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Abstract 7=0
Four vanes quadrupole structure with duodecapole fie 10
component is analyzed to suppress emittance growth ¢ 25 ¢ 06
halo formation in high brightness beams. Beam profile i 2 E 9
such a structure has to be close to square instead _ g ook
conventional circle cross section. Adiabatic change « § % £y i < ||
electrode shapes along the channel results 140,2 E ) | & 0 S
transformation of initially nonuniform beam into the - E 02
beam, matched with the channel with pure quadrupo 7 ¢ - 04t
field. Results of prevention of halo formation in the brigh s EubuttluduluLulbhul, 06 b el
beam with phase space density of 1.5r%d(h mrad) are 232:15-1:050051 15225 2.5-2-1.5-10.50 051152 2.5
given. x (cm) X (cm)
z=324cm
-3
1 INTRODUCTION 25 ¢ o
Emittance conservation of a high brightness particl ,é 3 - Z’: E
beam is an issue for existing and future high intensii _ ;E i g 0'2 £
accelerator projects. Nonuniform space charge dominat § % EV[& ST <~ F =
beam is mismatched with linear focusing channel. =, E /1% ST B OF
results in beam emittance growth and halo formation (s 1 e 0z
Fig.1). In Refs. [1, 2] it was shown that incorporation of '~ F - el
duodecapole component in pure quadrupole alternatir 5 Buduad h W 06

gradient structure provides better matching of the beé 25-2-15-1-05005 115225 25-2-1.5-1-05005 115225
with the transport channel. Special case is a fourvan _. . _ . e _ __ xw
structure, where shape of electrodes is modified to cre&t®. 1. Emittance growth and halo formation of the 150
multipole field distribution [3]. Potential of an uniform keV, 100 mA, 0.06m cm mrad nonuniform proton beam
four vanes structure is given by in a four vanes quadrupole structure.

Beam emittance is conserved, if beam is matched
with the channel. Finding matched conditions for the
beam requires solution of self-consistent problem for
where G is a quadrupole gradient,gGs a duodecapole beam dist_ribL_Jtion function in phase space. Self consi_stent
component and, = 2ric/A is an operational frequency. part_|cle dlstrlb_utlon_ creates potentlal, in which particle
Averaging of equations of motion of particle with mas&notion maintains this distribution.

Mg, charge g and energy gives an effective scalar
potential of the structure, which describes smooth
particle trajectories [2, 3]:

u(r,o,t) = (% r> cos2p + %3 r® cos@ ) sinwot, (1)

e%i SELF-CONSISTENT PARTICLE DISTRIBUTION
IN A CONTINUOUS FOCUSING CHANNEL

General approach to find a self-consistent distribution
2 2 function in uniform focusing channel is to represent it as a
MeC2 H§ [ r2 4 . rm ¢
Uext(r,$) = 0=~ FO [ rE +{ 1% cosd + 5 r10], (2) function of Hamiltonian [4]

q A2
. . _ P+ ff/ Up
where |l is a smoothed transverse oscillation frequency f=f(H), H=""—"2+q U+ Q—Z : 4)
and( is a ratio of field components: Moy Y
2 where U is a space charge potential of the beam.
Ho = = Convenient way is to use an exponential function

A=A .
/8y Tt MeC G2 f=1f,exp (- H/ Ho). Distribution function contains two

. . . : _ unknown constants § fo, which can be expressed
The effective potential (2) is an axial - nonsymmetrtic an &1 fo P

a highly nonlinear radius function. Equipotential Iineé(':lm_)ugh be:?\m pa'ramet('ars. Root-mgan-sqVLez(rms) beam
Uextr.$) = C are circles near axis and are transformed @gnittancee is defined via beam radii® = 2/ <x=> and

a 4% skewed square far from the axis [2]. rms beam size in phase spaee= 2 | pg>:

€ =4 mzilq P . (5)
MeC MoC
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Comparing definition of distribution function and egs.(4)where $(x) is a Bessel function arnghm is a m-th root of

(5), the value of i is given by: the equation{x) = 0. Constant ¥ = - bky? is defined in
) such a way, that total potential of the structure vanishes at
Ho= P —Moc gy (6) the axis \ext (09) + Vp (09) y? =0.
4moy 4y R To find an approximate solution of Poisson's equation,

let us take the first term in the near-axis expansion of
Space charge density of the beam is expressed thro@ponential function xX-Vext -Vpy ) = 1-Vext -Vpy 2
beam distribution function after integration over particl€oisson's equation becomes:
momentum:

) c < Ur%m R 2 :
® 2 [1+ (%) 13n(Unm&)(AnmcOS 1 +Bnmsin np)=
f dpdp, = poexp (- qwx (7 ngo mz:]_ 8kb a
- 00 (0]

" 00

e

-00

= (1 - Vext) V2 -Vo. (13)

wherepo = 2y mo fo Ho is a value of space chargeg ;.o charge dominated beam transport is achieved, if
particle densny n Fhe center of the beam. Va'“%’fs b>> 1. It gives the possibility to simplify approximation
unknown at this point due to unknown self potential of thg popisson's equation (13). Expression in square brackets
beam Y. Typical particle distribution of a laboratory jn equation (13) can be taken as a constant, close to unit:
beam has a maximum density in the center of the beam,

which drops toward beam periphery. Let us introduce an VR (RY2
average value of space charge density of the beam 1 +8|Tb(§) =1+9,
p= |/(BCT[R2), where | is a beam current affidis a

particle velocity. In general case space charge density\ifith that approximation, self-consistent space charge
the center of the beapy, differs from the average value dominated beam potential is:

of space charge densiip as a factor of k, where

5=L1<<1. (14
bk

parameter_k=1 for l_mifc_)rm distributiqu(r) =p20 and l§=2 Vp= - y? Vext - (15)

for Gaussian distributiom(r) = po em(;ZrZ/R ). Taking 1+

into account adopted relationshgp= k p, the value of §

is expressed as follow: Second approximation to the self-consistent potential
fo=k 2| 8 is given by holing one more term in expansion of expo-
°T e BqmE e | (®) nential function e;x(-vext Vpy ?) = 1-Vext -Vpy 2+

