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Abstract

This work is an analytical description of a phenomenon
known as electron emission from ferroelectrics. The
production of free electrons from the surface of
ferroelectrics with a metal lattice structure will be
explained. An analytical field calculation shows that with
a given structure the apparent surface charges of the
ferroelectrics produce an electric field, which causes an
electron emission from the metal lattice because of the
tunnel effect. The emission process is described on the
basis of the Fowler-Nordheim formula. After the
polarization change of the ferroelectrics, free electrons are
produced as a result of the Coulomb interaction. In theory
this work analyzes the question of producing high density
electron currents by means of ferroelectric materials. The
calculated values are compared to empirically found data.

1  INTRODUCTION

First it should be stated that the experimental
investigation of ferroelectrics in terms of electron
emission is not new. After a fast pole-changing (≈ a few
nano seconds) of the spontaneous polarisation PS (Fig. 1)
an intensive electron beam could be measured in a period
of time ≈50 ns. About the causes (production of many
free electrons) the above mentioned authors offered
approaches yet no thorough descriptions of the
phenomenon.
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Figure: 1  Sketch of the pole change with subsequent
emission of electrons from the surface

Next section it is assumed that the production of free
electrons can be described as follows: It is shown that
there is an equality of the measured emitted free charge
carriers in the electron beam because of the Coulomb-
repulsion (between the apparent surface charge density,
the polarization of the ferroelectrics which was changed
shortly beforehand, and the free charge carriers which
tunnelled out of the metal for saturating the apparent
surface charge density) and the apparent surface charges
which in total of their charges correspond to the amount
of charges tunneling out of the metal.

Hence, the interpretation of the cause of this phenomenon
as described in this paper is contradictory to the
approaches regarding the numerous free charge carriers in
the electron beam to originate from an emission process
out of the ferroelectrics. This phenomenon was observed
by means of the test configuration below (Fig. 2).
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Figure: 2  Configuration used for electron production

The test configuration mainly consists of a pre-poled
ferroelectric disk (Fig. 3), e.g. PLZT: 2/95/5, the backside
completely coated with metal (gold) and the front side
covered with a metal lattice layer (gold: line structure
≈200 µm).
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Figure: 3  Design of the FE-sample

Thus the disk acts as a capacitor. When applying a higher
negative pulsed voltage (several kV) to the backside the
shortly intensive (≈10 to 30 µC) electron beam (Fig. 5)
was registred with a Faraday cup.
Considering a small latice hole to be a cylindrical bore
hole (Fig. 3) in the metal of one of the capacitor plates
(front), the electric field strength within the bore hole can
be calculated for the time being for an uncompensated
apparent surface charge density of the ferroelectric which
in that place is uncovered and pre-poled.
On the basis of field emission, the density of the tunnel
current coming out of the metal can be calculated using
the Fowler-Nordheim formula. The differential equation
for the compensation charges tunneling out (corresponds
to the free charge carriers of the later on - after the change
of polarization - emitted electron beam) can be integrated
exactly and allows to state a relation between the apparent
surface charge load, the period of half-life and the initial
tunnel current density [1].
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2  DETERMINATION OF THE POTENTIAL AND
OF THE ELECTRIC FIELD STRENGTH

We consider two capacitor plates with the distance l
between which there is a ferroelectric with the potential
U0. One of the capacitor plates has several cylindrical
bore holes at regular distances which are relatively long
as compared to the diameter of the bore hole; in other
words: one single lattice segment is approximated by a
cylindrical bore hole. We want to determine the electric
field in the capacitor near a representative bore hole and
in the bore hole itself (Fig. 4). The geometrical, electric
influence of the other bore holes on the representatively
selected one shall be neglected.
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Figure: 4  Geometrical arrangement for the calculation
of the electric field

After introducing cylindrical coordinates (z, r, ϕ ), the
potential function v(r, z), which is to be determined and
which is independent of ϕ  both within the capacitor and in
the bore hole itself in the general case, can be written as
an infinite series over Bessel J0 or Neumann functions N0,
respectively:
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where JON are the (tabulated) zeros of the Bessel function,
and R is the Radius of the bore hole.
The integration constants A, B, C, D, En, Fn, Gn, Hn have
to be found through boundary and transition conditions.
In order to describe the ferroelectric adequately in the
parts I and II, the relation
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between the dielectric displacement D, the electric field
strength E and the spontaneous polarization PS is valid.
Hence we assume that the absolute dielectric constant ε  as
well as the spontaneous polarization are constant.
After a few elementary transformations and taking
transition conditions into account we come to the
following formula for the potential in part III [2]:
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for the r-component of the electric field strenght EIIIr

inside the cylindrical bore hole we receive
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the electric field strength amounts to approximately
2⋅108V/cm. Using formula (5) we can find the electric
field strength on the inner metal edge which on the basis
of tunnel effect enables the metal electrons to overcome
the work function.

