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Abstract

A simulation that uses a new technique to obtain tail dis-
tributions in electron-positron storage rings is applied to
KEKB. This program makes it possible to investigate tail
distribution in simple and fast simulation technique and
shows good agreement with solvable cases. The simula-
tion now includes exact solution for six dimensional beam-
beam interaction and several rare random processes. An
estimate of the lifetimes for KEKB is also presented.

1 INTRODUCTION

It is important to calculate beam distributions by consider-
ing several processes which affect the beam tails. However,
it is not always possible to obtain beam distributions by an-
alytical treatments.

D.N. Shatilov developed a method to reduce the CPU
time in simulating the beam tail due to scattering by the
residual gas[1]. The beam tail is then obtained by consid-
ering the contribution of small angle scattering which oc-
curs with a high degree of probability. However, it is not
sufficient to consider small amplitude and frequent random
processes only when we estimate the beam tail. Thus, we
will investigate the beam tails caused by the rare and large
amplitude processes from the core.

The aim of this paper is to propose a simple and fast sim-
ulation technique for various rare random processes on the
beam tails. It is shown that results of this simulation tech-
nique show good agreement with solvable cases[2]. We
thus expect that this simulation technique is applicable to
obtain beam tails in the cases of analytically unsolvable
random processes. The beam lifetime are also obtained by
counting number of the particles extending beyond energy
and transverse apertures.

In Sec. 2 the simulation technique is described and re-
sults of the simulation are compared with those of analyt-
ically solvable examples. Some applications are given in
Sec. 3, and Sec. 4 is devoted to a discussion and conclu-
sions.

2 DESCRIPTION OF SIMULATION TECHNIQUE

As an example, we can consider the case in which an elec-
tron loses energy by random processes in a ring. The initial
distributions ofn macroparticles in the phase spaces are
given randomly with specified variances. Each macropar-
ticle i has a particle number (Ni) and p is the probabil-
ity that an electron undergoes a random process in one
turn. Once an electron in a maroparticle undergoes this pro-

cess, we create a new macroparticle(n + 1)-th. This new
macroparticle has one particle (Ni+1=1) and the macropar-
ticle which undergone a random process now has a number
of particlesNi − 1.

We assume that the variation in the random variable due
to a random process is limited to a range between a mini-
mum and a maximum value. The variation in the random
variable due to a random process can be obtained by the fol-
lowing way. First, calculate the probability(P ≡ Nip) that
a macroparticle undergoes a random process in the ring,
and generate one uniform random number (0≤ x ≤1). If
x < P , a random process occurs for the macroparticle.
Second, generate a uniform random number (ε1) in the in-
terval between the minimum value(εc) and the maximum
value(εm) and one uniform random number in the inter-

val 0 < y < (dσ(ε)
dε )max, and comparey and (

dσ(ε)
dε )

ε=ε1 . Hereε is the energy random variable and (
dσ(ε)

dε )

ε=ε′ is the cross section corresponding to theε′. If y <

(dσ(ε)
dε ) ε=ε1 , the random variation corresponding toε1 is

given to an electron. Ify > (dσ(ε)
dε )ε=ε1 , discard theseε1

andy, and generate newε1 andy until the relationy <

(
dσ(ε)
dε )ε=ε1 holds.
It is shown that equilibrium distributions are little

changed by variations ofεc of around 0.001% in beam-
gas bremsstrahlung. The number of initial macropar-
tices that are used in simulation is 40000. We inves-
tigate the present method using design parameters of
KEKB, τε=2300, τx=τy=4600, νs=0.01, νx=47.52 and
νy=43.08[3].

The motion of each macroparticle is as follows:

1. Input
We rescale the variables as follows:

X =
x
σo

x

, P =
βIP Px

σo
x

, Y =
y
σo

y

,

Q =
βIP Py

σo
y

, Z =
z

σo
z

, E =
ε′

Eo σo
ε

whereσo
x,y andσo

z are nominal beam sizes in transverse
and longitudinal directions.βIP , Eo, σo

ε andε′ (=E −Eo)
are betatron function at IP, nominal energy, relative energy
spread and energy deviation due to a random process, re-
spectively.
2. Random Process

E′ = E − ε′

Eoσ
o
ε

, (1)
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whereε′ is given by values between the minimum energy
and the energy aperture of the beam.

