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Abstract

The problem of stationary self-consistent distributions for
charged particles beam in longitudinal magnetic field was
considered in various works. The simplest known distribu-
tion is Brillouin flow. Another simple case is Kapchinskij-
Vladimirskij distribution [1]. The supporters of these dis-
tributions in the phase space of transverse configurations
and velocities have zero volume. The distributions with
non-zero phase volume for beams with constant cross-
section radius were also obtained previously [2] – [6].

In the present report more general case is investigated
when radius of beam cross-section, longitudinal veloc-
ity, and magnetic field change along the longitudinal axis.
Wide classes of new stationary axially symmetric self-
consistent distributions are found. New distributions have
uniform charge density in the beam cross-section and, gen-
erally speaking, nonzero phase volume in the phase space
of transverse motion.

In particular case of longitudinal uniformity they coin-
cide with known ones. Such distributions can be applied for
modelling of the beam in nonuniform along its axis mag-
netic field with particles moving with different velocities in
various cross-sections.1

1 DYNAMICS EQUATIONS

Consider axially-symmetric stationary charged particles
beam in longitudinal magnetic field. We will look for
such particle distributions that particle density in configu-
ration spaceρ(r, z) is constant throughout the beam cross-
section:

ρ(r, z) =



ρ0(z), r ≤ R(z),

0, r > R(z)

wherer, ϕ, z are cylindrical coordinates, axisz coincides
with the beam axis.

Suppose thatR essentially changes only at the distances
which are sufficiently greater thenR. Then the equation of
radial motion of particles will be

r̈ = −ω2r +M2/r3 (1)

where ω2 = ω2
0 − λ/R2, ω2

0 = eBz/2m0γ, λ =
eJ/2πε0m0γ

3ż, J is beam current,ε0 is electric constant,
ż is longitudinal velocity of particles supposed to be equal
for all particles in given cross-section, but depended onz,
M = r2(ϕ̇ + ω0), e andm0 are charge and rest mass of
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particle,Bz is z-component of applied magnetic field,γ is
reduced particle energy,γ = (1 − β2)−1/2, β = ż/c, dot
means differentiating on independent variablet, t ≥ t0.

It can be shown that the equation for beam envelope
R(z) can be written in the form

R̈ = −ω2R+
a2
0c

2
0

R3
. (2)

The system of equation (1) and (2) can be reduced to
known Ermakov system [7] if the variableω, which de-
pends ont andR, is regarded as function oft.

Using the known expression for the integral of the Er-
makov system [8] we obtain that the value

I = (Rṙ − rṘ)2 +
M2R2

r2
+
a2
0c

2
0r

2

R2
=

(
dq

dτ
)2 +

M2

q2
+ a2

0c
2
0q

2 (3)

is integral of motion. Hereq = r/R, dτ = dt/R2. Another
integral of motion is

M = q2(
dϕ

dτ
+R2ω0). (4)

Let find such setΩ in the space of variablesI,M that
the conditionq ≤ 1,∀t ≥ t0 is satisfied for all particles. It
follows from (3) that

I ≤M2 + a2
0c

2
0. (5)

Also I ≥ min
q

(M2

q2 + a2
0c

2
0q

2) = 2|M |a0c0. Excluding the

particles on the low boundary of the set we obtained that

I > 2|M |a0c0. (6)

The setΩ defined by the conditions (5),(6) is shown on
fig.1. Analogous set for beam, uniform along its longitudi-
nal axis, was considered in works [5], [6].

Let consider also the setΩq of suchI andM that parti-
cle possessing theseI andM passes through a point with
coordinateq. First, we note that

I ≥ M2

q2
+ a2

0c
2
0q

2. (7)

Besides that, we have the inequality (5) limiting the value
of I at a given value ofM. So, the setΩq is defined by (7),
(5).
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Figure 1: the setΩ.

2 DISTRIBUTION IN THE SPACE OF
INTEGRALS

Further we consider the phase distribution of particles of
some infinitely thin layer moving along the axisz with the
velocity ż.We suppose that this layer is limited by two par-
allel infinitely closed planes moving along the axisz with
the same velocity. Taking into account velocity variation
along the axis and corresponding variation of the thickness
of the layer we normalize all densities dividing them by the
dz/ż.

Let us denote the particles distribution density on the
variablesa, b, . . . byDN/D(a, b, . . .). Consider the phase
density in the four-dimensional phase space of transverse
configurations and velocitiesn = DN/D(x, y, ẋ, ẏ). Here
x, y are transverse Cartesian coordinates.

We assume that phase densityn depends only onI and
M : n = n(I(r, ṙ, ϕ̇),M(r, ϕ̇)) wheren(I,M) denotes
some function ofI andM. Independence from the vari-
ableϕmeans axially symmetry of the beam. Independence
from the variabler narrows the class of admissible distribu-
tion, but sufficiently simplifies the further analysis because
in that case the conservation of phase density along parti-
cles trajectories means conservationn(I,M) alongz-axis.

Then we have

DN

D(q, I,M)
=

2π∫
0

dϕ
DN

D(q, ϕ, I,M)
=

2π
q2|q′|×

DN

D(q, ϕ, q′, ϕ′)
=

2π
q2|q′|R4

DN

D(q, ϕ, q̇, ϕ̇)
=

2πn(I,M)
|q′|

(stroke denotes differentiating on variableτ ).
Let introduce the distribution density of the particles in

the space of integralsI andM : f(I,M). Taking into ac-

count previous equality we get

f(I,M) =

qmax(I,M)∫
qmin(I,M)

DN

D(q, I,M)
dq =

π2n(I,M)
a0c0

,

as
qmax(I,M)∫

qmin(I,M)

dq/|q′| = π/2a0c0.

