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Abstract

In recent years there have been major advances in the
computation and use of high-order maps for the design,
optimization and operation of beamlines.  We will
describe five practical examples for both linear and circular
colliders.

1  INTRODUCTION

The range of meaning for the word “analytical” extends
from a hand-derived formula to be used by hand, to a
computer-derived formula to be used by hand (eg. with a
symbolic manipulation program), to a computer-derived
expression to be seen only by a computer.  There is an
increasing degree of complexity as one proceeds through
these types.  The hand-derived/hand-used is especially
important for the first stages of beamline design, the
computer-derived/hand-used is especially important for use
in the operation and tuning of an existing beamline, and
computer-derived/computer-used is useful in the
intermediate and final stages of beamline design.  We will
describe five examples, covering a full range of
complexity.   From least to most complex these
examples will be:
• use of similarity transformations (FFTB design, SLC

diagnosis)
• statistical maps (SSC smear and tune-shift)
• aberrations (SLC upgrade)
• resonance basis and nPB tracking (PEP-II design)
•  kick factorization (possibly LHC).

2  LIE OPERATOR BASICS

The Lie operator and associated algebra are valuable tools
to understanding the examples to be described.  We
introduce them briefly here.  See reference [1].

2.1 Lie operators

For R a constant, the equation 
d

dt
f R f=  has the

solution f t t e f tt R( ) ( )+ =∆ ∆ .  This equation could

equally well be written f t t e f t
t

d

dt( ) ( )+ =∆
∆

, which is

now true for a very large class of functions f(t).  We will
be concerned with a class of functions f x s p sx( ( ), ( ),...)
where x s( ) is the particle position, and the differential
operator, d/ds, is given by a Hamiltonian. Symbolically

d

ds
H x p H f H fx= − =: ( , , ..) : : : { , }  where  and where

{.. ,..} is the symbol for the Posson bracket.  In other
words

f s s e f s e f x p
s

d

ds s H
x( ) ( ) ( , , ..): :+ = = −∆

∆ ∆

We often drop the “: ... :” notation when no confusion
can arise.

2.2 Composition laws

The usefulness of the Lie operator symbol lies in the
three following properites:

1.  Concatenation.  If the Hamiltonian H changes
abruptly from a function H1 in a segment ∆s1 to a
function H2 in a segment ∆s2, then the result of
transporting through the two adjacent segments is
e es H s H− −∆ ∆1 1 2 2: : : :.

2.  Composition (BCH law).  For generator
functions A and B, there is a generator C, such that
e e eA B C=  where C is given by a perturbation series of

Poisson brackets:  C A B A B= + + +
1

2
{ , } ... .

3. Similarity.  For generator functions A and B,
e e e eA B A e BA− = ( ) .  This law says that the simlarity
transform of a Lie operator is given by the Lie operator
with an approriately transformed generator.  This law
looks rather special, but has wide applicability.

2.3 Representation of elements and beamlines

From the concatenation law it is clear that a beamline can
be represented by a product of Lie operators.  This result
is enhanced by the fact that element misplacements can be
represented by coordinate transformations specified by Lie
operators inserted between elements.  Likewise fringe
fields, edge angles, and overlapping fields (eg. a
quadrupole sitting in a solenoid) all can be faithfully
represented by the appropriate Lie operators.[2]

2.4 Dragt-Finn map representation

We have stated that any element can be represented by a
Lie operator and a beamline can be represented by a
product of such operators.  There are a variety of means
by which these operator products can be composed to find
a Lie operator representation for the entire beamline.  The
final result usually takes the form of a product of a linear
operator, specified either by a matrix or a Lie operator,
and a purely nonlinear operator.  More often the beamline
map is determined by tracking through the elements with
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a power series to determine a power series representation
of the beamline map.  Using the factorizaiton result
derived by Dragt and Finn any power series which
represents a symplectic map can be represented by the
product of a linear map and a nonlinear Lie operator. [3]

2.5 Normal forms

Normal form factorizations apply to closed rings.  In
rings one often seeks a representation of the form

