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Abstract particle, B, is z-component of applied magnetic fieldjs
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The problem of stationary self-consistent distributions foFedUCEd partlclg energy, = (1-5°) ’ .ﬁ = %/c, dot
eans differentiating on independent variahle> t,.

charged particles beam in longitudinal magnetic field wa¥' i
considered in various works. The simplest known distribu- It can be shpwn 'that the equation for beam envelope
tion is Brillouin flow. Another simple case is Kapchinskij- R(z) can be written in the form
Vladimirskij distribution [1]. The supporters of these dis- 9 o
tributions in the phase space of transverse configurations R=—-w’R+ ao—zo. (2
and velocities have zero volume. The distributions with R
non-zero phase volume for beams with constant cross-The system of equation (1) and (2) can be reduced to
section radius were also obtained previously [2] - [6].  known Ermakov system [7] if the variable, which de-
In the present report more general case is investigate@nds ont andR, is regarded as function of
when radius of beam cross-section, longitudinal veloc- Using the known expression for the integral of the Er-

ity, and magnetic field change along the longitudinal axismakov system [8] we obtain that the value
Wide classes of new stationary axially symmetric self-

consistent distributions are found. New distributions have M?R?  acir?

— (Pr_ D)2 _
uniform charge density in the beam cross-section and, gen- I'=(Ri—rR)"+ 72 . R2
erally speaking, nonzero phase volume in the phase space ,
i d M
of transverse motion. o . _ . (_q)z F 2y 3)
In particular case of longitudinal uniformity they coin- dr q?

cide with known ones. Such distributions can be applied folg integral of motion. Here = r/R, dr — dt/R2. Another
modelling of the beam in nonuniform along its axis mag-integral of motion is. ’ ’
netic field with particles moving with different velocities in
various cross-sections. dy
M = qQ(% + R%wy). (4)
1 DYNAMICS EQUATIONS

) ) ] ] ) Let find such sef? in the space of variableg M that
Consider axially-symmetric stationary charged particleg,q conditiony < 1,Vt > t, is satisfied for all particles. It
beam in longitudinal magnetic field. We will look for ¢510ws from (3)_that -

such particle distributions that particle density in configu-
ration space(r, z) is constant throughout the beam cross- I<M?+a2c. (5)
section: B

pol2),r < R(z), Also I > min(%2 + a3cdq?) = 2|M|agco. Excluding the
q

r,z) =
lr:%) 0, r> R(z) particles on the low boundary of the set we obtained that
wherer, ¢, z are cylindrical coordinates, axiscoincides I > 2|Mlagco. (6)
with the beam axis.

Suppose thak essentially changes only at the distanceshe set() defined by the conditions (5),(6) is shown on
which are sufficiently greater thei. Then the equation of fig.1. Analogous set for beam, uniform along its longitudi-
radial motion of particles will be nal axis, was considered in works [5], [6].

Let consider also the s€l, of suchl andM that parti-

2 27/..3 . ! .
= —wtr+ M7/ @ e possessing thedeand M passes through a point with
wherew? = w? — A/R?, w? = eB./2moy, A = coordinatey. First, we note that
eJ/2meomoy> 2, J is beam current, is electric constant, 2
% is longitudinal velocity of particles supposed to be equal I> Z +adcdq’. @)

for all particles in given cross-section, but depended on
M = r*(¢ + wo), e andmy are charge and rest mass ofgegjdes that, we have the inequality (5) limiting the value
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count previous equality we get

Qmaa:(LM) DN 9 (I M)
m™n
I, M) = - dg=—""
R e S
min (I,M)

as
dmax (LM)

dq/|q'| = 7/2apco.
Imin (I, M)

Expressing the particles density in configuration space
p(r) throughf (I, M) we get

/ dIdM_i/n(I,M)dIdM
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Figure 1: the sef). Qoncerning the particle density in t_he space with the co-
ordinatesr/ R, y/ R denoted by, we will obtain

B aoco fI,M)dIdM

2 DISTRIBUTION IN THE SPACE OF B |
INTEGRALS

(8)

Further we consider the phase distribution of particles of In the expression (8) we exclude the particles for which
= 0 in accordance with (6). Accounting of these parti-

some infinitely thin layer moving along the axisvith the cles requires an additional term in the expression (8).

