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Abstract
Four vanes quadrupole structure with duodecapole field
component is analyzed to suppress emittance growth and
halo formation in high brightness beams. Beam profile in
such a structure has to be close to square instead of
conventional circle cross section. Adiabatic change of
electrode shapes along the channel results in
transformation of initially nonuniform beam into the
beam, matched with the channel with pure quadrupole
field. Results of prevention of halo formation in the bright
beam with phase space density of 1.5 A/(π cm mrad) are
given.

1 INTRODUCTION
Emittance conservation of a high brightness particle

beam is an issue for existing and future high intensity
accelerator projects. Nonuniform space charge dominated
beam is mismatched with linear focusing channel. It
results in beam emittance growth and halo formation (see
Fig.1). In Refs. [1, 2] it was shown that incorporation of a
duodecapole component in pure quadrupole alternating-
gradient structure provides better matching of the beam
with the transport channel. Special case is a four-vanes
structure, where shape of electrodes is modified to create
multipole field distribution [3]. Potential of an uniform
four vanes structure is given by

U(r,ϕ,t) = ( G2

2
 r2 cos2ϕ + G6

6
 r6 cos6ϕ ) sin ωot ,    (1)

where G2 is a quadrupole gradient, G6 is a duodecapole
component and ωo = 2πc/λ  is an operational frequency.
Averaging of equations of motion of particle with mass
mo, charge q and energy γ  gives an effective scalar
potential of the structure, which describes smoothed
particle trajectories [2, 3]:
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where µο is a smoothed transverse oscillation frequency

and ζ is a ratio of field components:

µo = q G2 λ2

8 γ  π moc2
 ,     ζ = G6

G2

  .               (3)

The effective potential (2) is an axial - nonsymmetrtic and
a highly nonlinear radius function. Equipotential lines
Uext(r,ϕ) = C are circles near axis and are transformed to

a 45o skewed square far from the axis [2].

Fig. 1. Emittance growth and halo formation of the 150
keV, 100 mA, 0.06 π cm mrad nonuniform proton beam
in a four vanes quadrupole structure.

Beam emittance is conserved, if beam is matched
with the channel. Finding matched conditions for the
beam requires solution of self-consistent problem for
beam distribution function in phase space. Self consistent
particle distribution creates potential, in which particle
motion maintains this distribution.

2  SELF-CONSISTENT PARTICLE DISTRIBUTION
IN A  CONTINUOUS FOCUSING CHANNEL
General approach to find a self-consistent distribution

function in uniform focusing channel is to represent it as a
function of Hamiltonian [4]

f = f (H),       H = 
px

2  + py
2

2 mo γ
 + q Uext + q Ub

γ 2
 ,         (4)

where Ub is a space charge potential of the beam.
Convenient way is to use an exponential function
f = fo exp (- H / Ho). Distribution function contains two
unknown constants Ho, fo, which can be expressed
through beam parameters. Root-mean-square (rms) beam

emittance ε is defined via beam radius R = 2 <x2> and

rms beam size in phase space po = 2 <px2> :

ε =  4
moc

  <x2><px
2>  =  R po

moc
  .            (5)
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Comparing definition of distribution function and eqs.(4),
(5), the value of Ho is given by:

Ho =  po
2

4moγ
   =  mo c2

4 γ
 (ε

R
)
2
  .              (6)

Space charge density of the beam is expressed through
beam distribution function after integration over particle
momentum:

ρ = q  
- ∞

∞
f dpxdpy

- ∞

∞
 = ρoexp (- q  Uext + γ -2 Ub

Ho
),  (7)

where ρo = 2π q γ mo fo Ho is a value of space charge
particle density in the center of the beam. Value of ρo is
unknown at this point due to unknown self potential of the
beam Ub. Typical particle distribution of a laboratory
beam has a maximum density in the center of the beam,
which drops toward beam periphery. Let us introduce an
average value of space charge density of the beam
ρ =  I / (βcπR2), where I is a beam current and β is a
particle velocity. In general case space charge density in
the center of the beam ρο differs from the average value

of space charge density ρ as a factor of k, where
parameter k=1 for uniform distribution ρ(r) = ρo and k=2
for Gaussian distribution ρ(r) = ρo exp(-2r2/R2). Taking
into account adopted relationship ρo = k ρ, the value of fo
is expressed as follow:

fo = k 2I
π2 β q mo

2 c3 ε2
  .               (8)

Substitution of the distribution function into Poisson's
equation gives a nonlinear equation for unknown space
charge potential of the beam Ub. After solution of the
Poisson's equation, one can find the self-consistent
particle distribution, which will be maintained in the
focusing channel. Let us introduce dimensionless
variables:

Vext = q Uext
Ho

 ,  Vb = q Ub
Ho

 ,    ξ = r
a
  ,     (9)

where a is a channel radius. In new variables, Poisson's
equation in cylindrical polar coordinates is

1
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R
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where b is a dimensionless value of beam brightness:

b = 2
β γ

  I
Ic

 ( R
ε

 )
2
  ,                            (11)

and Ic = 4πεomoc3/q = 3.13·107(A/Z) Amp is a characte-
ristic value of beam current.

