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Abstract

It has been shown that the net space-charge forces for a dc
beam with space-charge potential depression in a bend
have the usual inverse energy square dependence to the
first order in the beam radius a  over the bend radius R.
We extend the analysis to the second order in a R and

allow the beam to have a small transverse displacement.
The net space-charge forces are no longer cancelled to
inverse energy square factor. The non-cancelled part of
self-induced magnetic forces are at the second order in a R

and independent of the beam energy. The nonlinear parts
of these forces are much larger than that of the usual
inverse energy square forces. Scaling laws for emittance
growth caused by the curvature of the beam and a
transverse beam displacement, respectively, are presented.

1  INTRODUCTION

The recent trend in radiography machines is to provide
multiple lines of sight for a dynamic radiography. The
most straightforward approach to obtain multiple lines of
sight is to provide each line with its own driver that is
costly. The more economic approach is to generate either
a long pulse beam or a train of several pulses in one
accelerator [1]. Then the pulse (or pulses) will go through
kickers and several large angle bends in order to arrive at
the x-ray targets simultaneously. The x-ray brightness
depends on the electron beam's final spot size and
divergence angle, and hence on its emittance. Performance
of radiographic machines using a single accelerator as a
driver depends on whether beam quality can be preserved
in these bends. Lee [2] showed that the net space-charge
forces for a dc beam with space-charge potential
depression in a bend have the usual inverse energy square

dependence (1 γ 2 ) to the first order in the beam radius a

over the bend radius R. Hence, sending beams through
bends does not degrade the beam quality. Later, Carlsten
and Raubenheimer [3] discussed an additional space-charge
force term which arises when the beam bunch length is
short in comparison to the beam pipe size. This term is
not cancelled by the potential depression effect. A typical
beam in radiography machines is generally more than 10
m long. The space-charge effects studied in Ref. 2 do not
exist for such beams. In this paper, we discuss other
additional terms which also do not exhibit the usual
relativistic cancellation. An analytic model to study
emittance growth caused by these force terms is presented.
The dc beam is treated as a uniform density ring in a

continuous bend. The beam pipe's cross section is round.
In general, the Lorentz factor γ of the beam is comparable
to R/a for a radiography machine. To compare these terms

with the usual space-charge force term in 1 γ 2 , we extend
the analysis to the second order in a R and find that the

nonlinear parts of these non-canceled forces are in general
much larger than that of the usual inverse energy square
forces. To obtain a scaling law for emittance growth, we
ignore the effects of charge redistribution and betatron
motion of particles. By fixing the bending magnet's
length, we obtain that the emittance growth is
proportional to square of the bend angle and square of the
beam radius. We also study the additional space-charge
forces due to a small beam transverse displacement ∆ such
that ∆ << a . There is a nonlinear force component in the
first order of ∆ a . However, we find that the emittance

growth caused by the beam displacement does not appear
in the first order of ∆ a .

2  EQUATIONS OF MOTION

The equations of motion for a charge q  are

γv̇r = γ
vϕ

2
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vrvϕ
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Fϕ
m

,         ( 2 )

and

γv̇z = −γ̇vz + Fz
m

,                           (3)
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γ̇ = − q

mc2
r
v ⋅ ∇Φ ,                    (5)

  Bb
r
z  is the external bending magnetic field, and Φ  and   

r
A

are the electric and vector potential arising from the space
charges of the beam. We assume that the beam is
symmetric about the major radius, i.e., ∂ ∂ϕ = 0 . The
space charge potential depression Φ(r, z)  and magnetic

potential 
  

r
A(r, z) = Aϕ (r, z)ϕ̂  are obtained by solving

∇2Φ = −4πρ ,                               (6)

and

        ∇2 Aφ −
Aφ

r2 = −4πρβφ .                       (7)
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Variation of the particle velocity βϕ  in (r, z) is

negligible. The electron beam pulses for radiography
machines are normally in the range of tens to hundreds of
nanoseconds long. Assume that the electric field along the
beam pipe wall remains zero during the entire beam pulse
duration. Hence, both of Φ  and Aϕ  vanish on the wall.

Set
Aφ (r, z) = βφ Φ(r, z) + δAφ (r, z)  . (8)

By substituting Eq. (3) into Eq. (2), we obtain an
equation for δAφ (r, z) as

∇2δAφ =
βφ Φ
r2 ,                          (9)

and δAϕ  vanishes on the wall. Equation (9) indicates

that δAφ  is in the second order of a R compared to Φ .

