA =
0, B = 1, C = 1000, D = 3 106, E = 0, F = −0.1, and
G = 1. We then fit eq. 6 to the data by minimizing the cost
function

χ2 =
∑
data

(y − P (Ω;A,B, . . . , G))2 (8)

with respect to the parametersA,B, . . . , G. For the min-
imization a Nelder-Mead Simplex minimizer is used [4].
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Figure 3: Fitting a longitudinal Schottky spectrum with
A = 0, B = 1, C = 1000, D = 3 106, E = 0, F =
−0.1, G = 1. In the left graph all seven parameters are fit-
ted which results in a rather poor fit and in the right graph
the center frequencyD is fixed at3 106.

In the evaluation of eq. 6 we use a Pad´e approximation
w(−iz) = P (z)/Q(z) for which the coefficients of the
polynomialP,Q (of order 10 and 11) are all real [5].

The left graph in Fig. 3 shows the result from fitting
all seven parameters simultaneously. Clearly the result is
rather poor. In the right graph we fit the same data but fix-
ing the central frequency to its correct valueD = 3 106

and then fit the remaining six parameters which results in
much more accurate results. In practice the central fre-
quency is always known before-hand, because it is a har-
monic of the revolution frequency. We presume that the
inaccuracy shown in fitting all parameters simultaneously
is caused by a correlation between finding the resistive part
of the impedanceF which causes the asymmetry and the
central frequencyD.

Finally we analyze Schottky spectra from 2 mA cooled
436 MeV deuterons stored in CELSIUS [6], observed at the
32nd revolution harmonic. From the fit shown in Fig. 4 we
deduce a frequency spread of about 1.2 kHz which trans-
lates to a momentum spread of3.5 10−5. From the fit pa-
rametersF andG we deduce an impedance ofZ‖/p =
(0.2 − 2.3i) kΩ which is consistent with earlier measure-
ments. The fitted damping coefficientE, however is much
too large and would imply a damping time on the order
of ms which is orders of magnitude smaller than expected.
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Figure 4:Schottky spectrum from 436 MeV deuterons.

1880



Qualitatively, however, the deep narrow valley in spectrum
indicates strong damping.This is currently an unresolved
problem, which may e.g. be due to a non-gaussian beam or
finite reolution bandwidth of the spectrum analyzer.
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A EVALUATION OF I(Ω)

In this appendix we will evaluate the first the dispersion
integrals given by eq. 4. If the damping rateν is positive,
we can represent the denominator by

1
x

= i

∫ +∞

0

dα e−iαx (9)

whereν > 0 implies Imx < 0 which makes the integral
convergent. In the limitImx → 0 we revover the well
known principal value relation

lim
1

y + iε
= PP

1
y
− iπδ(y) . (10)

This trick we use to turn the denominator of eq. 4 into an
exponential. Exchanging the order if integration, perform-
ing the gaussian integral overω, and introducing auxiliary
variablesx = ω/σ andx0 = ω0/σ we arrive at

iI(Ω) = −
∫ +∞

0

dα e−α2p2σ2/2−iα(Ω−pω0−iν) . (11)

Substitutingβ = αpσ/
√

2 we obtain

iI(Ω) = −
√

2
pσ

∫ +∞

0

dβ e−β2+2iβz (12)

with z given by eq. 5 in the main text. The integral ap-
pearing in eq. ? is a representation of the complex error
functionw(z) [3]

w(z) =
2√
π

∫ +∞

0

dβ e−β2+2iβz . (13)

Inserting in eq. ? we finally get the second half the first of
eq. 4.

B EVALUATION OF J(Ω)

In this appendix we will evaluate the second dispersion in-
tegral in eq. 4 for which we need the derivative of the gaus-
sian distribution function

∂ψ(ω)
∂ω

= − 1√
2πσ

ω − ω0

σ2
e−(ω−ω0)

2/2σ2
(14)

Inserting in eq. 4 and again turning the denominator into an
exponential with the aid of eq. ? we can exchange the order
of integration and get

iJ(Ω) =
1√

2πσ3

∫ +∞

0

dα e−iα(Ω−iν) (15)

×
∫ +∞

−∞
dω (ω − ω0)e−(ω−ω0)

2/2σ2+iαpω .

Theω appears linearly in the integral and is taken care of
by parametric differentiation which can be pulled out of the
dω integral. Remembering that the∂/∂α operator acts to
the right hand side only we rewrite the previous equation

iJ(Ω) =
1√

2πσ3

∫ +∞

0

dα e−iα(Ω−iν) (16)

×
(

1
ip

∂
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dω e−(ω−ω0)

2/2σ2+iαpω

which leaves a gaussian integral overdω that can be easily
evaluated. After performing the differentiation with respect
toα we arrive at

iJ(Ω) = ip

∫ +∞

0

dα αe−α2p2σ2/2−iα(Ω−pω0−iν) (17)

which upon substitutingβ = αpσ/
√

2 transforms to

iJ(Ω) =
2i
pσ2
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0

dβ βe−β2+2izβ (18)

with z defined in eq. ?. Theβ linear in the integral can be
treated again by parametric differentiation with the result

iJ(Ω) =
1
pσ2

∂

∂z

∫ +∞

0

dβ e−β2+2izβ =
√
π

2pσ2
w′(z)

(19)
where we use the integral representation of the error func-
tion given in eq. ?. Note thatw′(z) is the derivative of the
complex error function which can be evaluated [3] as

w′(z) =
2i√
π
− 2zw(z) . (20)

Thus it suffices to know the complex error function atz in
order to calculate its derivative. Utilizing this we arrive at
the expression stated in the main part of the text.
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