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Abstract

We analyze particle diffusion and emittance growth in-
duced by discrete-particle effects in two-dimensional self-
consistent numerical simulation studies of beam dynamics.
In particular, an analytical model is presented which de-
scribes the slow time-scale variation of edge emittance for
a perfectly matched beam in a periodic solenoidal magnetic
focusing field. A scaling law for edge emittance growth is
obtained.

1 DISCUSSION

There has been a growing interest in the study of high-
current electron and ion accelerators for a variety of ap-
plications. An important issue in the development of such
advanced accelerators is to avoid beam halos and associ-
ated beam losses [1]. While modern accelerator design re-
lies heavily on self-consistent computer simulations, accu-
rate predictions of the processes of beam halo formation
and beam losses have not been accessible in the simula-
tions because of discrete-particle effects [2]. In this pa-
per, we derive a scaling law which governs the processes
of edge emittance growth and particle diffusion induced
by discrete-particle effects in self-consistent simulations of
periodically focused intense charged-particle beams.

Let us consider a thin, continuous charged-particle
beam which propagates with average axial velocityβbc~ez

through an axisymmetric linear focusing channel provided
by a periodic solenoidal magnetic field

~B0(x, y, s) = Bz(s)~ez − [B′
z(s)/2] (x~ex + y~ey). (1)

In Eq. (1)s = z = βbct is the axial coordinate,Bz(s +
S) = Bz(s) is the axial component of the applied magnetic
field, S is the fundamental periodicity length of the focus-
ing field, c is the speed of light invacuo, and the “prime”
denotes derivative with respect tos.

In the present two-dimensional macroparticle model, the
beam density is given by

n(x, y, s) =
N

Np

Np∑
i=1

δ[x− xi(s)] δ[y − yi(s)], (2)

where N and Np are the number of microparticles
and macroparticles per unit axial length of the beam,
respectively, and(xi, yi) is the transverse displace-
ment of the ith macroparticle from the beam axis at
(x, y) = (0, 0). Under the paraxial approximation,
we can express the transverse equations of motion for
the ith macroparticle of the beam in the Larmor frame

as [1]

d2x̃i

ds2
+ κz(s) x̃i = − q

γ3
bβ

2
bmc

2

∂

∂x̃i
Φ(s)(x̃i, ỹi, s), (3)

d2ỹi

ds2
+ κz(s) ỹi = − q

γ3
bβ

2
bmc

2

∂

∂ỹi
Φ(s)(x̃i, ỹi, s). (4)

In Eqs. (3) and (4),i = 1, 2, ..., Np, γb = (1 −
β2

b )−1/2 is the relativistic mass factor,m and q are the
particle rest mass and charge, respectively,κz(s) =
[qBz(s)/2γbβbmc

2]2 is a measure of the strength of the
focusing field, and

Φ(s)(x̃i, ỹi, s) = −qN
Np

Np∑
j=1(j 6=i)

ln[(x̃i− x̃j)2 +(ỹi− ỹj)2]

(5)
is the self-field scalar potential associated with the beam
space-charge.

In order to develop an analytical model to describe
diffusive behavior induced by discrete-particle effects in
beam dynamics, we first consider the limit of a smooth
equilibrium distribution of particles corresponding to the
Kapchinskij-Vladimirskij (KV) equilibrium function [1].
In the KV equilibrium, the beam density is given by

nKV (x̃, ỹ, s) =
{
N/πr2b (s), 0 ≤ r ≤ rb(s),
0, r > rb(s),

(6)

wherer ≡ (x2 + y2)1/2 = (x̃2 + ỹ2)1/2 is the radial co-
ordinate, andrb = rb(s) is the beam radius. The scalar
potential for the self-electric field is given by

Φ(s)
KV (x̃, ỹ, s) = −qNr2/r2b(s) (7)

in the beam interior (r < rb). Substituting
Φ(s)(x̃i, ỹi, s) = Φ(s)

KV (x̃i, ỹi, s) into Eqs. (3) and (4), the
equilibrium particle orbits̃xi(s) andỹi(s) can be expressed
as

x̃i(s) = Axi rb(s) cos[ψ(s) + φxi], (8)

ỹi(s) = Ayi rb(s) sin[ψ(s) + φyi], (9)

where Axi, Ayi = (1 − A2
xi)

