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Abstract

In the presence of a dispersion at the interaction point, the
betatron and the synchrotron oscillations affect each other.
Just as linear effects, the beam-beam kick modifies the syn-
chrotron tune, the bunch length, the energy spread etc, as
well as the betatron tune and the Twiss parameters. Disper-
sion is no longer enough to describe the coupled dynamics
and we needs two more parameters.

1 INTRODUCTION

The dispersion is a dangerous concept. Usually [1, 2], it
is defined in terms of the closed orbit (x0) in the betatron
phase space of a fictitious particle with a constant energy
(D ≡ [x0(E)−x0(E0)]/(E−E0)). Once upon a time, this
was a good definition with a full physical meaning for the
coasting beam accelerators. In modern accelerators with
RF cavities, particularly in electron rings, however, no par-
ticle has a constant energy. The dispersion defined as above
is a kind of a limiting concept which has a physical mean-
ing only in the limit with a vanishing synchrotron tune:
νs → 0. If it was a useful concept, why do not we define
“bispersion” as a closed orbit difference in the synchrotron
phase space for a particle with a fixed slope (y′)?

To discuss the interaction between betatron and syn-
chrotron motions, we should use concepts consistent with
the synchrotron motions. Otherwise, our discussion will
become quite complicated and we might need an acrobatic
manipulation of logics to be accurate. (It is something like
to discuss quantum mechanics using classical concepts).

The effects of dispersion at the interaction point (IP) has
been studied for long time [3, 4]. The synchrotron motion
was assumed to be unaffected and the interest was only on
the effect of synchrotron motion on the betatron motion.
There are several reasons to study it more carefully now.
First of all, the monochromatic collision[5] became an im-
portant and practical issue for tau-charm factories. In addi-
tion, for future high performance colliders, we need more
detailed controle of dispersion and a deeper knowledge of
it.

This paper is organized as follows. In Sect. 2 we discuss
the factorization of a general4×4 symplectic matrix. Then
in Sect. 3, the one-turn map is parametrized for the case
with dispersion at the IP. Conclusions follow under Sect. 4.
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2 GENERAL 4 × 4 SYMPLECTIC MATRIX AND
ITS FACTORIZATION

It is well known that any stable symplectic2 × 2 matrixm
can be represented as[1]

m = t

(
cosµ sinµ
− sinµ cosµ

)
t−1, (1)

whereµ = 2πν, ν being the tune. Here

t =
( √

β 0
−α/

√
β 1/

√
β

)
.

In Ref. [6], it was shown that any stable symplectic4 × 4
matrixM can be factorized as follows:

M = H diag(mu,mv) H−1, (2)

where

H =
(

bI h

h̃ bI

)
, h =

(
ζ η
ζ′ η′

)
, (3)

andmu(v) is m in Eq.(1) with suffices ofu(v) for µ, α and
β. Here,h is a2 × 2 matrix and

h̃ = jhtj =
( −η′ η

ζ′ −ζ

)
, j =

(
0 1
−1 0

)
.

Here,b =
√

1 − det(h) is a constant. Note thatH, as well
asM , is symplectic in 4-dim sense:

HtJH = J, J = diag(j, j).

The4 × 4 symplectic matrix has 10 free parameters. The
u andv modes have 3 parameters each (ν, α, β). We need
4 parameters,η, η′, ζ, andζ′ to characterize the coupling
between two degrees of freedom.

In Ref.[7], it was shown that when the dispersionD van-
ishes in cavities, thenη is identical toD andζ vanishes
all over the ring. For more general cases,D andD′ are
not sufficient and we needh, in particularζ andζ′. To be
precise,

lim
νz→0

h =
(

0 D
0 D′

)
. (4)

We thus callη the (generalized) dispersion.
The normal modes(u, u′) and,(v, v′) are defined as

(u, u′, v, v′)t = diag(t−1
u , t−1

v ) H−1x,

wherex are 4-vectors (physical variable):xt = (y, p, z, δ).
It seems convenient here to discuss the expressions of the
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beam sizes under the assumption that the beam envelope
matrices for the normal modes are given as follows:〈u2〉 =
〈u′2〉 = εu, 〈v2〉 = 〈v′2〉 = εv, and〈uu′〉 = 〈vv′〉 =
〈uv〉 = 〈uv′〉 = 〈vu′〉 = 〈u′v′〉 = 0. At a glance, one can
get, for example,

〈y2〉 = b2βuεu + {η2 + (βvζ − αvη)2}β−1
v εv

〈p2〉 = b2γuεu + {η′2 + (βvζ′ − αvη
′)2}β−1

v εv,
〈z2〉 = {η2 + (αuη+βuη′)2}β−1

u εu + βvb2εv

〈δ2〉 = {ζ2 + (αuζ + βuζ′)2}β−1
u εu + b2γvεv,

〈yp〉 = −αub2εu + {γvηη′ − αv(ηζ′ + ζη′) + βvζζ′}εv,
〈yz〉 = −b(αuη + βuη′)εu − b(αvη − βvζ)εv,
〈yδ〉 = bβu(αuζ + βuζ′)εu + b(γvη − ζ)εv,

(5)
whereγ = (1 + α2)/β.

