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Abstract

In recent years there have beerajor advances in the
computationanduse of high-ordermaps for the design,
optimization and operation of beamlines.  Wavill

describe five practical examples for both linear and circular

colliders.

1 INTRODUCTION

The range ofmeaning for theword “analytical” extends
from a hand-derivedformula to beused byhand, to a
computer-derivedormula to beused by handeg. with a
symbolic manipulation program), to @mputer-derived
expression to be seen only by a comput&here is an
increasingdegree ofcomplexity as ongroceedsthrough
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di:—:H(x,px,..): where : H: f ={H, f} and where
S

{.. ,..} is the symbol for the Possobracket. In other

words
d

Ds— .

f(s+As)=e * f(s)=e™" f(x,p,..)

We oftendropthe “: ... :” notation when no confusion
can arise.

2.2 Composition laws

The usefulness of the Lie opera®ymbol lies in the
three following properites:

1. Concatenation. If the Hamiltonian ¢hanges
abruptly from a function Hin a segmentAs, to a
function H, in a segmentAs,, then the result of

transporting through the twoadjacent segments is
—-As, :H;: e—Aszsz:.

these types. Théiand-derived/hand-used isspecially
important for the first stages of beamline design, the
computer-derived/hand-used is especially important for use 2.  Composition (BCH law).  For generator
in the operatiorandtuning of an existing beamline, and functions A and B, there is a generator Csuch that
computer-derived/computer-used isuseful in the e®e® =e® where C isgiven by a perturbation series of
mtermedlqte and final stages of peamllne design. wille Poisson bracketsC = A + B + E{A, B+
describe five examples, covering a fullrange of 2
complexity. From least to most complekese 3. Similarity. For generator functions A and B,
examples will be: e*e®e” =e”® .  This law says that the simlarity
+ use of similarity transformations (FFTB design, SLGransform of a Lie operator igiven by the Lieoperator
diagnosis) with an approriately transformed generatorThis law

* statistical maps (SSC smear and tune-shift) looks rather special, but has wide applicability.
e aberrations (SLC upgrade)

» resonance basis and nPB tracking (PEP-II design)
» kick factorization (possibly LHC).

2.3 Representation of elements and beamlines

From the concatenation law it is clear that a beamline can
be represented by a productloé operators. This result

2 LIE OPERATOR BASICS is enhanced by the fact that element misplacements can be
The Lie operator and associated algebra are valuable tootepresented by coordinate transformations specified by Lie
to understanding the examples to be described. We operators inserted betweetements. Likewisefringe
introduce them briefly here. See reference [1]. fields, edge angles, and overlapping fields (eg. a
guadrupolesitting in a solenoid) all can be faithfully

2.1 Lie operators represented by the appropriate Lie operators.[2]

has the

. d
For R a constant, thequation Ef =Rf 2.4 Dragt-Finn map representation

solution f(t+At)=e*"f(t). This equation could We have statethat any elementan be represented by a
ad Lie operatorand abeamlinecan be represented by a

equally well be written f(t +At)=e @ f(t), which is product ofsuch operators.There are aariety of means

now true for a very large class of functions f(t). W by which these operator products can be composdiddo

be concernedvith a class of functionsf (x(s), p,(s),...)  a Lie operator representation for the entire beamline. The
where x(s) is the particleposition, and the differential final result usually takes the form ofpaoduct of a linear

operator, d/ds, igiven by a Hamiltonian. Symbolically operator,specified_either by a matrix or a Lie operator:
and a purely nonlinear operator. More often the beamline

map is determined by tracking through the elements with
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a power series to determine a power series representatiba The method
of the beamline map. Using the factorizaiton resu
derived by Dragt and Finn any power series which

represents aymplectic mapcan be represented by the
product of a linear map and a nonlinear Lie operator. [3]

Létarting with the representation of the one-turn map as a
product ofLie operatorseachrepresenting an element,
one first solves forcorrector strengths to find a
satisfactoryclosedorbit. For the phaseadvances of the
2.5 Normal forms SSC lattice and the location obrrectorsandBPMs, one
could do this quite simply using a local bump algorithm.

Normal form factorizations apply t@losedrings. N \wjth the corrector strengthsdetermined, operatorsould

rings one often seeks a representation of the form be introduced to represent them.

