
A GRAPHICAL USER INTERFACE FOR RELAX3D

F.W. Jones, TRIUMF, 4004 Wesbrook Mall, Vancouver, B.C., Canada V6T 2A3

Abstract

The Laplace/Poisson solver Relax3d has been used exten-
sively in cyclotron central region design and other accel-
erator and beam physics applications. It is typically run
in an interactive mode where the user types in commands
and parameters to initiate and control the solution process
and to view or output the results. This paper describes a
graphical user interface (GUI) that eliminates most of this
typing and makes for more efficient user interaction. The
use of a unique package called Expect (an extension to
Tcl/Tk) allows the interface to be implemented as an in-
dependent front-end process that communicates with the
running Relax3d program, thus requiring minimal modifi-
cations to Relax3d itself. Since Expect can control multi-
ple processes, and since Relax3d results are often sent to
some subsequent program for visualization, particle track-
ing, etc., there are interesting opportunities to integrate
these post-processing tasks into the same GUI.

1 INTRODUCTION

In the field of Accelerator Physics there is a large legacy
of Fortran codes, many still widely used, that were devel-
oped in the text-based environment of previous computing
platforms. Many of these codes could benefit from the ad-
dition of graphical user interfaces. For batch programs that
have many input parameters, or for interactive programs
that have many different commands and command options,
these interfaces can be tremendous labour-saving devices.
Moreover, a well-designed GUI represents a program’s pa-
rameters and functions and in a direct visual way that al-
lows the user to largely dispense with reading voluminous
documentation and memorizing mnemonics and keywords.

Relax3d[1], as one such Fortran code, is an ideal can-
didate for a point-and-click interface. It has a repertoire
of around 30 interactive commands, many with parameters
(up to 6). Its high level of interactivity has made Relax3d a
popular and relatively easy-to-use program, but the process
of working through the entire design, set-up, and solution
process for a given problem, with initial trials, production
runs, and checking and visualization of results, can involve
a lot of typing and a certain sense of tedium.

2 INTERFACE OPTIONS

The X-based OSF/Motif toolkit, available on many com-
puting platforms, was considered as a means for imple-
menting a GUI. This raised some general concerns: (1) Mo-
tif and other toolkits impose an asynchronous event-driven
protocol: applications must have an event loop as their core
structure and must respond to any input event (e.g. a mouse

click) that can occur. This represents a “clash of architec-
tures” with many Fortran programs, which expect particu-
lar items of input at particular times and may be unrecep-
tive to input at other times. Extensive modifications may
be required to implement the GUI. (2) The interface code
must, or should, be written in C or C++ (for various good
reasons, GUI programming is rarely done in Fortran). This
escalates the application to a mixed-language environment,
where argument-passing and name-space protocols have to
be followed carefully and are not always portable between
platforms.

These issues can be dealt with, but the fatal problem for
Relax3d is the need for the user to rebuild the Relax3d
executable on-the-fly, to incorporate the user-writtenBND
subroutine that defines the boundary conditions for a given
problem. It would be unreasonable to expect that the Motif
library, or some other toolkit library, would be available on
the platform where Relax3d is being used. Moreover, link-
ing in such a large and complex library could slow down the
problem-solving process which often involves a number of
trials with different BND routines.

A possible solution to this is to implement the Motif GUI
as a separate program written in C, which would run as a
distinct process (front-end) and would communicate with
Relax3d (back-end) via UNIX pipes. This approach also
avoids the mixed-language concerns and isolates the event-
handling architecture in the front-end.

3 PROTOTYPES

A prototype of this loosely-coupled type of interface was
written, with the help of the Motif GUI construction tool
XDesigner, and tested on various UNIX platforms. A cru-
cial requirement for this system was the need to interrupt
long-running Relax3d computations, in order for the front-
end to gain control and possibly make changes or correc-
tions. Relax3d itself already has the mechanism for this, a
handler for the INTERRUPT signal, usually sent by press-
ing CTRL-C on the keyboard.

It was no problem to have the front-end send the same in-
terrupt signal, but but during testing it was found that under
certain conditions the signal would consistently fail to get
delivered to the Relax3d process, rendering it uninterrupt-
able and leaving the user to either wait or kill the process
and start again.

