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Abstract diaz1—[1+Kx-x+Kz-z]-f’(pg)—
This'is the first part of a series of talks in which we present 15 o+ H- 22+ [p, — H-2]>
applications of methods from wavelet analysis to polyno- 5 TENTIOE - ['(po)
mial approximations for a number of accelerator physics Po

problems. In the general case we have the solution as a 4 _ 1 eV(s) . sin [h 2r o+ 4
multiresolution expansion in the base of compactly sup- ds™’ B3 Eo

ported wavelet basis. The solution is parametrized by solu-
tions of two reduced algebraical problems, one is nonlinear Then we use series expansion of functjap, ) and the
and the second is some linear problem, which is obtainemrresponding expansion of RHS of equations (1). In the
from one of the next wavelet constructions: Fast Waveldbllowing we take into account only an arbitrary polyno-
Transform, Stationary Subdivision Schemes, the method adial (in terms of dynamical variables) expressions and ne-
Connection Coefficients. glecting all nonpolynomial types of expressions, i.e. we
In this paper we consider the problem of calculation o€onsider such approximations of RHS, which are not more
orbital motion in storage rings. The key point in the soluthan polynomial functions in dynamical variables and ar-
tion of this problem is the use of the methods of wavelébitrary functions of independent variabdg"time” in our
analysis, relatively novel set of mathematical methodsase, if we consider our system of equations as dynamical
which gives us a possibility to work with well-localized problem). The first main part of our construction is some
bases in functional spaces and with the general type of ogariational approach to this problem, which reduces ini-
erators (including pseudodifferential) in such bases. Ouial problem to the problem of solution of functional equa-
problem as many related problems in the framework of ouions at the first stage and some algebraical problems at
type of approximations of complicated physical nonlinearthe second stage. We consider also two private cases of
ities is reduced to the problem of the solving of the syseur general construction. In the first case (particular) we
tems of differential equations with polynomial nonlinear-have for Riccati equations (particular quadratic approxima-
ities with or without some constraints. In this paper weions) the solution as a series on shifted Legendre polyno-
consider as the main example the particle motion in stomials, which is parameterized by the solution of reduced
age rings in standard approach. Starting from Hamiltoniama)gebraical (also Riccati) system of equations. This is
which described classical dynamics in storage rings and usaly an example of general construction. In the second
ing Serret—Frenet parametrization, we have after standacese (general polynomial system) we have the solution in
manipulations with truncation of power series expansioa compactly supported wavelet basis. Multiresolution ex-
of square root the corresponding equations of motion:  pansion is the second main part of our construction. The
solution is parameterized by solutions of two reduced al-
ix _ Pa T H-z (1) gebraical problems, one as in the first case and the sec-
ds 1+ f(po)]’ ond is some linear problem, which is obtained from one
d [p. — H - ] 9 of the next wavelet construction: Fast Wavelet Transform
PR T+ o) H—[K;+gl-a+N-2 (FWT), Stationary Subdivision Schemes (SSS), the method
\ " of Connection Coefficients (CC). Our problems may be for-
+Kz - f(po) — 3 (2% = 2%) — = (a® — 322?); mulated as the systems of ordinary differential equations
d p.—H-z dxi/c'lt' = fi(z;,t), (4,5 = 1,...,n) with fixed initial'
conditionsz;(0), where f; are not more than polynomial
functions of dynamical variables; and have arbitrary de-

ds” T LA fpo)]

ipz — [po + H - 2] "H—[K?—g] = pendence of time. Because of time dilation we can consider
ds 1+ f(po)] only next time intervalp < ¢ < 1. Let us consider a set of
+N-z+ K. f(ps) — X2 — E(ZB — 32%2); functionscbli(t) = x;dy; /dt + f;y; and a set of functionals
6 Fi(z) = [y ®:(t)dt — z;y; [, wherey;(t)(y:(0) = 0) are
* e-mail: zeitin@math.ipme.ru dual variables. It is obvious that the initial system and the
T e-mail: parsa@bnl.gov systemF;(x) = 0 are equivalent. In part 3 we consider
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sympleptlzatlon of t.h|s approach. Now we consider formal T /X{(T)Xj (r)dr = o;F1(i,0) + Fy (3, 5),
expansions fox;, y;:
Fi(

. rs)=[1— (=130 — s — 1),
zi(t) = 2:(0) + ) AFer(t) y(t) =D mien(t), (2) ) 1, p=0
k , )= {

;. p<0
where because of initial conditions we need oply0) =

0. Then we have the following reduced algebraical system % = /O Xp(r)Xi(T)X;(r)dr = 00105 +
of eq.uations on the set of unknown coefficienfsof ex- okdj1 010k; 0kl
pansions (2): it T Yol T
D ;=7 (M) =0 @  aw = /1 X;X; X dr =
k 0 .
Its coefficients areuy, = fol oL (t)er(t)dt, ~7 = (G+k+1+ 1)R(1/2(i—|—j + k)) %
fol fi(z;,t)or(t)dt. Now, when we solve system (3) and R(1/2(j +k — D) R(1/2(j — k +1)) x

determine unknown coefficients from formal expansion (2)

we therefore obtain the solution of our initial problem. It

should be noted if we consider only truncated expansion (?f)j+k+l — 9m,m € Z,anday; = 0if j+-k+l = 2m-+1;

with N terms then we have from (3) the system/ofx n where R(i) = ,(QZ')!/(T‘“)Z, QJZ — o, + P*, where the

algebraical equations and the degree of this algebraical S¥%cond equality in the formulae fer, v, 1 Z)) o hold for

tem coincides with degree of initial differential system. Soy,q first case. Now we give construction for computations

we have.the solution of the initial nonlinear (polynomial) ¢ objects(5) in the wavelet case. We use some construc-

problem in the form tions from multiresolution analysis: a sequence of succes-
sive approximation closed subspadégs ..V, C Vi C