1/2, φxi and φyi are
constants determined by the initial conditions,ψ(s) =
4ε

∫ s

0 ds/r
2
b (s) is the accumulated phase of the betatron os-

cillations, andrb(s) = rb(s+S) solves the beam envelope
equation

r′′b + κz(s) rb −K/rb − (4ε)2/r3b = 0, (10)
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with ε being the unnormalized rms emittance of the
beam, andK ≡ 2q2N/γ3

bβ
2
bmc

2, the normalized per-
veance of the beam. The particle distribution func-
tion for the KV equilibrium can be expressed as
fKV (x̃, ỹ, x̃′, ỹ′, s) = (N/16ε2π2) δ(A2

x +A2
y −1), where

δ(x) is the Diracδ-function. Because the four-dimensional
phase-space volume element is given bydx̃dỹdx̃′dỹ′ =
16ε2AxAy dAxdAydφxdφy , integratingfKV overAy, φx

andφy yields the distribution function forAx over a KV
beam

FKV (Ax) =
{

2NAx, 0 ≤ Ax ≤ 1,
0, Ax > 1,

(11)

where
∫ ∞
0 FKV (Ax)dAx = N . Note from Eq. (11) that

the largest concentration of particles occurs atAx = 1.
Note also from Eq. (8) that particles withAxi = 1 reach
the edge of the beam withxi = rb, as they execute beta-
tron oscillations. Therefore, they are most likely to leave
the beam core under the perturbations induced by discrete-
particle effects.

In numerical simulations as well as in experiments,
the beam density deviates from the smooth beam den-
sity nKV (x̃, ỹ, s) of the KV equilibrium. For a coarse-
grained uniform density distribution, the deviation is
small when there is a large number of particles. Such
small deviation will induce slow-time-scale evolution of
Axi(s), Ayi(s), φxi(s) and φyi(s) in the particle orbit
given in Eqs. (8) and (9). In the remainder of this paper,
we analyze the dynamics of edge particles initially with
Axi(s=0) = 1 andAyi(s=0) = [1−A2

xi(s=0)]1/2 = 0,
because they are most likely to diffuse away from the
beam core as discussed previously. We disregard dynam-
ical couplings between(Axi;φxi) and(Ayi;φyi) because
Ayi(s) ≈ 0, and introduce the dimensionless variables
and parameters defined bys/S → s, x̃/(4εS)1/2 → x̃,
ỹ/(4εS)1/2 → ỹ, rb/(4εS)1/2 → rb, S2κz → κz and
SK/4ε→ K. Substituting Eq. (8) into Eq. (3), and taking
into account theslow dependence ofAxi andφxi, we find
that [

A′
xi r

′
b −

Axi φ
′
xi

rb

]
cos(ψ + φxi)

−
[
A′

xi

rb
+Axi φ

′
xi r

′
b

]
sin(ψ + φxi) = (12)

− K

4qN
∂

∂xi
[φ(s) − φ

(s)
KV ],

where use has been made of Eq. (10). It is evident in
Eq. (12) thatA′

xi = 0 = φ′xi for φ(s) = φ
(s)
KV .

To derive a closed set of equations for the slowly vary-
ing variablesAxi andφxi, we average Eq. (12) over fast
oscillations pertaining to the focusing field and the beta-
tron oscillations. Making use of Eqs. (5), and (7)-(9), we
can express Eq. (12) as

dAxi

ds
= − K

Np

Np∑
j=1(j 6=i)

Bjbj + Cjcj
b2j + c2j

, (13)

dφxi

ds
=
K

2
− K

AxiNp

Np∑
j=1(j 6=i)

Cjbj −Bjcj
b2j + c2j

, (14)

where

Bj = −(Axj/2) sin∆xj, Cj = (Axi −Axj cos∆xj)/2,

bj = [(Axi −Axj cos∆xj)2 −A2
xj sin2 ∆xj

−A2
yj cos(2∆yj)]/2, (15)

cj = (Axi −Axj cos∆xj)Axj sin∆xj +
1
2
A2

yj sin(2∆yj),

with ∆xj ≡ φxj − φxi and∆yj ≡ φyj − φxi. Since the
derivation of Eqs. (13) and (14) does not require the explicit
form of the focusing magnetic fieldBz(s), Eqs. (13) and
(14) are valid for an arbitrary periodic focusing channel.

