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Abstract

To minimize emittance growth in a long linac, it is neces-
sary to control the wakefields by correcting the beam or-
bit excursions. In addition, the particle energy is made to
vary along the length of the bunch to introduce a damp-
ing, known as the BNS damping, to the beam break-up ef-
fect. In this paper, we use a two-particle model to examine
the relative magnitudes of the various orbit and dispersion
functions involved. The results are applied to calculate the
effect of a closed orbit bump and a misaligned structure. It
is shown that wake-induced dispersion is an important con-
tribution to the beam dynamics in long linacs with strong
wakefields like SLC.

1 WAKE INDUCED DISPERSION
(TWO-PARTICLE MODEL)

Consider a linac with uniform betatron focusing and no ac-
celeration. Introduce an orbit kickθ ats = 0. The betatron
equation of motion for a particle with relative energy error
δ is

x′′(s) +
k2

β

1 + δ
x(s) =

θ

1 + δ
δ(s), (1)

with the solution

x(s) =
θ

kβ

√
1 + δ

sin(
kβs√
1 + δ

). (2)

Whenkβsδ � 1, one may expand (2) inδ, i.e.

x(s) = x0(s) + η(s)δ + O(δ2), (3)

with

x0(s) =
θ

kβ
sinkβs

and the dispersion functionη(s) = − θ
2 (s cos kβs +

1
kβ

sinkβs). Whenkβs � 1, the dispersion effect can
clearly be important. Whenkβsδ � 1 is not satisfied, we
will have to use Eq.(2) instead of Eq.(3).

We next consider a two-particle model for the kicked
beam. The motion of the leading macroparticle (considered
to be on-momentum) of the beam is given byx = x0(s).
Let N/2 be the number of electrons in the leading and the
trailing macroparticles,γ be the design energy Lorentz fac-
tor,W1 be the wake function per cavity period, andL be the
cavity period length. Lety(s) designate the orbit deviation
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of the trailing macroparticle. We have

y′′(s) +
k2

β

1 + δ
y(s) =

θ

1 + δ
δ(s)

− Nr0W1

2γL(1 + δ)
θ

kβ
sin kβs, (4)

wherer0 is the classical electron radius. In Eq.(5), we have
assumed the leading and the trailing macroparticles have
the same design betatron frequency. This is the case when
there is no BNS damping. The case with BNS damping is
to be treated later.

The solution to Eq.(5) is

y(s) = x(s) − Υθ

kβL0

2
kβδ

·(
sin kβs −√

1 + δ sin
kβs√
1 + δ

)
(5)

where we have defined a dimensionless parameter

Υ = −Nr0W1L0

4γLkβ
. (6)

The first term on the right hand side of Eq.(6) is the direct
response of the trailing macroparticle to the orbital kick
and is the same as Eq.(2). The second term is the driven
response to the wakefield.

Whenkβsδ � 1, we can expand (6) inδ to obtain

y(s) = y0(s) + [η(s) + ξ(s)]δ + O(δ2)

y0(s) = x0(s) − Υθ

kβL0
(s cos kβs − 1

kβ
sin kβs)

ξ(s) = − Υθ

4kβL0
· (7)(

kβs2 sin kβs − s coskβs +
1
kβ

sinkβs

)

wherey0(s) is the usual beam break-up response to wake
fields, andξ(s) is the wake-induced dispersion function.

Note thatξ(s) is doubly resonantly driven as evidenced
by its containing a term proportional tos2. WhenΥ and
kβL0 are both� 1, the ratio among the four quantities is

ξδ : y0 : ηδ : x0 ≈ ΥkβL0δ

4
: Υ :

kβL0δ

2
: 1. (8)

Comparingξ with η near the end of linac, the magnitude
of ξ is larger by a factor ofΥ/2. This indicates the wake-
induced dispersion may be an important consideration in a
long linac such as the SLC or the NLC.
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In the above analysis, acceleration has been ignored.
When acceleration is taken into account, we need to replace
the expression (7) by

Υ = −Nr0W1L0

4γfLkβ
ln

γf

γi
, (9)

whereγi,f refer to the initial and final beam energies of the
linac.

