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Abstract

Beam pipes of high-energy superconducting colliders re-
quire a shielding tube (liner) with pumping slots to screen
cold chamber walls from synchrotron radiation. Pumping
slots in the liner walls are required to keep high vacuum in-
side the beam pipe and provide for a long beam lifetime.
As previously discussed [Fedotov and Gluckstern, Phys.
Rev. E 54, 1930 (1996)], for a long narrow slot whose
length may be comparable with the wavelength, the usual
static approximation for the polarizability and susceptibil-
ity which enter into the impedance is a poor one.[1] Our
objective is eventually to analyze and obtain numerical val-
ues for a rectangular slot of arbitrary dimensions. In this
paper we present an analysis, based on a variational for-
mulation, for the impedance of an annular cut in the inner
conductor, including both the realistic coaxial structure of
the beam-pipe and the effect of finite wavelength. For low
frequencies, the numerical results are checked against ana-
lytical results, with which they agree.

1 INTRODUCTION

The solution is based on the method of field matching at
the liner radius, including the discontinuity. We construct
a variational form for the impedance, which is stationary
with respect to arbitrary small variations of the field about
its true value. The variational approach ensures very good
accuracy for the impedance, since the error will be propor-
tional to the square of the error in the chosen trial fields.

We assume the liner thickness to be negligible and call
the region inside the inner conductor the “pipe region” and
the region outside the inner conductor the “coaxial region”.
The technique consists of expanding fields in both regions
into a complete set of functions. At the common interface
the fields have to be matched, yielding equations for the
expansion coefficients.

Since the driving current on axis is proportional to
exp(−jkz), the problem is simplified by obtainingZ‖(k)
for an even driving currentcoskz and an odd driving cur-
rent−j sin kz separately and then taking their sum. We
should note that the variational method becomes possible
only when the problem is separated into an even and an
odd part. In the even problemEz is even inz, while in the
odd problemEz is odd inz (wherez = 0 is chosen to be
the center of the cut). We use the superscript(e) for the
even part and the superscript(o) for the odd part.

2 GENERAL ANALYSIS

In the pipe region the fields are given by the source fields
plus a general solution of the Maxwell equations for the
cylindrical waveguide. In the coaxial region we have the
general solution of the Maxwell equations for the coaxial
waveguide. Due to the symmetry of the problem we have
no θ dependence, and therefore need to consider only the
azimuthally symmetric TM modes. For the portion of the
problem whenE(e)

z is even inz we have

E(e)
z (r, z) =

∫
dq cos qzA(e)(q)

[
J0(κr)
J0(κa)

,
F0(κr)
F0(κa)

]
. (1)

Here we use the notation where the first part in square
brackets corresponds to the pipe regionr ≤ a, and the sec-
ond part corresponds to the coaxial regiona ≤ r ≤ b, with
the functionF0 being the solution of the Maxwell equa-
tions for the coaxial region for the TM modes [F0(u) =
Y0(u)J0(κb) − J0(u)Y0(κb)]. Note that we consider the
inside and outside surfaces of the liner both to be atr = a,
since we neglect the thickness of the liner compared to the
wavelength. Therefore, the coefficientA(e)(q) is the same
for bothr < a andr > a, sinceE(e)

z is continuous atr = a
within the hole and on both sides of the liner surface, where
E

(e)
z = 0. The continuity ofH(e)

θ in the hole gives∫
dz′E(e)

z′ (a, z′)K(e)
11 (z, z′) = Z0I0 cos kz, (2)

where

K
(e)
11 (z, z′) = K

(e)
11 (z′, z)

= a

∫
dq cos qz cos qz′k11, (3)

with
k11 = jkaP (q), (4)

and

P (q) =
[

J ′
0(κa)

κaJ0(κa)
− F ′

0(κa)
κaF0(κa)

]
. (5)

We now treatP (q) as a function ofκa with κb = (b/a)κa
and express this function as a sum over the zeros of the re-
spective denominators. The resulting expression forK

(e)
11 ,

in Eq. (3), can then be integrated overq by means of the
residue theorem. Using the definition of the impedance for
the even part, we can rewrite Eq. (2) as

Z0

Z
(e)
‖

= − (
∫ ∫

dz′dzE
(e)
z′ (a, z′)E(e)

z (a, z)K(e)
11 (z, z′))

(
∫

dzE
(e)
z (a, z) cos kz)2

,

(6)
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which is easily seen to be a variational form for the
impedance, with trial functionE(e)

z (a, z). Expanding
E

(e)
z (a, z) into a complete set in|z| < g/2 and evaluating

the integrals in Eq. (6), the solution for the even part of the
impedance is obtained by finally truncating and inverting
the resulting matrix equations.