In principle, detailed dynamics of edge particles initially
with Axi = 1 andAyi = 0 can be analyzed using Eqs. (13)
and (14). In this paper, however, we examine particle dif-
fusion induced by discrete-particle effects. To describe the
diffusion process quantitatively, we introduce the quanti-
tiesµ(s) = 〈Axi〉 andσ2(s) = 〈(Axi − µ)2〉, where〈 〉
stands for the average over particles that are initially lo-
cated atAxi = 1. We compute the expectation values of
dµ/ds = 〈A′

xi〉 andd2σ2/ds2 = 〈(A′
xi − µ′)2〉 by ensem-

ble averaging over all possible beam distributions which
approach the KV distribution whenNp → ∞. The results
areµ(s) = µ(0) = 1, and

σ2(s) = Ds2, (16)

where the ‘diffusion’ coefficient is given by

D(K,Np) = ξ K2/Np, (17)

ξ = (1/N)
∫
ξjfKV (x̃j , ỹj, x̃

′
j , ỹ

′
j, s)dx̃jdỹjdx̃

′
jdỹ

′
j , ξj =

[(Bjbj + Cjcj)/(b2j + c2j)]
2. It should be stressed that un-

like usual diffusive processes, the varianceσ2 here is pro-
portional tos2. Due to the highly oscillatory nature ofξj ,
our best estimate of the value ofξ is ξ = 0.7 ± 0.3. In
dimensional units, it follows from Eq. (16) that the edge
emittance4ε evolves according to

〈4ε(s)〉 = 4ε(0)[1 + ξK2s2/16ε2(0)Np]. (18)

To verify the scaling law in Eqs. (16) and (17), we carry
out self-consistent simulations by integrating Eqs. (3) and
(4) numerically for various particle distributions. We adopt
the following procedure to calculate the diffusion about
Axi = 1. In such a self-consistent, a first set ofNp

macroparticles is loaded corresponding to a KV distribu-
tion, a second set ofNt test particles is loaded atAxi = 1
with a uniform distribution ofφxi in the range from 0 to
2π. As the beam propagates through the focusing channel,
the particles in the first set interact with each other self-
consistently, whereas the test particles experience the elec-
tric and magnetic forces imposed by the particles in the first
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set. Integrating Eq. (10) concurrently in the simulation and
using the relationAxi = [(x̃i/rb)2 + (x̃i r

′
b − x̃′i rb)

2]1/2,
the expectation values ofµ(s) andσ2(s) over the test dis-
tribution are readily computed. Results are summarized in
Figs. 1-3.
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Figure 1: Plot ofσ2/s2 as function ofs.

Figure 1 shows plots ofσ2/s2 versus the propagation
distances obtained from a self-consistent simulation of in-
tense beam propagation through a sinusoidal periodic fo-
cusing channel. The choice of system parameters in Fig. 1
corresponding toNp = 1024, Nt = 512, K = 0.5, and
κz(s) = [a0 + a1 cos(2πs)]2, wherea0 = a1 = 0.648.
Due to small residual correlation in the initial distributions
of test particles and background macroparticles, the value
of σ2/s2 is large fors � 1. As the beam propagates, the
residual correlation decays rapidly, and the value ofσ2/s2

approaches a plateau fors > 1, where the diffusion coeffi-
cient is calculated to beD = 1.0 × 10−4 (ξ = 0.4), as in-
dicated by the dashed line. As the beam propagates further
through the focusing channel, the plateau levels off because
the test particles become widely spread aboutAxi = 1.

The scaling law is verified by self-consistent simula-
tions. Figure 2 shows a logarithmic plot ofD versusK
obtained from self-consistent simulations for beam prop-
agation through the same periodic focusing channel as in
Fig. 1. In Fig. 2, the number of background macroparti-
cles is kept at a constant value ofNp = 1024. The dotted
curve is from the self-consistent simulations, whereas the
solid line is the analytical result given byD = αK2, where
α = ξ/Np = 3.5×10−4 (ξ = 0.35). In Fig. 3, the diffusion
coefficientD is plotted versusNp, as obtained from self-
consistent simulations of beam propagation through the
same periodic focusing channel in Fig. 1 for a fixed value
of K = 0.5. The dotted curve is from the self-consistent
simulations, whereas the solid line is the analytical result
given byD = βK2, whereβ = ξK2 = 0.12 (ξ = 0.48).
In comparison with Fig. 2, data fluctuations in Fig. 3 are
larger because the initial distribution changes asNp is var-
ied. Nevertheless, it is evident in Fig. 2 and 3 that simu-
lation results are in good agreement with the analytically
predicted scaling law.
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Figure 2: Log-log plot ofD versusK.
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Figure 3: Log-log plot ofD versusNp.

To conclude, we have obtained a scaling law for edge
emittance growth induced by discrete-particle effects in
two dimensional self-consistent simulations of intense
charged-particle beams in a periodic solenoidal focusing
field. The scaling law may be applied to establish crite-
ria for accurate simulation studies of the process of beam
halo formation and beam losses.
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