For the SLC, if we takeN = 5 × 1010, W1 = −0.7
cm−2, L0 = 3 km, L = 3.5 cm, andkβ = 0.06 m−1,
and let the beam be accelerated from 1 GeV to 50 GeV,
we find Υ = 14. If we further takeδ = 0.5%, we find
ξδ : y0 : ηδ : x0 ≈ 3.1 : 14 : 0.45 : 1.

One may ask what happens when a BNS damping is im-
posed. In this case, the leading macroparticle sees a fo-
cusing gradientkβ , thereforex(s), x0(s) andη(s) remain
given by Eqs.(2-4). However, the trailing particles see a
stronger focusing with

y′′(s) +
(kβ + ∆kβ)2

1 + δ
y(s) =

θ

1 + δ
δ(s) − Nr0W1

2γL(1 + δ)
θ

kβ
sinkβs (10)

which has the solution

y(s) =
θ

(kβ + ∆kβ)
√

1 + δ
sin(

kβs + ∆kβs√
1 + δ

)

− 2Υθ

kβL0

1

1 + δ − (1 + ∆kβ

kβ
)2[

1
kβ

sin kβs −
√

1 + δ

kβ + ∆kβ
sin(

kβs + ∆kβs√
1 + δ

)
]

.

(11)

The BNS condition is to choose∆kβ such that

(1 +
∆kβ

kβ
)2 = 1 +

2Υ
kβL0

. (12)

When (13) is satisfied, the orbit of a trailing particle whose
δ = 0 is identical to that of the leading macroparticle, i.e.
y(s, δ = 0) = x0(s), thus minimizing the beam emittance
growth due to wake fields. The question now is what hap-
pens to the wake-induced dispersion effect. With the BNS
condition (13), Eq.(12) reads

y(s) = x0(s) +
θδ

kβ(δ − 2Υ
kβL0

)
(13)



√

1 + 2Υ
kβL0

1 + δ
sin


kβs

√
1 + 2Υ

kβL0

1 + δ


− sinkβs


 .

One sees a resonance response whenδ = 2Υ
kβL0

. This is be-
cause then the tail particle has a betatron focusing strength
kβ+∆kβ√

1+δ
= kβ .

Typically we have Υ
kβL0

� 1 (and thus∆kβ � kβ) and
δ � 1. If we further have the conditionkβsδ � 1 and
δ � 2Υ

kβL0
, then we can write

y(s) ≈ x0(s) + ξ(s)δ, (14)

where

ξ = −θL0

2Υ
[sin(kβs +

Υ
L0

s) − sinkβs]. (15)

This is a very small dispersion. We have, instead of Eq.(9),

ξδ : y : ηδ : x =
kβL0δ

2Υ
: 1 :

kβL0δ

2
: 1. (16)

Note thaty(s) in (15) does not contain a termη(s)δ as
Eq.(8) did. Note also that inspite of BNS,ξ is not identical
to η, althoughy is made identical tox by the BNS condi-
tion. There is therefore a dispersive mismatch between the
head and the tail of the bunch due to a mismatch between
ξδ andηδ. The increase in the beam emittance is

∆ε =
kβ

2
(
1
2
θL0σδ)2 (17)

In order for this effect to be negligible, we need the condi-
tion, even when the BNS condition is perfectly satisfied,

θL0σδ � σβ , (18)

whereσβ is the betatron beam size.

2 CLOSED π BUMPS

So far, we have considered the case of an uncorrected beta-
tron oscillation, induced by a single kickθ. We now study
a closedπ-bump that is implemented with two kicksθ that
are located ats = 0 ands = π/kβ. The orbit and disper-
sion functions for the second kick are obtained by substitut-
ing s with s−π/kβ. For example,x0(s) → x′

0(s−π/kβ).
The orbit functionx̃0 downstream of theπ-bump is just

the sum ofx0 andx′
0. With Eq.(3) we obtain immediately

x̃0 = 0, indicating that the bump is closed. Doing the same
excercise for the tail orbit and the dispersion functions we
obtain from Eqs.(4) and (8):

η̃(s) = η(s) + η(s − π/kβ) = − θπ

2kβ
cos(kβs)

ỹ0(s) = − πΥθ

k2
βL0

cos kβs (19)

ξ̃(s) = − πΥθ

4k2
βL0

[(2kβs − π) sin kβs − cos kβs] .