To try to isolate this fault, and also to investigate alter-
native toolkits, another interface with almost identical fea-
tures was written using the popular Tcl/Tk scripting/GUI
language. This interface was easily and rapidly prototyped,
even without the help of an XDesigner-style GUI builder,
because of Tcl’s simple syntax and its interpretive shell
which allows the Tk widgets to be deployed and configured

26000-7803-4376-X/98/$10.00  1998 IEEE

Figure 1: Main window

on-the-fly. This prototype worked well but did not solve the
signal delivery problem, which appeared not to be an inter-
face problem but rather a consequence of Relax3d reading
input from a pipe rather than a terminal.

4 EXPECT

During the prototype development there arose another
avenue of pursuit: a Tcl/Tk extension package called
Expect[2]. This package was originally developed as a
tool for communicating with pre-existing interactive pro-
grams, such as UNIX system utilities, in order to automate
frequently-performed tasks.

As an extension, Expect provides all of the Tcl/Tk func-
tionality together with a set of added commands that pro-
vide a flexible and programmable facility for launching and
communicating with external programs. With the Tk wid-
gets ready to hand, it proved to be an excellent environment
for constructing a GUI for Relax3d. Best of all, the initial
tests showed that Expect solved the interrupt signal prob-
lem. Expect does not use pipes, rather it creates UNIXpty
(pseudo-terminal) devices to communicate with spawned
processes, which thus behave just as if they are reading
from and writing to a real terminal.

The other capabilities provided by Expect were the ic-
ing on the cake. Notable among them are: (1) the ability
to spawn and communicate with multiple independent pro-
cesses, (2) a programmable event-loop type of input pro-
cessing to pattern-match against the output from spawned
processes and take appropriate actions depending on what
is received, (3) a timeout mechanism to keep the front-end
from hanging while waiting for a spawned process to pro-
duce output, and (4) the ability to connect the user’s termi-
nal window directly to a spawned process. The importance
of this last feature will be enlarged upon later.

Although most of the example Expect applications in the
literature are fairly small and task-specific, further work
on the Relax3d prototype showed that the system could be
scaled up very nicely into a complete, multi-window inter-
face.

5 INTERFACE OVERVIEW

The basic program functions, each corresponding to a Re-
lax3d command, are invoked from the Main Window (see
Figure 1). For efficiency, simple pushbuttons are provided
for the most heavily-used commands:Setup to specify

the problem type and grid parameters,Initialize to
set the grid to initial values,Iterate to start the itera-
tion process, andInterrupt to prematurely stop it in the
manner discussed above. The relaxation factor, often an
item to be experimented with, is set by a slider, and ed-
itable text input fieldsMax cycles andTolerance are
used to set stopping criteria based on number of iterations
or maximum normalized residual. Using an Expect direc-
tive, the line-by-line output from Relax3d’s iteration loop
is captured and displayed in a scrolling text area, provid-
ing a complete record of the run. In addition, this output is
scanned to extract the residual and display a running mini-
mum in theMin residual text field.

The remaining program functions and settings are ac-
cessed via popdown menus on the menu bar. Some of these
functions could be implemented directly in a few lines of
Tcl/Expect code, whereas others were written as separate
Tcl procedures that bring up independent dialog windows.
These procedures all follow a common pattern: (1) If the
window has not been created then create it, otherwise pop
it up if it is iconized or off-screen. (2) When the user clicks
one of the “action” buttons in the window, build the ap-
propriate command string and send it to Relax3d’s input
stream. (3) Pattern-match the output from Relax3d and take
appropriate actions such as sending more input or display-
ing error messages.

The following example, edited for brevity, shows part
of this sequence for the Contour Plot procedure (Relax3d’s
PLOTcommand). The complete plot window is shown in
Figure 2.

proc plot {} {
...

If plot window is already made, map it and return
if [winfo exists .p] {

wm deiconify .p; raise .p
return

}
Construct the plot window
toplevel .p
wm title .p "Contour Plot"

...
checkbutton .p.yes -text "Label contours" \

-variable clabel
Text fields for label spacing and plot magn:
entry .p.spacing -textvariable spacing -width 5
entry .p.mag -textvariable mag -width 4

...
Button to send Plot command and options to Relax3d:
button .p.action.plot -text PLOT -command {

set dolabel ""
if {$clabel == 0} { set dolabel "-" }
exp_send "PLOT $dolabel$spacing $mag \

$xorig $yorig $ptype\r"
Pattern-match Relax3d o/p & diagnose errors:
expect {

"Option number" { }
"*Relax3D > " { errmsg $expect_out(buffer)

return }
...