For the portion of the problem whenE(o)
z is odd inz we

perfom similar analysis, and obtain the variational form for
the odd part of the impedance

Z0

Z
(o)
‖

= − (
∫ ∫

dz′dzE
(o)
z′ (a, z′)E(o)

z (a, z)K(o)
11 (z, z′))

(
∫

dzE
(o)
z (a, z) sinkz)2

,

(7)
where

K
(o)
11 (z, z′) = K

(o)
11 (z′, z)

= a

∫
dq sin qz sin qz′k11. (8)

3 ANALYTIC DERIVATION FOR LOW
FREQUENCIES

In our particular case where the slot is a narrow annular
cut, for low frequencies the leading non-vanishing term in
the odd part is a factor of(g/a)2 less than the same term
in the even part. To present the analytic result for a narrow
annular cut it is therefore sufficient to consider only the
even part of the impedance.

For smallka andg/a, using the static approximation for
Ez′ , Ez, we evaluate Eq. (6) analytically and obtain

Z‖
Z0

=
ln(b/a)

π

[
1 + j

4
π2

kag/a

− 2jka
ln(b/a)

π

(
C1 + C2 + 2 ln(4a/g)

)]
. (9)

In this result we supressed the superscript(e), since the odd
part of the impedance is negligible. Numerical study shows
that[C1 + C2] can be replaced by[ln(b/a− 1) − 1.78] for
the range ofb/a from 1 to 3.

4 NUMERICAL RESULTS AND DISCUSSION

The even part of the impedance is calculated using Eq. (6)
and the odd part is calculated using Eq. (7). Finally, one
sums together the even and the odd parts to obtain the cou-
pling impedance. The general behavior of the real and
imaginary parts with respect to frequency is presented in
Figs. 1 and 2.

For low frequencies we obtain the leading terms for the
real and imaginary parts analytically, according to Eq. (9).
The agreement between the analytic and numerical results
is very good. As an example, results forb/a = 2 are pre-
sented in Table 1. For other values ofb/a, the analytic and
numerical results are also in good agreement.
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Figure 1: Real part of the coupling impedance of an annular
cut in a coaxial liner.

b

g/a Analytic approximation Numerical result
0.01 0.02976 0.02907
0.03 0.02332 0.02308
0.05 0.02025 0.02022
0.07 0.01823 0.01830

Table 1:Im[Z‖/Z0] for b/a = 2 at frequencyka = 0.03,
C1 = −0.667, C2 = −1.117.

The real part of the impedance in the limit of zero fre-
quency becomes finite, and is equal toln(b/a)/π, which
agrees with the result obtained by Palumbo.[2] Its physi-
cal origin is the energy radiated in the TEM mode in the
coaxial region.

For low frequencies, the coupling impedance of the nar-
row annular cut can be easily presented in terms of an
equivalent circuit. Specifically, forg � a, we can write
for the admittance

Y = R−1 + jωC, (10)

where R is given by Z0 ln(b/a)/π, and C is given by
2aε0(C1 + C2 + 2 ln(4a/g)), corresponding to the parallel
combination of the resistanceR and the capacitanceC. In
Figs. 3 and 4 we present the real and imaginary parts of the
admittanceY as a function ofka. As one can see, the real
part of the admittance is purely1/R until ka = 2.405, the
cutoff of the TM01 mode. At this cutoff the singularity cor-
responds to the fact that power starts to dissipate not just in
the coaxial region, but also in the pipe region.
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Figure 2: Imaginary part of the coupling impedance of an
annular cut in a coaxial liner.

5 SUMMARY

The purpose of this paper is to present the analysis of the
calculation of the coupling impedance of an annular cut
in a coaxial liner of negligible wall thickness. We ob-
tain equations for calculating the even and odd parts of the
impedance, expressed in variational form. The use of the
variational method makes numerical study fast and accu-
rate. In order to check the developed technique, an analytic
calculation is performed for low frequencies and compared
with the numerical results. The agreement between the an-
alytic and numerical results is very good. As previously
mentioned, the present calculation is a first step in the de-
velopment of an analysis for the coupling impedance of a
rectangular slot with finite azimuthal length.[3]
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Figure 3: Real part of the admittance of an annular cut in a
coaxial liner.
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Figure 4: Imaginary part of the admittance of an annular
cut in a coaxial liner.
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