M e e eG A h A= −Re

where M is the linear map for the ring, G in the generator
of the remainder nonlinear map, R is a block-diagonal
rotation matrix, h is a generator that depends only on
action operators, and A is the generator of a similarity
transformation that maps the phase-space invariant
surfaces of the original map, when they exist, onto a
product of toroids. [4]  

This normal form may be found formally but will
only be accurate under limited conditions that are difficult
to specify precisely. It is important to distinguish
between properties of the one-turn map, which will
generally be well behaved and continuous in all the
variables defining it, and the “iterated map” which may
have a range of behaviors, including of course, chaotic
motion.  Hence the normal form, which can only
represent very regular behavior, can not represent the full
range of expected properties of the iterated map.

3. STATISTICAL MAPS

During a design process, one must assign statistical
values to many element properties, such as multipole
strengths and magnet positions.  One must then study an
ensemble of machines to be sure that all have acceptable
behavior.  It would be advantageous if one could avoid the
map composition process for all rings in the statistical
sample, and assign statistical values directly to map
coefficients.  The following work describes the first foray
into such territory [5]. This work also provides valuable
insight into how the nonlinear generator of the one-turn
map is related to the nonlinearities of beamline elements.

3.1 The motive

The SSC design group had chosen a quantity called smear,
which was roughly the rms spread of the invariant action,
along with tune-shift-with-amplitude, to characterize the
behavior of lattices prior to studying their long-term
behavior.  Since these quantities depended on the random
seed determining each lattice, a large computational effort
was required to determine smear for a statistical sample of
each basic design.  Forest showed that these quantities
could be found using Lie methods.  Bengtsson and Irwin
included closed-orbit effects and firmly established that the
results of the calculation and tracking were identical,
including the Fourier decomposition of the smear.  Weeks
of computational time were reduced to minutes.

3.2 The method

Starting with the representation of the one-turn map as a
product of Lie operators, each representing an element,
one first solves for corrector strengths to find a
satisfactory closed orbit.  For the phase advances of the
SSC lattice and the location of correctors and BPMs, one
could do this quite simply using a local bump algorithm.
With the corrector strengths determined, operators could
be introduced to represent them.  

The principal step is to write each element map as a
product of two linear maps bracketing a remainder
containing the chromaticity and nonlinear multipole
terms.  Similarity transformations can now be used to
move all linear maps to the front of the line.  The result
is that the variables in the remainder map generators are
replaced by a linear sum expressing the coordinate at the
center of the element location as a function of the
position and momenta at the end of the beamline.

Since the remainders are small maps, the BCH law
can now be used to find the nonlinear generator of the
one-turn map.   The first term in the BCH law is just the
sum of the element remainder generators.  

The apparent complexity of a 100 km ring
conaining a variety of nonlinear terms spread out along
the circumference is replaced by a linear matrix and one
nonliner map specified by a polynomial starting with
third order terms.  The polynomial is given, to first order,
as a sum of the polynomials of the nonlinearities in the
ring, each written as a function of the position and
momenta at the end of the ring.  The situation could
hardly be simpler!

Furthermore using the BCH theorem there is a clear
prescription how to find next order terms so that they can
be calculated and compared to the first order terms.  This
approach is a usual perturbation theory in the strength of
element nonlinearity strength.  Its advantage is simplicity
and clarity.

Most of the multipole strengths contain a stochastic
variable. The sum of stochastic variables can be
represented as a stochastic variable.  In this way one finds
directly an expression for the map with stochastic
variables in coefficients.

3.3 Smear and tune-shift-with-amplitude

One can next look at the normal form expression to find
the generator of the simlarity transformation in terms of
the one-turn nonlinear map generator.  At this step the
tune of the ring enters explicitly.  Finally the generator of
the tune-shift-with-amplitude can be found.  There is a
complication that important terms in this expression are
second order in the sextupole terms of the one-turn
generator.

4. KICK FACTORIZATION

A kick map, which for example might represent an
impulse approximation for an element, has a generator
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that depends on only one phase space variable.  It leaves
the variable x unchanged and increments the momenta by
a function of the position.  A generalization of the kick
would be a map whose generator was a coordinate
transformation of a kick generator.  These have also been
referred to as a jolts.