R(1/2(=j + k +1)),

N
wi(t) = 2:(0) + Z/\ka(t)’ (4) Vo C Voy € Vg C . satisfying the following prop-
=1 erties: (| V; = 0, [ JV; = L*R), f(z) € Vj <=>
JEZ JEZ

where coefficients\¥ are roots of the corresponding re-f(2¢) € Vjy, There is a functionp € V; such that
duced algebraical probl_em (3)._ Q_onsequently, we haye q%o.1(z) = (x — k), } forms a Riesz basis fdr,. We
parametrization of solution of initial problem by solutionyse compactly supported wavelet basis: orthonormal basis

of reduced algebraical problem (3). But in general casggr functions inL2(R). As usuallyy(z) is a scaling func-
when the problem of computations of coefficients of retion, () is a wavelet function, where; (z) = (z — 7).
duced algebraical system (3) is not solved explicitly as i&caling relation that defines v are

the quadratic case, which we shall consider below, we have
also parametrization of solution (4) by solution of corre-

2

—

sponding problems, which appear when we need to calcu-  #(z) = Y axp(2z —k) = > arer(22),
late coefficients of (3). As we shall see, these problems k=0 k=0

may be explicitly solved in wavelet approach. Next we N2

consider the construction of explicit time solution for our Y(x) = Z (—1)*arr19(2z + k)
problem. The obtained solutions are given in the form (4), k=-1

where in our first case we havg(t) = Q(t), where

\ Letbef: R C and the wavelet expansion is
Q(t) are shifted Legendre polynomials anl are roots / 7 P

of reduced quadratic system of equations. In wavelet case o0
X(t) correspond to multiresolution expansions inthe base ~ f(x) = D cepe(x) + Y Y i) (6)
of compactly supported wavelets ang are the roots of (€Z j=0keZ

corresponding general polynomial system (3) with coef-, . ) . . i
ficients, which are given by FWT, SSS or CC construcgh:;g\?;fegf’eandj represent translation and scaling, re
tions. According to the variational method to give the re- P y

duction from differential to algebraical system of equations — 99/2(2 5 — 0). s — 9I/2(Y g — ke
we need compute the objeeté and ;;, which are con- ein(e) P2z =), Yi() V(e —k)

structed from objects: The set{; .} rez forms a Riesz basis fdr;. Let W; be
1 the orthonormal complement &f; with respect toV ;.
o, = / X;(r)dr = (—1)", (5) Justad’; is spanned by dilation and translations of the scal-
0 ing function, so aréV’; spanned by translations and dilation

L ij of the mother wavele;; («). If in formulae (6)c;r = 0
/0 Xi(r)X;(r)dr = 0i0; + 2j+1) for j > J, thenf(z) has an alternative expansion in terms

Vij
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of dilated scaling functions only(z) = Y cjepse(x).  For nonquadratic case we have analogously additional lin-

o - L tez ear problems for objects (7). Also, we use FWT and SSS
This is a finite wavelet expansion, it can be written solel)f r computing coefficients of reduced algebraic systems
in terms of translated scaling functions. We use wavel e use for modelling D6,D8,D10 functions and programs.
(), which hask vanishing momentg z*v(z)d(z) = 0, RADAU and DOPRI for te’:stir;g.

i k _
?(r e(illj;\gaﬁztlzzve_th?sﬁﬁég ;Cgsgﬁjﬁglfs'ugpirt{c s%alin As a result we obtaingd the_ explicit time soluti_on (4) of
fuﬁction DN (where N is even integer) will havé sup- gurp.roblem.. In comparison W|th_wavelet expansion on t_he
port [0, N — 1] and N/2 vanishing moments. There ex- real Imt_a wh_lch we use now an(_:i in calculation of Galerkin
ists A\ ; 0 such thatDN hasAN continuous derivativeS' approximation, Me!mkov function apprgach, etc also we
for small N\ > 0.55. To solve our second associatédneeo'.tO use .p('arlqdlzed WaveIeF expansion, 1.e. wavelet ex-
o= pansion on finite interval. Also in the solution of perturbed

linear problem we need to evaluate derivatives of) in h bl ith variabl .
terms of(z). Let beg! = d py(x)/da". We derive the system we have some problem with variable coefficients.
. £ ¢ : For solving last problem we need to consider one more

wavelet - Galerkin approximation of a differentiatg(l) ' : . . ) i
asf(x) = 3, g () and valueso?(z) can be expanded xajl?ement equation for scaling functign (z): ¢2(x) =
in terms ofp(x) > aZ¢a(2z — k) and corresponding wavelet expansion
k=0
* for variable coefficients(t): > Bj (b)$2(27x — k), where
¢21(~T) = Z Am@m(.ﬁ), )\m, - / @?(J))(ﬂm(.ﬁ)dlﬁ k

o . Bi(b) are functionals supported in a small neighborhood
of 277k.
The coefficients\,,, are 2-term connection coefficients. In  The solution of the first problem consists in periodizing.
general we need to find In this case we use expansion into periodized wavelets de-
- fined by ¢, (z) = 27/2 ; ¢(27x + 270 — k). All these
A?fi?ll'éf;” = / H(pzl; (z)dx (7) moadifications lead only to transformations of coefficients

of reduced algebraic system, but general scheme remains

the same. Extendeed version and related results may be
For Riccati case we need to evaluate two and three connggund in [1]-[6].

— 00
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