3  CURRENT DENSITY AS A RESULT OF THE
TUNNEL EFFECT

In quantum mechanics, the calculation of the permeability
factor D is well known, and for the movement of an
electron with the energy W through a potential energy
barrier U=U(x) is given by
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In our situation, the barrier U=U(x) is determined by the
Fermi energy WF and the work function on the one hand,
and by the applied electric field E on the other hand.
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Inserting U(x) into the fundamental formula (6) of
quantum mechanics for the tunnel effect, and after simple
integration we finally arrive at
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The electric field strength found in the above paragraph
and for the work function W0  the permeability factor e.g.
for copper amounts to 4,2⋅10-8. Here the potential barrier
is approximately as wide as four times the Bohr radius.
When applying an electric field strength to a metal some
electrons tunnel according to the permeability formula (6)
from the metal into the vacuum so as to compensate the
positive unfree apparent charge of the high spontaneous
polarization in terms of absolute value. In order to
estimate how fast the compensation effect goes it is
necessary for the time being to determine the current
density JT of the electrons tunneling out. It is known that
the current density results from the Fermi distribution of
the electrons in metal and from the permeability formula
(6), giving the Fowler-Nordheim formula.
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Writing the electric field strength EIIIr in V/m, the work
function WA in eV and the tunnel current density J in
A/m2 the Fowler-Nordheim formula in dimensionless
quantities to be measured reads:
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Again inserting in (10) the electric field strength of our
example and the work function WA of copper for the
tunnel current density amounts to approximately 1200
A/cm2 and is the higher the shorter the period is.
Moreover, we note that a slight increase in the electric
field strength immediately results in a considerably higher
tunnel current density and hence, as will be explained in
the following paragraph, there is just a faster
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compensation of the apperent surface charges by the
electrons tunneling out of the metal.

4  SATURATION OF THE FERROELECTRIC
SURFACE IN TERMS OF TIME

The relations (5) and (9) allow us to write a differential
equation for the still uncompensated apparent surface
current density η S(t)
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where PS=η S(t=0)=η S and Q(t) is the charge which
tunneled out of the metal by the time t:
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Here a means the depth of the bore hole, and σ  is a
shortcut for the following:
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After introducing further suitable shortcuts
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It can be solved by separation of the variables, and using
the inititial condition Q(t=0)=0 (by the time t=0 there has
been no tunnel charge emission) we get
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behaviour of the compensation we use half-life τ :
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Inserting the values of our example in (17) results in
τ =4⋅ 10-4ns, i.d. in a very short period of time a
considerable part of the apparent surface charge density
will be saturated by the electrons tunneling out of the
metal. Finally, since we arrive at
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Moreover, (12) in combination with (16) at t=0 provides
the tunnel current density. Since Φ  and Ω  are independent
of the apparent surface charge density η S we get a relation
which combines η S with τ  and JT(t=0):
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Formula (20) shows the relations between relevant
quantities in the compensation process as a result of the
tunnel effect. After fast pole change (PS → -PS) the
compensation charges are suddenly confronted with
apparent surface charge densities with the same sign and
are hence repelled. A corresponding pulse of current IM(t)
if integrated over time is then exactly
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the previous compensation charge. Thus, we showed in
this paper that compensation charges can appear mainly
as a result of the tunnel effect from the metal of the
capacitor charge. We get
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which corresponds with the data measured [3].

Figure: 5  The sample response ② to a negative pulse
applied to the backside ①

5  CONCLUSION

The results of this paper allow to conclude that the
problem of the place where the compensation charges for
the saturation of high apparent surface charge densities in
ferroelectric materials come from has a relative simple
solution. The physical explanation is that the apparent
surface charges of the ferroelectric create very strong
electric fields within the lattice holes, with the lattice
having a potential of V=0. These fields cause the
emission of electrons from the metal lattice (quantum
mechanic tunnel effect). These electrons create the
compensation charges, so that after the pole change of the
ferroelectric (V=-U0) they can be registered [4] as free
charge carriers in the electron beam (as a result of the
Coulomb force between the apparent charges and the
compensation electrons).
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