a0 ™" The expressions (550 e anlogous o th exres-
y P 9 9 sions obtained in the work [6], where the beam with con-

the same velocity. Taking into account velocity variatior) "Stant radius? was considered. So, results of that work can
along the axis and corresponding variation of the thlcknesD
e extended to the present case.

of the layer we normalize all densities dividing them by the For example, iff (I, M) is the density of a simple layer

dz/%. on the segment AB’ which is tangent to the upper bound-
Let us denote the particles distribution density on th%lry of the sef2, then

variablesa, b, ... by DN/D(a,b,...). Consider the phase

density in the four-dimensional phase space of transverse f(I, M) = fob;—r,k)+kn, fo >0, (I, M) €Q (9)

configurations and velocities= DN/D(z,y, %, y). Here

x,y are transverse Cartesian coordinates. wherely (k) = ac? —k? /4. Substituting (9) to (8) we have
We assume that phase densitglepends only od and 5 dI dM

M: n = n(I(r,#,¢), M(r,¢)) wheren(I, M) denotes 5lq) = docofo / =l Lk =

some function ofl and M. Independence from the vari- Tq (I — M?/q* — agcgq®)'/?

abley means axially symmetry of the beam. Independence !

from the variable- narrows the class of admissible distribu- aocofo\/l-i-—kz

tion, but sufficiently simplifies the further analysis because

in that case the conservation of phase density along parti-

cles trajectories means conservatigd, M ) alongz-axis. /5 dl dM = / / I)dM
Then we have | cos ‘*9|

, where|cosp| = (1 + k2)~1/2. Hence, particles density

DN DN o throughout the beam cross-section is constant for distribu-
m = / SDD(q, o 1, M) = 27 X tion (9) an.d., therefor.e, it is solution of the [Jroblem.
Normalizing as pointed out above we haige= J/7, so
fo = J/aoco(1+k?)1/2. Here.J is beam current supposed
DN o DN 2mn(I, M) to be not depended an
= — = ’ As it is shown in the work [6], the supporter of the dis-
D(q,¢,q',¢')  @*ld'|R* D(q,¢,4,¢) ¢'| (6] bp

tribution density (9) is segment of straight line which is
(stroke denotes differentiating on variabie tangent to the upper boundary of the SefThe segment is

Let immdu_ce the distribution density of the Partides iN" 2The density of the simple layer is surface density of the distribution
the space of integralsand M : f(I, M). Taking into ac-  which supporter is some surface.
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bounded by the lineg = +2aqgco M (the segment AB’ on Here go is constant. This distribution doesn’t reduce to
the figure). Wherk = 0, this segment s parallel to the axis any distributions obtained before. Another simple case is

M (segment AB on the figure). R is constant F(k1,ke) = g(k1) + g(ke) corresponding to
R? = (A + /A2 +4w2adcd)/2wi, A\ wo = const, I.M)= g(k) + g(k2) k) > 0.
0*0™~0 0 f( Y ) (MQ—I‘FCL%C%)l/Q’ g( )_0

then the distribution (9) ak = 0 coincides with the
Kapchinskij-Vladimirskij distribution for the beam with
constant (see [1]), and the distributions with=~ 0 coin-

Other solutions can be sought in the form of a series or a
polynomials. For example, the distribution

cide with distributions described in [2] for beam with con- _ 2.2 2 _ 2.2
stantR (equilibrium of rigid rotator type). fU,M) = e aOCO)gloM 251;; z%%) %
(M? — I+ agcg)!/
3 LINEAR COMBINATIONS OF PARTICLES corresponds to the polynomial of third degree. The con-
DISTRIBUTIONS stant values andgo must be taken so thgt(7, M) > 0 for

(I,M) €.
Thus, wide classes of new stationary self-consistent non-
uniform alongz-axis distributions are obtained. These dis-

Besides that, every linear combination of the distributiong'!
(9) also will be uniform in the beam cross section:

FI,M) = Z RO 1— 10 () 4 kM tributions can be used for the solution of various problems
hekK ’ of calculation and optimization of accelerating structures.
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kio=2(M+ (M?* -1+ a2c3)'/?), ¥ = arccos q. This
is the integral equation for the function of two arguments
F(kq1, ko). Both arguments depend @n The problem is
to find suchF'(kq, ko) that result of integration doesn't
depend ony. Any nonnegative symmetric solution corre-
sponds to some self-consistent particle distribution.

The simplest solutiod(k1, k2) = go corresponds to

Here

FUI,M) = go(M? — T+ adcd) "%, go>0. (10)
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