Me® =e"Re"e™” The principal step is to write each element map as a
where M is the linear map for the ring, G in thenerator product of two linear maps bracketing @emainder
of the remaindernonlinear map, R is &lock-diagonal containing the chromaticityand nonlinear miltipole
rotation matrix, h is ajeneratorthat dependsonly on terms. Similarity transformationsan now beused to
action operatorsand A is the generator of asimilarity move all linear maps to the front of the line. The result
transformation that maps th@hase-space invariant js that the variables in themainder mapgenerators are
surfaces ofthe original map, when they exist, onto aeplaced by dinear sum expressing tleordinate at the

product of toroids. [4] center of the element location as a function of the
This normal form may béund formally but will  position and momenta at the end of the beamline.

only be accurate under limited conditions thet difficult Since theremainders arsmall maps, the BCH law

to specify precisely. It is important to distinguishcannow beused to findthe nonlineargenerator of the

between properties of the one-tumap, whichwill  one-turn map. The first term in the BCH law is just the

generally be wellbehaved andcontinuous in all the sum of the element remainder generators.

variables definingt, and the “iterated map” which may The apparent comlexity of a 100 km ring

have a range obehaviors, including of coursehaotic  conaining a variety of nonlinear ternspreadout along
motion.  Hence the normal form, whichcan only  the circumference is replaced bylmear matrixand one
represent very regular behavior, aaot representhe full  nonliner mapspecified by apolynomial starting with

range of expected properties of the iterated map. third order terms. The polynomial is given, to ficstler,
as a sum of the polynomials of the nonlinearities in the
3. STATISTICAL MAPS ring, eachwritten as a function of the position and

During a design process, one must assign statistical ~momenta at theend of the ring. The situatiorcould
values to many element properties, such as multipole hardly be simpler!
strengths and magnet positions. One must then study an  Furthermore using the BCH theorem there iclear
ensemble of machines to be sure that all have acceptablprescription how to find next order terms so that they can
behavior. It would be advantageous if one could avoid thiee calculated and comparedtte firstorderterms. This
map composition process for all rings in the statistical approach is a usual perturbation theory in the strength of
sample, and assign statistical values directly to map element nonlinearity strength. Its advantagsimplicity
coefficients. The following work describes the first foray and clarity.
into such territory [5]. This work also provides valuable Most of the multipole strengths contain a stochastic
insight into how the nonlinear generator of the one-turn variable. The sum of stochastic variables can be
map is related to the nonlinearities of beamline elementgepresented as a stochastic variable. In this wayfiote
directly an expression for the map with stochastic

) variables in coefficients.
3.1 The motive

. . 3.3S d tune-shift-with- litud
The SSC design group had chosen a quantity called smear, mear and fune-shif-with-amplitude

which was roughly the rms spread of the invariant actiofne can next look at the normal form expressiofint
along with tune-shift-with-amplitude, toharacterize the the generator othe simlarity transformation in terms of
behavior of lattices prior to studying their long-termthe one-turn nonlinear map generator. At this step the
behavior. Since these quantitidepended orthe random  tune of the ring enters explicitly. Finally the generator of
seed determining each lattice, a large computatieffiadt  the tune-shift-with-amplitude can be found. There is a
was required to determine smear fatatistical sample of complication that important terms in this expression are
eachbasic design. Foresthowedthat thesequantities secondorder in the sextupole terms of thene-turn
could be foundusing Lie methods. BengtssandIrwin  generator.

included closed-orbit effects and firmly established that the

results of the calculatiomnd tracking were identical, 4. KICK FACTORIZATION
including the Fourier decomposition of the smeareeWé A kick map, which for examplemight represent an
of computational time were reduced to minutes. impulse approximation for an element, hagenerator
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that depends oonly one phasspacevariable. Itleaves themselves to insurgood system bandwidth. These
the variable x unchangeahdincrements the momenta by nonlinearities cannot be dealt with effectively, or with any
a function of the position. A generalization of the kickinsight, using the BCH theorem.