Unknown space charge potential of the beam can be
expressed as Fourier-Bessel series

Vb=Vo+∑
n=0

∞

Jn(υnmξ)(Anmcos nϕ+Bnmsin nϕ)∑
m=1

∞

 ,  (12)

where Jn(x) is a Bessel function and υnm is a m-th root of
the equation Jn(x) = 0. Constant Vo = - bkγ2 is defined in
such a way, that total potential of the structure vanishes at
the axis Vext (0,ϕ) +  Vb (0,ϕ) γ -2  = 0.

To find an approximate solution of Poisson's equation,
let us take the first term in the near-axis expansion of
exponential function exp(-Vext -Vbγ -2) ≈ 1-Vext -Vbγ -2.
Poisson's equation becomes:

∑
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∞
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=
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Space charge dominated beam transport is achieved, if
b >> 1. It gives the possibility to simplify approximation
of Poisson's equation (13). Expression in square brackets
in equation (13) can be taken as a constant, close to unit:

1 + υnm
2

8kb
 (R

a
)
2
 ≈ 1 + δ,     δ  = 1

bk
 << 1 .      (14)

With that approximation, self-consistent space charge
dominated beam potential is:

Vb =  - γ2

1 + δ
 Vext  .                    (15)

Second approximation to the self-consistent potential
is given by holing one more term in expansion of expo-
nential   function  exp(-Vext -Vbγ -2) ≈ 1-Vext -Vbγ -2+
+ 0.5 (Vext -Vbγ -2)2:

Vb = γ 2[ 1+δ -Vext - (1+δ -Vext)
2-Vext(Vext -2)].  (16)

From eqs. (15), (16) it follows, that space charge potential
of a high brightness matched beam always tends to the
same distribution as an external focusing potential with
opposite sign, regardless the focusing field is applied.
With increasing of beam brightness, exact solution of eq.
(10) becomes close to eq.(15). In the extreme case of
infinitely high bright beam, space charge potential of the
beam completely compensates for focusing field
Vb = - γ 2Vext.

Self consistent space charge distribution of matched
beam in the channel with potential (2) is given by

ρb = εo

1+ δ
 γ2 ∆Uext =  ρo (1+10ζr4cos 4ϕ +25ζ2r8) . (17)

In the limit of very high brightness beam δ → 0 space
charge density of the matched beam (17) does not depend
on beam brightness. Particle distribution (17) has a 4-

folded symmetry. Every 45o variation of azimuth angle
results in change of particle distribution from decreasing
to increasing function of radius and vice versa.

Realistic beam distribution has monotonically
decreasing density function of radius. Good
approximation to realistic beam is a parabolic distribution
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in phase space [2, 3], which gives projection in real space
as ρ(r) = ρo [1 - 0.5 (r/R)2]

2
, close to truncated Gaussian

distribution . In Refs. [2,3] expressions for required
values of quadrupole gradient and duodecapole
components to provide approximate matching of such a
beam with the channel were found:

G2 = 8 π mo c2

q λ  R
  ε2

 R2
 + 3 I 

Ic βγ
,           (18)
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 + 3 I 

Ic β γ
)
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 .         (19)

To make the realistic beam distribution as close to
matched beam distribution as possible, beam has to be
truncated along equipotential lines. Therefore, beam

boundaries have to be 45o skewed square.

3  RESULTS OF PARTICLE-IN-CELL
SIMULATION

Computer simulations using particle-in-cell code
BEAMPATH [5] were done to verify the derived matched
conditions of the beam. Nonlinear transformer with
adiabatic change of duodecapole component was tested. If
parameters of the structure are changed adiabatically,
beam emittance is a constant of motion. One can expect
modification of a nonuniform particle distribution into
more uniform distribution in the structure, where higher
order focusing field components drops gradually.

In Fig. 2 results of beam dynamics in quadrupole
channel with gradual variation of a duodecapole
component are presented. The value of quadrupole

Fig. 2. Adiabatic matching avoiding halo formation of
150 keV, 100 mA, 0.06 π cm mrad proton beam in a
nonlinear matching section.

gradient G2 = 50 kV/cm2 was kept constant along the
channel. The duodecapole component  was adiabatically
changed from the value G6 = -1.9 kV/cm6 as required by
matched conditions, to zero for the distance L = 100 cm
utilizing linear law G6 (z) = G6 (1 - z / L). After nonlinear
matching section z > L, the channel was a pure
quadrupole and the beam was transported 224 cm more to
check the results of transformation. As seen, beam profile
in real space is modified from a square to a circular shape.
Rms beam emittance growth in simulations, presented in
Fig. 2 is 15%, which is substantially smaller, than 50%
emittance  growth in a pure quadrupole channel,
presented in Fig. 1. The final beam emittance and beam
profile are matched without serious phase space portrait
distortion. After transformation, the beam can be
transported in a conventional structure with a linear
focusing field.

4  CONCLUSIONS

Self consistent space charge potential of a high brightness
beam is derived in case of arbitrary potential of continuos
focusing channel. It is shown, that matched beam always
tends to compensate for applied potential. Simple formula
is given, which demonstrates the effect of shielding in
case of arbitrary focusing potential. Four vanes
quadrupole structure with a multipole component of the
6th order is analyzed to prevent space charge dominated
beam emittance growth. In such a structure, the matched
beam profile has to be close to square, instead of the
conventional circle beam cross section. The adiabatic
change of a nonlinear focusing field along a structure
results in gradual transformation of an initially
nonuniform beam distribution into a distribution matched
with the linear focusing channel. Given analysis provides
matched conditions for a non-uniform high brightness
particle beam transport without beam halo formation.
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