+ 0.5 (Vext -Vby 9™
Substitution of the distribution function into Poisson's
equation gives a nonlinear equation for unknown spac&/p =y 1+8 -Vext - \/(1+6 -vext)z-vext(vext -2)]. (16)
charge potential of the beampUAfter solution of the
Poisson's equation, one can find the self-consistentom egs. (15), (16) it follows, that space charge potential
particle distribution, which will be maintained in theof @ high brightness matched beam always tends to the
focusing channel. Let us introduce dimensionlessame distribution as an external focusing potential with

variables: opposite sign, regardless the focusing field is applied.
_q Uext _qUp _r With increasing of beam brightness, exact solution of eq.
VeXt‘isx d Vb‘iHo d E‘g ) (10) becomes close to eq.(15). In the extreme case of

infinitely high bright beam, space charge poten_tial of_ the
where a is a channel radius. In new variables, Poisso@%ba_m vczt\)/m;tjletely compensates for focusing field

- < e ; . =- ext.
equation in cylindrical polar coordinates is Self consistent space charge distribution of matched
2 beam in the channel with potential (2) is given by
10 E 0Vpy 4 0Vp 8Kb{y/-2)°exp(-Vaxt - V%J),(lo)
§£08 08 52392 R y Pb :ﬁyzAUext = po (1+1Q@r*cos 4 +25*48) . (17)

+

where b is a dimensionless value of beam brightness: In the limit of very high brightness beain 0 space

charge density of the matched beam (17) does not depend
(11) on beam brightness. Particle distribution (17) has a 4-

folded symmetry. Every 45variation of azimuth angle
results in change of particle distribution from decreasing
ncreasing function of radius and vice versa.

Realistic beam distribution has monotonically
decreasing density function of radius. Good

Vb:VO+Z) S Ih(VnnE)(AnmcOos +Bansin ) , (12) approximation to realistic beam is a parabolic distribution
n=0 m=1

b=2 | (R)2 ,

By Ic ¢
and k = 4nemoc®q = 3.13-16(A/Z) Amp is a characte-
ristic value of beam current. X
Unknown space charge potential of the beam can B%'
expressed as Fourier-Bessel series
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in phase space [2, 3], Wf;iCh gives projection in real spageadient G = 50 kV/cn? was kept constant along the
asp(r) =po[1 - 0.5 (/Rf]", close to truncated Gaussianchannel. The duodecapole component was adiabatically
distribution . In Refs. [2,3] expressions for reqwrec#:hanged from the valueg3= -1.9 kV/cnP as required by

values of quadrupole gradient and duodecapole . :
. : . atched conditions, to zero for the distance L = 100 cm
components to provide approximate matching of suchu lizing linear law G (z) = Gs (1 - z / L). After nonlinear

beam with the channel were found: > .
matching section z > L, the channel was a pure

G, —V8mm £ 31 (18) quadrupole and the beam was transported 224 cm more to
gA R RZ lcBy check the results of transformation. As seen, beam profile

in real space is modified from a square to a circular shape.

Ge = Gz | (g2, 31 )‘1 (19) Rms beam emittance growth in simulations, presented in

Fig. 2 is 15%, which is substantially smaller, than 50%

emittance growth in a pure quadrupole channel,

Bresented in Fig. 1. The final beam emittance and beam
gfile are matched without serious phase space portrait

12ByR*lc R2 IcBY

To make the realistic beam distribution as close t
matched beam distribution as possible, beam has to Siortion. After transformation. the beam can be
truncated along equipotential lines. Therefore, bea s . ’ X ;

: ransported in a conventional structure with a linear
boundaries have to be @5kewed square. focusing field.

3 RESULTS OF PARTICLE-IN-CELL 4 CONCLUSIONS
SIMULATION

Computer simulations using particle-in-cell codéself consistent space charge potential of a high brightness
BEAMPATH [5] were done to verify the derived matchedbeam is derived in case of arbitrary potential of continuos
conditions of the beam. Nonlinear transformer witfiocusing channel. It is shown, that matched beam always
adiabatic change of duodecapole component was testedetfds to compensate for applied potential. Simple formula
parameters of the structure are changed adiabatically,given, which demonstrates the effect of shielding in
beam emittance is a constant of motion. One can expe&se of arbitrary focusing potential. Four vanes
modification of a nonuniform particle distribution intoquadrupole structure with a multipole component of the
more uniform distribution in the structure, where highefth order is analyzed to prevent space charge dominated
order focusing field components drops gradually. beam emittance growth. In such a structure, the matched

In Fig. 2 results of beam dynamics in quadrupoleeam profile has to be close to square, instead of the
channel with gradual variation of a duodecapolgonventional circle beam cross section. The adiabatic
component are presented. The value of quadrupatbange of a nonlinear focusing field along a structure

20 results in gradual transformation of an initially
o nonuniform beam distribution into a distribution matched
25 = with the linear focusing channel. Given analysis provides
2 BT 06 2 matched conditions for a non-uniform high brightness
I'f E \, ( o M E particle beam transport without beam halo formation.
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Fig. 2. Adiabatic matching avoiding halo formation of
150 keV, 100 mA, 0.061 cm mrad proton beam in a
nonlinear matching section.
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