P = P − θx

σ′
x

, Q = Q − θy

σ′
y

, (2)

where transverse scattering anglesθx,y are given by values
between the minimum angle and the transverse apertures
of the beam.σ′

x= σx

βx
andσ′

y= σy

βy
. Here,σx,y andβx,y

are the transverse beam sizes and betatron functions at the
position where the random process occurs, respectively.
Equations (1) and (2) can be applied for longitudinal
random processes and beam-gas scattering, respectively.

3. Synchrotron and Betatron Oscillations
4. Synchrotron Radiation

On the other hand, the probability that an electron loses
energyε is given by

f(ε) =
1

σtot

dσ

dε
. (3)

When a random proces occurs, then its contribution to equi-
librium distribution has the expression

exp[N
∫ ∞

0

dtf̃{Ke−dtsin(φ + wt)/(Eoσ
o
ε )} − 1], (4)

whereφ = tan−1K2/K1[4]. We assume that the num-
ber of synchrotron oscillations during one damping time is
very large. We can then replace the synchrotron oscillation
by an average over each synchrotron period. A solvable
model to obtain the distribution functions in longitudinal
and transverse random processes was shown in Refs. [2]
and [4].

To show the validity of the simulation technique, we
compare the results of the simulation for the cases of beam-
gas bremsstrahlung and beam-gas scattering with those of
the solvable model.

2.1 Beam-Gas Bremsstrahlung

An electron with energyEo, which passes a molecule of
the residual gas, loses its energy due to the radiation emit-
ted when an electron is deflected. There is a certain proba-
bility that a photon with energyu is emitted, producing an
electron with energyE′, whereE′+u = Eo. The differen-
tial cross section for an energy loss due to bremsstrahlung
betweenE andE + dE is given by

dσ = 4αr2
eZ(Z+1)

du
u

E′

Eo
[(

E2
o + E′2

EoE
′ −2

3
) log
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Z1/3
+

1
9

],

(5)
whereZ, α and re denote the atomic number, the fine-
structure constant and the classical electron radius, respec-
tively[5].

We assume that one type of molecule uniformly ex-
ists in the ring, so thatN=Qσc, Q=2.65 ×1020nPa,

whereσ, c, Q, n andPa are cross section of the beam-
gas bremsstrahlung, velocity of the light, number of gas
molecules in a unit volume, number of atoms in each
gas molecule and partial pressure of the gas in pascals.
Figure 1.(a) shows energy distribution produced from the
tracking of synchrotron oscillation, synchrotron radiation
and beam-gas bremsstrahlung for a vacuum pressure of
10−9 Torr. The dotted lines and square symbols are equilib-
rium distributions obtained from the simulation and solv-
able model, respectively. Figure 1.(b) shows energy distri-
bution produced from the tracking of the synchrotron oscil-
lation and synchrotron radiation. It may be inferred that the
beam tails in Figs. 1.(a) and (b) are caused by the influence
of beam-gas bremsstrahlung.

Figure 1:The horizontal axis isE, the energy deviation normal-
ized by the energy spread. The vertical axis represents the distri-
bution inE measured using a logarithmic scale. The number of
turns is 230000.

2.2 Beam-Gas Scattering

The cross section of the elastic scattering with an atom
is given by Rutherford scattering formula. Figure 2.(a)
shows the vertical distribution produced from the tracking
of beam-residual gas scattering, betatron oscillation, syn-
chrotron oscillation and synchrotron radiation. Here we
considered scattering angle occuring between 8σ′

y radian
and 300σ′

y radian. Theβy value at the position where the
scattering occurs is set to 10 meters. The dotted lines and
square symbols show equilibrium distributions from ob-
tained the simulation and solvable model, respectively.

We see from the above two examples that the simulation
shows good agreements with the solvable model.

3 APPLICATION

For practical purposes, we consider beam-beam interaction
and random processes with a non-uniform density distribu-
tion such as beam-beam bremsstrahlung and Bhabha scat-
tering. Transverse beam-beam force is given by Bassetti-
Erskine formula[6] and synchro-beam mapping is consid-
ered[7].