would be amap whosegenerator was a coordinate However becausthe sextupole nonlinearities must
transformation of a kick generator. These have bé&mm cancel out, there must be a structure in the beamline that
referred to as a jolts. insures this. This structuis, of course, the -module

between them. Placing the sextupoleathend ofthe -

I, and removing linear terms, as described in section 3, we
Kick mapsand products ofkick mapsare very easy and seethat weare looking at a simlarity transformation,
fast to evaulate. Thegre guaranteedympletic because Wwherethe generator ofthe similarity transform is the
no truncation isrequired. Since the one-turn map is the sextupole generator.

result of addingtogether a bunch of kicks in thease
where eaclelement isrepresented by aymplectic kick
factorization, it is natural to ask whether giveorg-turn The remainder generatoior the -1 between sextupoles
generator one could find a factorization, hopefully with @ontain chromatic terms of the form

much smaller number of factors, that would faithfully a x’0" +b p2d" +..

represent it. If so, the one turn-map couldraeked very ajong with similar terms in y.There are no xpterms if
rapidly to study the long-term behavior so important ifhe -| section isforward-backward symmetric. ~ The

4.1 The motive

5.2 Chromatic-correction section map

proton machines. generator of the sextupole is of the form:
4.2 The method Gs = %[(x +nd)° - 3(x £ nd)y’l

One posits a set of kicks with simple, bspecified Ks o s ) I s
phase-spaceotationsbetweenthem [6]. The number of ZE[X —3xy" +3n°x0" £30(X" —y )0 + ]

kicks is determined bythe number of termsequired to
represent the highest order polynomial.

One first solves a linear equation for theefficients
of the thirdorderpolynomials. Next oneletermines the
fourth-order effects ofhese polynomials, subtractisese
terms from the original one-turn mapnd fits the

To form the similarity transform, weadd and
subtract two times the chromatic term on the hefhd
side. This leaves a residuual chromatic term twice the
size of the term in the sextupole generator, astuecture
which is a pure similarity transform [8]. The map fhis
module may now beéeterminedprecisely by replacing,p

remainder by aum offourth-orderpolynomials, and so G
on. by Q-?S, and similarly for p. This transformed
4.3 Improvements generatorhas the property that no large terms remain.

Rotati betweenkick b fied b ¢ of The chromaticty term has been removed. migst be
otations belweenkicks can be Spectlied by aet of = 50 through the final telescope tacancel the

pO'T‘ts in-a 2D plaqewhere the x coordlnate_|s the chromaticity of the final doubletproducing another
horizontal-plane rotation angle, and the y coordinate is tI%‘i:‘milarity structure to evaluateAnd the sextupole terms
vertical-plane rotation angle. One quickbalizesthat, if

) ) X are gone. What is left is a transform of thehtomatic
the pomtsarg on a coo_rdmatgnd, an unusuallyiarge terms by thepresence ofthe sextupoles. Since the
number of p0|r_1ts IS re_quw_ed because cof_egeneracy. So derivative of G is second ordegnd this is squared, the
one is led to tilt thiggrid slightly. Techniquedeveloped highest order aberration which arises from thinear
by Abell and Dragt [7] have shown thathere is an

chromaticity of the -1 will be of fifth order.
optimal angle for this tilt. They have alsstudied other =ty W I

; . i .\ Besides determining an important highorder
gkr](();ijc[:;s” of linear maps between kicks,search of a “best aberration, which by design must be kemtceptably

small, wehave establishethat there are no additional
5. USE OF SIMILARITY TRANSFORMATIONS ~ [6rms. We have found a very consise expressiothése
aberrations whichcan be used in determiningptimal

Final focus systems for lineaollidersareunusal in that design parameterength, b functions dispersion) for
the nonlinearities are necessarily verystrong. Iif final focus design [9].

uncorrectedthe chromaticity of the final doublet in the
Next Linear Collider (NLC) design would give an rms o ) )
size to the beam that is about 100 tinkeger than its 2-3 Similarity transformation generality

a pair of sextupoleseparated by a -gection upstream gprisingly general. Often one asks questions such as,
from the doubletandthese chromatic kicks coming via “How padcanthe launch conditionbe?” or “How large

the presence ofdispersion in these sextupoles must kg 5 misalignement be?”. Since it is presumedititeae
turn be severaltimes smaller than the sextupole Kicksyill be a corrector to compensate steering, ehange in
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a quadrupole tocompensate amismatch, all ofthese consists of applying the map to tendard phase-space
questions resolve themselves in a similafitgnsfrom variables x, p, .. but evaulating the resultingoisson
structure. [10] brackets in the action-angle variables. Astonishinblg
can bedonewithout everevaluating a sine or cosine, or
6. ABERRATIONS square root. Semferencd12] for details. Resultsvere