3 BEAM-BEAM COLLISION

We assume that there is a single IP in the ring and there is
a dispersionη0. The revolution matrix from the IP to IP
without the beam-beam kick is

Marc = H0 diag(m0
y,m

0
z) H−1

0 ,

whereH0 is H, Eq.(3), withh being replaced by

h0 =
(

0 η0

0 0

)
,

m0
y =

(
cosµ0

y β0
y sinµ0

y

−1/β0
y sinµ0

y cosµ0
y

)
,

andm0
z beingm0

y with y replaced byz. Note that for usual
electron rings, we haveνz < 0. In the weak-strong picture
the dynamics of the single (test) particle in the weak beam
is influenced by the strong beam, which is not affected at
all. In the linear approximation the particle receives a kick
at IP from the strong beam. This interaction is described by
the matrix

Mbb =




1 0 0 0
−4πξ0/β0

y 1 0 0
0 0 1 0
0 0 0 1


 , (6)

which contains the vertical (nominal) beam-beam parame-
ter ξ0, viz., for Gaussian bunches:

ξ0 =
re

2πγ

Nβ0
y

σ0
y(σ0

x + σ0
y)

, (7)

N being the number of particles in the strong beam,re the
classical electron radius,γ the relativistic factor,σ0

y the ver-
tical beam size.

σ0
y =

[
β0

yε0y + η2
0ε0z/β0

z

]1/2
, (8)

ε0y andε0z are the vertical and longitudinal emittances, and
all quantities are evaluated at the IP.

Now, the complete revolution matrix with the beam-
beam collision is:

M = M
1/2
bb MarcM

1/2
bb . (9)

4 CHANGE OF OPTICS

For the tunes, we can get the explicit form easily[7]

2 cos µ̄± = cosµ0
y+cosµ0

z−2πξ0(sinµ0
y+χ sinµ0

z)±
√

D,
(10)

where

D = (cosµ0
y − cosµ0

z − 2πξ0(sinµ0
y − χ sinµ0

z))
2

+16π2ξ2
0χ sinµ0

y sinµ0
z, (11)

and

χ =
η2
0

β0
zβ0

y

' η2
0σδ

σ0
zβ0

y

(12)

is the synchrotron tune shift factor. The motion is stable if
and only if| cos µ̄±| ≤ 1 andD ≥ 0.
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Figure 1: The (growthrate−1) at ξ0 = 0.05, β0
y = 0.1m,

β0
z = 10m andη0 = 0.5m as a function ofν0

y andν0
z .

To lowest order inξ0, we get

νy → νy + ξ0, νz → νz + ξ0χ. (13)

A synchrotron tune shift is thus predicted due to the com-
bined effect ofη0 and ξ0. The perturbative equation ,
Eq.(13), implies that the linear instability occurs for

• νy<∼ half integers (betatron instability)

• νz<∼ half integers (synchrotron instability).

• νz + νy<∼integers (synchro-betatron instability).

The instability regions in the (ν0
y , ν0

z ) plane is shown in Fig.
1, in terms of the growthrate. The three unstable regions
stated above are clearly seen.

For other parameters, we get the exact values numeri-
cally. In particular, the change ofη’s andζ’s are of inter-
est. At the middle of the IP, by symmetry reason, we have
η′ = ζ = 0. In Fig.2, we showη as a function ofξ0.
(Whenν0

z
<∼0, M can become unstable and we do not get
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Figure 2: The dispersionη as a function ofξ0 for several
νz , with β0

y = 0.1m,β0
z = 10m,ν0

y = 0.1, η0 = 0.1m. For
0 ≤ ν0

z < 0.01, the curve is almost identical with that for
ν0

z = 0.01.
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Figure 3: Theζ′ as a function ofξ0 for severalν0
z > 0, all

other parameters are the same as previous figure.

η. Outside the instability region, theη(ν0
z ) is the same as

η(−ν0
z ).) Here, we see clearly, how the dispersion depends

onνz. In Ref.[4], the evaluation ofD at the IP was done as
follows:

D(ξ0) = D(0)/[1 + 2πξ0 cot(µ0
y/2)].

This formula does not show the dependence onν0
z and

agrees only with the curve in Fig.2 forν0
z = 0. The de-

viation ofη from D is remarkable forν0
z ' ν0

y .
For ζ′, we show it in Fig.3 forν0

z > 0. We also see the
remarkable growth ofζ′ in particular forν0

z ' ν0
y . From

Eq.(5), there seems to be a possibly dangereous growth of
〈p2〉 because ofζ′. Also from Eq.(5), the〈yδ〉 can be modi-
fied a lot which might affect the effective energy resolution
of the monochromatic collision.

5 DISCUSSION AND CONCLUSION

Because of the synchrotron instability,νs = 0 is one of the
singular point ofM . Thus, we should modify Eq.(4) as

lim
νz→0+

h =
(

0 D
0 D′

)
.

The discussion based onD might be dangerous with syn-
chrotron oscillations. As discussed in Ref.[7],D is a well
defined concept even with the presence of the synchrotron
oscillation as long asD = D′ = 0 in cavities. By the
beam-beam insertion, however, this condition can be vio-
lated even if it was so before the insertion. In such a case,
if one insistsD, (s)he might fall into an unsolvable confu-
sion. The (generalized) dispersionη is a natural extension
of D which (with ζ’s) can work for general cases.

One might understand the change ofνs as caused by the
change of the momentum compaction factorαm through
the change ofD all around the ring (αm = 〈D/ρ〉, ρ be-
ing the bending radius). It is similar to understanding the
beam-beam tune shift (δνy) as caused by the change ofβy

all around the ring (2πν =
∫

ds/β), instead of looking at
the eigenvalues. When the synchro-betatron coupling be-
comes large, in particular for the monochromatic collision,
we can no longer use the traditional dispersionD which
suited to the coasting beams and we should treat the optics
more carefully and use more genaral formalism. There can
be a factorization method of the the revolution matrix sim-
pler and better than that discussed here. At least, however,
it is unthinkable that we can treat coupled synchro-betatron
oscillations with less parameters than the number of free
parameters of the symplectic matrix (3,10, and 21 for 1d,
2d, and 3d problems).
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