We obtain the well known result that a closedπ-bump is not
closed for the dispersionη, and generates a dispersion os-
cillation with constant amplitude. Theπ-bump is also not
closed for the tail orbit. If the BNS condition is satisfied the
bump is closed for both head and tail particle. The results
are important because the orbit after steering can be de-
scribed by a superposition ofπ-bumps (90 degree lattice).
The wake kick during the orbit bump, together with the en-
ergy offset of the tail particle, gives rise to a wake-induced
dispersion which increases linearly withs.
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3 DISPERSION FROM A MISALIGNED
STRUCTURE

The kickθ above applied both to head and tail particle, as
from quadrupole offsets or dipole correctors. In the case
of a structure offset, the head induces a dipole wakefield
that deflects the tail particle bŷθ. The head orbit is not
disturbed and we can write:

x0(s) = 0 , y0(s) =
θ̂

kβ
sin kβs. (20)

Orbit correction (without BPM errors) requires that the sum
of head and tail trajectory is zero (x0(s)+y0(s) = 0). This
is achieved by applying a kickθ = −θ̂/2 to both particles.
Assuming BNS andδ = 0 we get:

x0(s) = −y0(s) =
θ/2
kβ

sin kβs. (21)

The centroid trajectory is zero as required, but head and
tail particle perform uncorrected betatron oscillations. The
centroid dispersionηtot is:

ηtot = −
(

θ̂

2
+

θ

2

)
(s cos kβs +

1
kβ

sinkβs)

− θL0

2Υ
[sin(kβs +

Υ
L0

s) − sin kβs]. (22)

Because the tail dispersionξ that is induced by the “correc-
tor” kick θ is small (see Eqs.(17)), we can neglect it here.
With θ = −θ̂/2 we obtain:

ηtot ≈ − θ̂

4
(s cos kβs +

1
kβ

sinkβs) (23)

The centroid dispersionηtot that is generated by a mis-
aligned structure grows resonantly withs and therefore be-
comes large for long linacs.

The orbit due to a misaligned quadrupole and after tra-
jectory correction can be described by aπ-bump through
the quadrupole center (90 degree lattice). The resulting
dispersion downstream of the closed bump was given in
Eq.(20). Comparing this to Eq.(24), we see that the dis-
persion generated from a misaligned structure can become
larger than the dispersion from a misaligned quadrupole af-
ter orbit correction. The ratio between them is of the order
of (θ̂/θ) · (kβL0/2π) at the end of the linac. Due to its res-
onant growth ins, dispersion from a misaligned structure
becomes larger than the one from a misaligned quadrupole
thoughθ̂ < θ for the same misalignment. The importance
of wake-induced dispersion was indeed shown in SLC sim-
ulations done with the computer program LIAR [1]. Fig-
ure 1 shows that wakefield generated dispersion in the SLC
becomes larger than quadrupole generated dispersion for
large bunch charges.

4 CONCLUSION

The orbit and dispersion functions in the presence of wake-
fields have been calculated. It was shown that the disper-
sion effect of an orbit kick is made much worse by the
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Figure 1: Simulated RMS dispersion as a function of bunch
population at the end of the SLC linac and after orbit cor-
rection. The dotted line shows the dispersion without wake-
fields. The points indicate simulation results with wake-
fields. The filled points show a case where only the RF
structures were misaligned. Finally, the open points show
the total dispersion, if quadrupole and BPM errors are in-
cluded. It is seen that centroid dispersion is mainly gener-
ated by structure offsets for the SLC at high bunch current.
Even with a flat centroid trajectory (filled points), the cen-
troid dispersion can become large.

presence of the wakefields in the absence of BNS damp-
ing. The effect of this large wake-induced dispersion is
found to be suppressed but not removed when BNS con-
dition is introduced. The results were used to evaluate the
effects of a closed orbitπ-bump and a misaligned struc-
ture. The dispersion generated from a structure offset was
shown to grow resonantly withs after trajectory correc-
tion. Therefore, wakefield generated dispersion can be-
come much larger than the dispersion from misaligned
quadrupoles. Simulations for the SLC linac confirmed this
behavior [2].

As centroid dispersion with strong wakefields is mainly
generated by structure offsets, a dispersion measurement
can be used to determine the structure errors. We can
envision new and improved algorithms to optimize emit-
tance in linacs with strong wakefields. For example, emit-
tance might be optimized by empirically adjusting structure
movers so as to minimize the measured centroid dispersion.
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