4.1 The motive

Kick maps and products of kick maps are very easy and
fast to evaulate.  They are guaranteed sympletic because
no truncation is required.  Since the one-turn map is the
result of adding together a bunch of kicks in the case
where each element is represented by a symplectic kick
factorization, it is natural to ask whether given a one-turn
generator one could find a factorization, hopefully with a
much smaller number of factors, that would faithfully
represent it.  If so, the one turn-map could be tracked very
rapidly to study the long-term behavior so important in
proton machines.

4.2 The method

One posits a set of kicks with simple, but specified
phase-space rotations between them [6]. The number of
kicks is determined by the number of terms required to
represent the highest order polynomial.  

One first solves a linear equation for the coefficients
of the third order polynomials.  Next one determines the
fourth-order effects of these polynomials, subtracts these
terms from the original one-turn map and fits the
remainder by a sum of fourth-order polynomials, and so
on.  

4.3 Improvements

Rotations between kicks can be specified by a set of
points in a 2D plane, where the x coordinate is the
horizontal-plane rotation angle, and the y coordinate is the
vertical-plane rotation angle.  One quickly realizes that, if
the points are on a coordinate grid, an unusually large
number of points is required because of a degeneracy.  So
one is led to tilt this grid slightly.  Techniques developed
by Abell and Dragt [7] have shown that there is an
optimal angle for this tilt.  They have also studied other
groups of linear maps between kicks, in search of a “best
choice”.

5. USE OF SIMILARITY TRANSFORMATIONS

Final focus systems for linear colliders are unusal in that
the nonlinearities are necessarily very strong.  If
uncorrected, the chromaticity of the final doublet in the
Next Linear Collider (NLC) design would give an rms
size to the beam that is about 100 times larger than its
linear size.  This huge chromatic term is compensated by
a pair of sextupoles separated by a -I section upstream
from the doublet, and these chromatic kicks coming via
the presence of dispersion in these sextupoles must in
turn be several times smaller than the sextupole kicks

themselves to insure good system bandwidth.  These
nonlinearities cannot be dealt with effectively, or with any
insight, using the BCH theorem.

However because the sextupole nonlinearities must
cancel out, there must be a structure in the beamline that
insures this.  This structure is, of course, the -I module
between them.  Placing the sextupole at each end of the -
I, and removing linear terms, as described in section 3, we
see that we are looking at a simlarity transformation,
where the generator of the similarity transform is the
sextupole generator.  

5.2 Chromatic-correction section map

The remainder generator for the -I between sextupoles
contain chromatic terms of the form

a x b pn
n

n x
n2 2δ δ+ + ..

along with similar terms in y.  There are no xpx terms if
the -I section is forward-backward symmetric.  The
generator of the sextupole is of the form:

G
k

x x y

k
x xy x x y

S
S

S

= ± − ±

= − + ± − +

3
3

3
3 3 3

3 2

3 2 2 2 2 2

!
[( ) ( ) ]

!
[ ( ) .]

ηδ ηδ

η δ η δ

To form the similarity transform, we add and
subtract two times the chromatic term on the left hand
side.  This leaves a residuual chromatic term twice the
size of the term in the sextupole generator, and a sturcture
which is a pure similarity transform [8]. The map for this
module may now be determined precisely by replacing px

by px-
∂
∂
G

x
S , and similarly for py.  This transformed

generator has the property that no large terms remain.
The chromaticty term has been removed.  It must be
moved through the final telescope to cancel the
chromaticity of the final doublet, producing another
similarity structure to evaluate.  And the sextupole terms
are gone.  What is left is a transform of the -I chromatic
terms by the presence of the sextupoles.   Since the
derivative of GS is second order, and this is squared, the
highest order aberration which arises from the linear
chromaticity of the -I will be of fifth order.

Besides determining an important high order
aberration, which by design must be kept acceptably
small, we have established that there are no additional
terms.  We have found a very consise expression for these
aberrations which can be used in determining optimal
design parameters (length, b functions, dispersion) for
final focus design [9].