Substituting Eqs. (4), (5) and (8) into Eqs. (1) to (3),
we obtain
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where γ w  is the Lorentz factor for a beam without space-

charge potential depression. Assuming that the ideal orbit
for the beam is to along the bend's minor axis, i.e.,
r = R, we obtain

0 =
γ wvϕc

R
+ qBb

m
.   (13)

Then, the first terms in Eqs. (10) and (11) give the usual
radial betatron oscillations that will not lead to an
emittance growth. We can therefore ignore these terms.
The last term in Eq. (10) and the remaining terms in Eq.
(11) are negligible compared with the usual space-charge
force term, i.e., the second term in Eq. (10). We also

ignore the terms containing δAϕ r  since they are smaller

than ∂ δAϕ ∂r  by an order of a R. We now rewrite Eqs.

(10) to (12) as
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γ wvϕ

2
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r R
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v̇ϕ ≅ 0 , (14)
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, (15)

Note that, in general, the Lorentz factor γ of the beam in
a radiography machine is comparable to R a . The usual

space-charge force terms with 1 γ 2  reduction factor are

comparable to the additional space-charge terms
containing ∂ δAϕ ∂r .
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Fig. 1  A displaced round beam in a continuous bend

3  SPACE CHARGE FIELD CALCULATION

Let us consider a round beam in a continuous bend as
shown in Fig. 1. Assume that the beam pipe's minor
radius b  is much less than its major radius R such that
λ = b R << 1. The space-charge potential depression can

now be presented as

Φ = Φ0 + λΦ1 + λ2Φ2 + O λ3( ) ,

where Φ0  is the potential depression in a straight beam.

We further assume O λ( ) ≈ O 1 γ( ) . Then, only the

straight beam's potential depression Φ0  and the second

order magnetostatic potential δAφ  are needed to calculate

the forces in Eqs. (13) and (15). Let us assume that the

beam with a constant current density I πa2  is
transversely displaced with ∆cosα and ∆sinα in the x  and
y direction, respectively, and ∆ << a . We solve Eqs. (6)
and (9) in the local cylindrical coordinates µ ,θ ,ζ( ) . The

space-charge potential depression Φ0  and the second order

magnetostatic potential δAφ   are given as
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and for r ≤ a + ∆ ,
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4  EMITTANCE GROWTH

Equations (19) to (22) indicate that a uniformly
distributed ring beam in a bend will experience non-
cancelled, nonlinear magnetic forces due to the curvature
of the beam. To obtain a scaling law for emittance growth
caused by these nonlinear forces, we ignore the effects of
charge redistribution and betatron motion of particles. We
assume that the nonlinear forces only add angle kicks in
particles' transverse velocities, and the changes in their
transverse positions due to these kicks are negligible. We
find the emittance growth arise from the space-charge
forces as
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and this beam emittance growth is added in quadrature to
the initial beam emittance. In Eq. (23), αb  is the bend

angle, and Io = q mc3  is the Alfven current. According

to Eq. (22), there is a nonlinear force component in the
first order of ∆/a. However, we find that the emittance
growth caused by the beam displacement does not appear
in the first order of ∆/a. DARHT-2 may use a chicane
combined with a septum as one of chopper options. In

this case, beams will be bent 180o  four times, and the
bend radius is about 25 cm [4]. The estimated emittance

growth is 52.3 mm-mrad for each 180o  bend, and the
final emittance specification is 1200 mm-mrad.

In many cases, the lengths of the bending magnets on
a given beam line are the same. The emittance growth for
each bend with a bending magnet length   l  is
proportional to square of the bend angle as given by
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2

8

I
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2 .                   (24)

Assume that we need to bend the beam N  times to reach
a total bend angle αb,tot = Nαb . The total emittance

growth is then given as

  

∆εn,x ≅
2

8N3 2

I

βϕ Io

a2

l
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2 .          (25)

It is obvious that bending beams gently is more desirable
in terms of emittance preservation if we can afford the lab
space for a longer beam line. Let us consider an AHF
beam (1-cm radius beam, 4.5 kA, and 20 MeV [1] )

making a 360o  turn by traveling through sixteen 22.5o

bends. Each bend is 20 cm long. The normalized
emittance growth is about 3.6 mm-mrad for one bend, and
the total normalized emittance growth is 9.2 mm-mrad.

5  CONCLUSIONS

We have studied the emittance growth of a long dc
beam in bends caused by the curvature of the beam. By
ignoring the effects of charge redistribution and betatron
motion of particles, we find the emittance growth is
proportional to square of the beam radius and square of the
bend angle. A small beam transverse displacement is
included in our beam model. Our analysis shows that the
transverse displacement does not contribute to the
emittance growth, at least to the first order of the
transverse displacement divided by the beam radius. For a
typical radiography machine's beam parameters, the
emittance growth caused by traveling through a bend is
very small.
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