Tcl’s string-oriented syntax makes it easy to assemble
the appropriate command, with parameters taken directly
from variables tied to the Tk widgets, and ship it to Re-
lax3d with theexp send directive. Then theexpect
loop checks for possible outcomes: a prompt for more input
indicates that the command was accepted, whereas some
text followed by theRelax3d> prompt indicates an in-

2601

Figure 2: Contour plot window

valid command parameter and the captured error text is dis-
played in a message box.

Some other interesting features of this interface are: (1)
A Rebuild button that shuts down the current Relax3d
executable, builds a new one from the selected BND rou-
tine, starts it up, and connects the GUI to it. (2) An option
for redrawing a contour plot on-the-fly as iterations pro-
ceed. (3) AnInteract button thatconnects the user’s
terminal window to the spawned Relax3d process, allow-
ing the user to assume “manual control” of Relax3d in case
of any doubt as to what is going on. This utilizes Ex-
pect’s interact command, a very powerful feature in-
deed for both users and developers, the more so because
while the terminal is connected to Relax3d, the GUI re-
mains connected and fully operational as well (the best of
both worlds)!

6 BACK-END MODIFICATIONS

Relax3d itself has required some modifications to support
a GUI front-end, but they are relatively few and straight
forward. Some new “private” commands were added to al-
low the interface to inquire on the state of the program and
the values of various set-up parameters after a problem set-
up has been performed. Some procedures were modified
to produce more diagnostic output that allows the interface
to monitor their progress, and some “hand-shaking” was
implemented where large amounts of data had to be trans-
ferred between the GUI and the program. None of the mod-
ifications interfere with the use of Relax3d in the normal
terminal mode without the front-end.

7 VISUALIZATION

In the Expect environment, it was a natural progression
from interfacing to the built-in graphics to interfacing to
more powerful external facilities for producing graphics.
Programs like GnuPlot, Mathematica, and MATLAB were
investigated for this purpose and MATLAB was chosen for
its excellent publication-quality 2d and 3d graphics facil-
ities and its ease of use. It proved to be almost trivial
to write the additional Tcl/Expect code to launch MAT-

Figure 3: Relax3d session with MATLAB interface

LAB from the Relax3d interface, modify Relax3d to write
out slice data in a form digestible by MATLAB, and then
build a prototype “MATLAB Plot” dialog window offer-
ing various 2d (contour, pseudocolour) and 3d (waterfall,
mesh, surface, slice) plot types, with menus and sliders
for colourmaps, viewing angles, etc. Once again, Expect’s
interact command is invaluable since it allows the user
access to all of MATLAB’s commands without disabling
the GUI operation.

8 CONCLUSION

The software technology used in the Relax3d GUI is suffi-
ciently general and flexible to have a wide range of applica-
bility to Accelerator Physics computing: lattice and beam-
line design codes, tracking and raytracing codes, and sim-
ulation codes are some obvious examples where efficient
interactive run preparation and visualization facilities are
desirable. In general, the Expect package can be thought of
as a way to interlink computer programs to create problem-
solving environments. Together with Tcl/Tk, it can provide
a lot of functionality for a relatively modest investment of
programming time.

Further development of the Relax3d GUI will likely con-
centrate on electric field plotting methods, volumetric vi-
sualization, and the development of a spreadsheet-style
viewing facility for navigating through the grid to check
boundary and solution values. Those wishing to obtain Re-
lax3d and/or the first released version of the GUI can con-
nect their Web browsers tohttp://www.triumf.ca/-

compserv/relax3d.html for up-to-date information.

9 REFERENCES

[1] H. Houtman, F.W. Jones, and C.J. Kost, “Solution of
Laplace and Poisson Equations by RELAX3D,”Computers
in Physics, July/August 1994.

[2] D. Libes,Exploring Expect, O’Reilly & Associates, 1995.

2602