Each term in the nonlinear beamline generator corresporfegmpared to element-by-element tracking to establish that
to a unique aberration. Theserms will be small by the dynamic aperture determinations were identical.

design, even for beamlines with large nonlinearities. 8.2 Swimps and swamps

6.1 Final focus system upgrade A SWIMP is an acronym we hawgven to a“switched

In evaluating existingandtypically non-idealbeamlines, Map”. A switched map iglerivedfrom the one-turn map
one will use symbolic manipulator programstemcated of a bgamllne by altering it in some interesting way. The
power series agebras to determihe beamline map. MOst important SWIMPsused in the PEPII design
Investigation of the generator wikkvealwhat aberrations process_werethose for which the_one—turn phaadvance
are dominating the beamline. Modifications to eliminat®f the linear map washangedwhile the nonlinear map
the aberrations can be considered. Before a repenade, remained unchanged. Since the phase trombone of PEPII
the dominant aberration on the SLC final focus beamli§ located in abenign section of beamline, this can
was the term &p,% a second-ordefin &) chromaticity correspond quitelosely to areal situation. Varymg the
term. This termcould be corrected by putting a tune over pnequadrant ofthe tune planeandlooking at
quadrupole inthe final telescope [11]. Since there is ghe dynamic aperture, resulted in what has beaifed a
large first order chromaticity at each endtiois telescope, SWAMP plot. In thisway the behavior of our lattices
small phase advance changes between these termgould bgstudied inthe entire tune planeatherthanjust
producesthe secondorder term.  This can be seen by ©ne point. [13]

evaluating the Poissobracket {g,%P."}=PxPeAP P} =

PP, 0Pt 9. SUMMARY
An example of an analytical result in nonlindagam
7. RESONANCE BASIS optics was presented for five distint levels of complexity.

For rings it is more informative to write theonlinear Starting from the lowest, these examples were:

one-turn mapgenerator in a resonanceasis.  The . yse of similarity transformations tdetermine design
transform to this basis is linear, hence easy to perform. It equations for linear collider final focus systems

plays an important role in the normal form theory. The se of the BCH law taletermine sstatistical sample

generator of aing will have many, many termsand in of one-turn maps for proton rings
general_ it isimpo.ssible _todeterminethe effect _of an . yse of the nonlineagenerator to findand correct
aberration bylooking at its strength. However in the aberrations in a beamline map, or monitesonance

course of the PEPII design a graphic display was  sgrengths in a ring map
developed [12] to monitor the strengths othese . gescription of an action-angle based tracking algorithm

gberrations. .This pro_ved US?M for two reasons: that allows one todetermine dynamic apertures of
inadvertentmistakes in the input latticeyhere quickly electron rings in the entire tune plane
spotted,andseveral generdessonswere learned. One description of a kick factorization method foroae-
important lessonconcernedthe strength ofchromatic turn map that may besed to rapidly determine the

terms (anything quadratic in phase-space variables with a d |ong-term behavior of proton rings
dependence). This is of course well-known, but the
required conditions became more quantitative. 10 ACKNOWLEDGEMENTS

8. NPB TRACKING All of th.e methodgdescribedrely on t_he Lie operator

) ) ] methodsintroducedinto acceleratophysics by A. Dragt.
In.the deS|gn' process, many what-if questions naturalfyjy first exposure to these methodsame through
arise. What if wevereable to changéhe strength of a collaboration with E. Forest in the SSfesigngroup. |
particular resonance? Wat if we changedthe tune? agpecially thank these two pioneeasd my inspiring,
These questions can heswered ifonecanreliably track  creative collaborators over the past ten vyears: J.

with the map. Bengtsson, Y. Cai, T. Chen, G. Roy, N.aWer, Y.

8.1 The nPB tracking method Yan, and F. Zimmermann.
Because one contemplated asking questions alhauiges
in resonance strengths, it was natural to seek a method to

track in an action-angle basis. It was a great surprise to
find that one could, and with excellent speed. Tlethoud
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