Expressing the particles density in configuration space
ρ(r) throughf(I,M) we get

ρ(r) =
∫
Ωq

DN

D(r, I,M)
dI dM

2πr
=

1
rR

∫
Ωq

n(I,M) dI dM
|q′| .

Concerning the particle density in the space with the co-
ordinatesx/R, y/R denoted bỹρ we will obtain

ρ̃(q) =
a0c0
π2q

∫
Ωq

f(I,M) dI dM
|q′| . (8)

In the expression (8) we exclude the particles for which
q′ ≡ 0 in accordance with (6). Accounting of these parti-
cles requires an additional term in the expression (8).

The expressions (5),(6),(8) are analogous to the expres-
sions obtained in the work [6], where the beam with con-
stant radiusR was considered. So, results of that work can
be extended to the present case.

For example, iff(I,M) is the density of a simple layer2

on the segment A’B’ which is tangent to the upper bound-
ary of the setΩ, then

f(I,M) = f0δI=I0(k)+kM , f0 > 0, (I,M) ∈ Ω (9)

whereI0(k) = a2
0c

2
0−k2/4. Substituting (9) to (8) we have

ρ̃(q) =
a0c0f0
π2q

∫
Ωq

δI=I0(k)+kM dI dM

(I −M2/q2 − a2
0c

2
0q

2)1/2
=

a0c0f0
√

1 + k2

π
as

∫
δs dI dM =

∫
(
∫
δ(I − I(M))

| cosϕ| dI)dM

where| cosϕ| = (1 + k2)−1/2. Hence, particles density
throughout the beam cross-section is constant for distribu-
tion (9) and, therefore, it is solution of the problem.

Normalizing as pointed out above we haveρ̃0 = J/π, so
f0 = J/a0c0(1+ k2)1/2. HereJ is beam current supposed
to be not depended ont.

As it is shown in the work [6], the supporter of the dis-
tribution density (9) is segment of straight line which is
tangent to the upper boundary of the setΩ. The segment is

2The density of the simple layer is surface density of the distribution
which supporter is some surface.
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bounded by the linesI = ±2a0c0M (the segment A’B’ on
the figure). Whenk = 0, this segment is parallel to the axis
M (segment AB on the figure). IfR is constant

R2 = (λ+
√
λ2 + 4ω2

0a
2
0c

2
0)/2ω

2
0, λ, ω0 = const ,

then the distribution (9) atk = 0 coincides with the
Kapchinskij-Vladimirskij distribution for the beam with
constantR (see [1]), and the distributions withk 6= 0 coin-
cide with distributions described in [2] for beam with con-
stantR (equilibrium of rigid rotator type).

3 LINEAR COMBINATIONS OF PARTICLES
DISTRIBUTIONS

Besides that, every linear combination of the distributions
(9) also will be uniform in the beam cross section:

f(I,M) =
∑
k∈K

αkδI=I0(k)+kM

whereK ⊂ (−2a0c0, 2a0c0) is some set of real numbers
or

f(I,M) =

2a0c0∫
−2a0c0

α(k)δI=I0(k)+kM dk.

For these cases we have

ρ =
a0c0
πR2

∑
k∈K

αk (1 + k2)1/2 and

ρ =
a0c0
πR2

2a0c0∫
−2a0c0

α(k) (1 + k2)1/2 dk

correspondingly.

4 INTEGRAL EQUATION FOR DISTRIBUTION
DENSITY

Another way to search the uniform distributions is to con-
sider the equality (8) as integral equation for distribution
density. Transposing the equation (8) we get

a2
0c

2
0

2π

2π∫
0

1∫
0

F (y cos(ψ − ϑ), y cos(ψ + ϑ))
(1 − y2)1/2

y dy dψ = J.

Here

F (k1, k2) =
{
f(I,M)(M2 − I + a2

0c
2
0)

1/2, k1 ≥ k2,
F (k2, k1), k1 < k2

,

k1,2 = 2(M ± (M2 − I + a2
0c

2
0)

1/2), ϑ = arccos q. This
is the integral equation for the function of two arguments
F (k1, k2). Both arguments depend onq. The problem is
to find suchF (k1, k2) that result of integration doesn’t
depend onq. Any nonnegative symmetric solution corre-
sponds to some self-consistent particle distribution.

The simplest solutionF (k1, k2) = g0 corresponds to

f(I,M) = g0(M2 − I + a2
0c

2
0)

−1/2, g0 > 0. (10)

Here g0 is constant. This distribution doesn’t reduce to
any distributions obtained before. Another simple case is
F (k1, k2) = g(k1) + g(k2) corresponding to

f(I,M) =
g(k1) + g(k2)

(M2 − I + a2
0c

2
0)1/2

, g(k) ≥ 0.

Other solutions can be sought in the form of a series or a
polynomials. For example, the distribution

f(I,M) =
−c (I − a2

0c
2
0)(10M2 − 5I + 2a2

0c
2
0) + g0

(M2 − I + a2
0c

2
0)1/2

corresponds to the polynomial of third degree. The con-
stant valuesc andg0 must be taken so thatf(I,M) ≥ 0 for
all (I,M) ∈ Ω.

Thus, wide classes of new stationary self-consistent non-
uniform alongz-axis distributions are obtained. These dis-
tributions can be used for the solution of various problems
of calculation and optimization of accelerating structures.
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