3.1 Beam-gas Scattering and Beam-Beam Interaction

Figures 2.(b) and (c) show the horizontal and vertical distri-
butions due to beam-residual gas scattering for a pressure
of 10−9 Torr and beam-beam interaction. It is shown that
particle loss is increased by the beam-beam interaction. It
is also shown that the vertical tail is caused by the beam-gas
scattering rather than the beam-beam interaction.
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Figure 2:(a) shows vertical distribution due to beam-gas scatter-
ing. (b) and (c) show horizontal and vertical distributions due to
beam-gas scattering and beam-beam interaction. The horizontal
axis isY , the distance normalized by the nominal vertical beam
size. The vertical axis represents the distribution inY measured
using a logarithmic scale. The number of turns is 46000. Hori-
zontal and vertical apertures are assumed to 34σo′

x and and 30σo′
y

at IP, respectively, whereσo′
x =σo

x/βIP
x andσo′

y =σo
y/βIP

y .

3.2 Random Processes in Longitudinal and Transverse
Motions and Beam-Beam Interaction

Figures 3.(a), (b) and (c) show the horizontal, vertical
and longitudinal distributions due to the random pro-
cesses of Bhabha scattering, beam-gas scattering, beam-
gas bremsstrahlung, beam-beam bremsstrahlung and beam-
beam interaction. The apertures are limited by 34σo′

x , 30σo′
y

andE=15 in the horizontal, the vertical and the energy di-
rections, respectively. We can see that particle losses are
mainly limited by the energy and the vertical apertures.

Figure 3:(a) Horizontal, (b) vertical and (c) longitudinal distri-
butions due to longitudinal and transverse random processes and
beam-beam interaction after 46000 turns. Pressure in ring is10−9

Torr.

3.3 Lifetime as a Function of Apertures in KEKB

Beam lifetimes for bremsstrahlungs and scatterings as a
function of energy and vertical apertures are listed in unit
of hours below. Horizontal aperture is assumed to 34σo′

x . If

Energy aperture E=10 E=15 E=20

Beam-Beam Brems. 6.6 7.3 7.8
Beam-gas Brems. 32.4 35.3 37.7

Vertical aperture Y=25σo′
y Y=30σo′

y Y=35σo′
y

Bhabha Scattering 13182 18595 25252
Beam-gas Scattreing 21.8 31.3 42.7

we estimate the lifetime including the beam-beam interac-
tion to four random processes, it gives the lifetime around
5 hours in the aperture limitations of 34σo′

x , 30σo′
y and

E=15 for KEKB. It is shown that particle loss due to the
beam-beam bremsstrahlung plays important role on elec-
tron beam lifetime for KEKB.

4 DISCUSSION AND CONCLUSION

Two simplifications were employed for our simulation to be
valid: first, once a particle undergoes a random process, it
does not undergo a random process again. The choice of a
too smallεc reduces the efficiency of this simulation, with-
out giving any contribution to the tail distribution; and large
εc can result in larger statistical fluctuations. Secondly, we
assumed that new macroparticles in longitudinal and trans-
verse directions reach an equilibrium state during two lon-
gitudinal and transverse damping times, respectively. This
assumption makes it possible to simulate long-term runs.

The tail distributions are obtained by considering only
the events of relative large amplitudes in several rare ran-
dom processes for KEKB. It is shown that the beam-beam
bremsstrahlung in KEKB is the predominate random pro-
cess leading to particle losses.

A new simulation technique for beam tails is presented.
This simulation method provides a simple and fast means
to obtain the tail distributions due to various random pro-
cesses in the storage rings. This simulation showed a good
agreement with the solvable cases.

On the other hand, if random processes that produce
beam tails occur with high probability, this situation re-
quires us to generate more new macroparticles in our sim-
ulation. We would thus need more tracking times in this
case.

The contribution of small amplitude scattering to the tail
can be obtained by the simulation method of D.N. Shatilov.
The effect of large amplitude scattering on the tail can be
treated by this simulation method.
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