5.3 Similarity transformation generality

The considerations of the preceding paragraph are
surprisingly general.  Often one asks questions such as,
“How bad can the launch conditions be?” or “How large
can a misalignement be?”.  Since it is presumed that there
will be a corrector to compensate steering, or a change in
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a quadrupole to compensate a mismatch, all of these
questions resolve themselves in a similarity transfrom
structure. [10]

6. ABERRATIONS

Each term in the nonlinear beamline generator corresponds
to a unique aberration.  These terms will be small by
design, even for beamlines with large nonlinearities. 

6.1 Final focus system upgrade

In evaluating existing, and typically non-ideal beamlines,
one will use symbolic manipulator programs or truncated
power series agebras to determine the beamline map.
Investigation of the generator will reveal what aberrations
are dominating the beamline.  Modifications to eliminate
the aberrations can be considered.  Before a recent upgrade,
the dominant aberration on the SLC final focus beamline
was the term  δ2py

2, a second-order (in δ) chromaticity
term.  This term could be corrected by putting a
quadrupole in the final telescope [11].  Since there is a
large first order chromaticity at each end of this telescope,
small phase advance changes between these terms
produces the second order term.  This can be seen by
evaluating the Poisson bracket {px1

2,px2
2}=px1px2{px1,px2}≈

px1
2{px1,px2}.  

7. RESONANCE BASIS

For rings it is more informative to write the nonlinear
one-turn map generator in a resonance basis.  The
transform to this basis is linear, hence easy to perform. It
plays an important role in the normal form theory.  The
generator of a ring will have many, many terms and in
general it is impossible to determine the effect of an
aberration by looking at its strength.  However in the
course of the PEPII design a graphic display was
developed [12] to monitor the strengths of these
aberrations.  This proved useful for two reasons:
inadvertent mistakes in the input lattice, where quickly
spotted, and several general lessons were learned.   One
important lesson concerned the strength of chromatic
terms (anything quadratic in phase-space variables with a d
dependence).  This is of course well-known, but the
required conditions became more quantitative.   

8. NPB TRACKING

In the design process, many what-if questions naturally
arise.  What if we were able to change the strength of a
particular resonance?  What if we changed the tune?
These questions can be answered if one can reliably track
with the map.

8.1 The nPB tracking  method

Because one contemplated asking questions about changes
in resonance strengths, it was natural to seek a method to
track in an action-angle basis.  It was a great surprise to
find that one could, and with excellent speed.  The method

consists of applying the map to the standard phase-space
variables x, px, .. but evaulating the resulting Poisson
brackets in the action-angle variables.  Astonishingly this
can be done without ever evaluating a sine or cosine, or
square root.  See reference [12] for details.  Results were
compared to element-by-element tracking to establish that
the dynamic aperture determinations were identical.

8.2 Swimps and swamps

A SWIMP is an acronym we have given to a “switched
map”.  A switched map is derived from the one-turn map
of a beamline by altering it in some interesting way.  The
most important SWIMPs used in the PEPII design
process were those for which the one-turn phase advance
of the linear map was changed while the nonlinear map
remained unchanged.  Since the phase trombone of PEPII
is located in a benign section of beamline, this can
correspond quite closely to a real situation.  Varying the
tune over one quadrant of the tune plane, and looking at
the dynamic aperture, resulted in what has been called a
SWAMP plot. In this way the behavior of our lattices
could be studied in the entire tune plane, rather than just
one point. [13]

9. SUMMARY

An example of an analytical result in nonlinear beam
optics was presented for five distint levels of complexity.
Starting from the lowest, these examples were:

• use of similarity transformations to determine design
equations for linear collider final focus systems

• use of the BCH law to determine a statistical sample
of one-turn maps for proton rings  

• use of the nonlinear generator to find and correct
aberrations in a beamline map, or monitor resonance
strengths in a ring map

• description of an action-angle based tracking algorithm
that allows one to determine dynamic apertures of
electron rings in the entire tune plane

• description of a kick factorization method for a one-
turn map that may be used to rapidly determine the
long-term behavior of proton rings
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