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Abstract Iimka [Br 1(r0,2)] =B, 24 (r.0)

The analytical expression for the magndigtd of helical = Brele( ) (a1 cos 19 + by sin )

coils is presented. In particular, the multipole coefficient}s “mk o [Bo,n(r8,2)] = B, 24 (1.0) 2
are introducedfor helical dipole magnets, which are
essential components of Siberian Snakes and spin rotatprs BrefZ (™ (b cos i + & sin D)
for polarizedproton acceleration aRHIC.  In addition, n

the comparison between analyticadnd numerical limic.o [BZ' Hr8.2)] = Bz, 24(r,0) = 0

calculations is presented for simple helical dipole )
magnets. Thereforethe normaland skew multipolesdue to many

helical line currents with curren, radius @ angledj are,

1 INTRODUCTION

Using the expression of multipole expansion for a single Bn(k) = Bre(k) bu(k) = L,l.? m( nk )" x
helical current conductor[1}he magnetidield of helical

dipole coil with an infinite length isderived as the Z li (k@ Kna(n k@) + Kn(n k a)) cos 3)
summation offour(4) helical line currentswith dipole !

symmetry, deriving the helical multipole coefficients. | An(K) = Brei(k) an(k) = i:.f W (k)" x

[2,3] The helical multipole coefficients are defined so tha _

the non-twist helical multipoleoefficientsare equal to Z li (k& Kna(n k @) + Kn(n k a)) sin rp;

the 2-dimensional multipole coefficients. As a result, the'

dependence ofelical multipole coefficients upon the _ -
twist parameter is derived. With the comparigetween where k = 2iL, and h(nkr) and Kn(nkr) arethe modified

the analyticalandnumerical calculations, it igonfirmed ~Besselfunctions of the firsand secondind of order n,
that the helical multipolecoefficients derived from the —respectively. With the definition ofifk) =1 (=constant),
analytically calculated field areconsistent with those naturally Bef(k) = B1(k). Then, the asymptotic forms for
calculated numerically. the referencefield Bref(k) andfor these helical multipole

coefficients g(k) and In(k) aregiven in the limit k -~ 0
2 ANALYTICAL EXPRESSION FOR THE

MAGNETIC FIELD OF HELICAL DIPOLES (orL — o) by,

Using the expression of the multipole expansion for jqimkao[Bref (K)] = Bref

single helicalcurrent conductor, the magnefield inside limic_o| & (K)] = & (4)
the helical coils with an infinite lengtban bederived as lim lon (K)] = by

the summation of four(4) helical line currents wiipole k=0Ln

symmetry as follows, [1,2,3
y y ws, [1,2,3] 3 COMPARISON BETWEEN ANALYTICAL AND

© N NUMERICAL CALCULATIONS
B(r,6,2) = Bret(K) fo zln! {L} K [(n k 1) x
n= nk o
{-an(k) cos ( 116 -k zj + bn(K) sin( 16 - k 2))} _ _ .
(k1) Following numerical valuesare assumed in the
Bo(r,6,2) = Bret(K) ro Zn'{ 2 } n : L calculation for four helical line currentsith dipole

{an(Kk) sin(n6 -k z)) + (k) Cos( 1 - k 2))) symmetry.

B(r0,2) = Bret(K) o Zl (- k) n'{ T W K 1) Radius of helical line current: a = 50 mm,
k1o Angle of helical line currentp = £716, or+5176,
ten(K) sin(1(@ - k 2) + (k) cos( 10 -k 2)}, Current: | = - 1x 10° A,

Pitch length: L =2 m,
k =2rL = 1/(a tam) =

3.1 Calculation for four helical line currents
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Fig. 1. 3D view of a four currents’ helical dipole.

Table 1. Normal multipole coefficients for a infinitely
long four line currents' helical dipole.

n Pole bntheta bn(k)
(Bref) 1.411 1.411
1 dipole  0.9998 1.
-10
3 sextupole -2.85910 O
5 decapole -0.1239 -0.1243
7 14-poe -0.04386 -0.04419
-10
9 18-pde -1.72110 O
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Fig. 3. Distribution § on the circle of r = 30 mm,

with the comparison between the numerical (black
dots) and analytical (gray line) calculations.

Pitch of the windingo= tarr1(1/0.05m),
Reference radius for multipoley = 30 mm,

as shown in Fig.1. Both of the numeriead analytical
calculations for the helical dipoles with the infinite
length, aremade,using Mathematica [4]. Botbalculated
helical multipolecoefficientsarelisted in Table 1. The
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Fig. 2. Contour plot of dipole field,B

bn-thetaand ky(k) correspond tothe normal multiple

coefficients derived from the angular component of
numerically calculated field g3andanalytically calculated

helical coefficients, respectively. The analytically
calculated contour plot of the dipole fielg &, 6, z=0) is

shown in Fig.2. Both analytical (gray line) and numerical
(black dots) calculations for the dipole fielgg =30 mm,

0, z=0) arealso shown in Fig.3. As a result, it is
confirmedthat theagreement betweethe analytical and
numerical calculations is quite good in the interior region
of helical coils. The twistlependence ahe dipolefield
Bref is also shown in Fig.4.

3.2 Calculation for four helical current shells

Similarly, the nagnetic fieldsare calculatedfor a four
helical currentshells with dipole symmetry of current
density+jz, radii a, ap, limiting anglest$1, +¢ 2, with,

Inner radius of helical line currenty & 50 mm,
Outer radius of helical line currenp & 60 mm,
Inner angle of helical line currerti; = 0, orm,
Outer angle of helical line currentip = 1/3, or 273,
Coil length: L =2 m,
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Fig. 4. Twist dependence of the dipole field{B
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Fig.5. 3D view of a four helical current shells’ dipole.

Table 2. Normal multipole coefficients for a 2 m long,
4 helical current shells’ dipole.

n Pole bn-theta  bn(k)
(Bref) 2.463 2.456
1 dipole 1. 1.

-6 -17
3 sextupole -1.00110 1.369 10

5 decapole -0.01727 -0.01734
7 14-pole 0.003718 0.003743
-6 -19
9 18-pole -3.246 10 3.77510
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Fig. 6. Distribution of By on the circle of r = 30 mm.

Current: | = - 2x 10° A,

Current density:4 = 347 A/mn?

k=2r/L = 1/(a tam) =TI,

Pitch of the windingo = tarr1(1/0.05m),
Reference radius for multipoley = 30 mm,

as shown in Fig.5. The numerical calculation for the
helical coil with the finite length of ongeriod ismade,
using thecode 'OPERA-3d'. [5] Both analytica(gray
line) and numerical (black dots) calculations for digole
field By (=30 mm, 6, z=0) isshown in Fig.6. The 3D

Fig. 7. 3D plot of dipole field By.

plot of the analyticallycalculated dipole field  (r, 6,

z=0) is shown in Fig.7. Both of the analytically and
numerically calculatedhelical multipole coefficients are
also listed in Table 2. laddition,this analytical nethod
was applied for two helical magnet different type.
[6,7,8]

4 CONCLUSION

As an extension of single helicalrrent conductor, the
magnetic fields of helical dipole magnate derived and
helical multipole coefficients are presented. In addition, it
was confirmed that this analytical calculation is consistent
with the numerical calculation by the 3D magnéiidd
numerical code, OPERA-3d/TOSCA
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