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Abstract have the form given by Eq. (1-1) whegg2 is the half in-

A treatment is given of the orbit dynamics for linear un_tegerclose to the unperturbed to thgalue. In the general

stable motion that allows for the zeros in the beta functiofe-¢” where the unstable motion cannot be viewed as due

; . o 1
and makes no assumptions about the realness of the be ?]9 perturbing gradient then the valug;a$ given by; V.

tron and phase functions. The phase shift per turn is sho erelN. is the number of zeros in the beta function in one
to be related to the beta function and the number of ze~ - .
ros the beta function goes through per turn. The solutions Itwill also b_e shown thgt nearazero of the_ beta funct!on
of the equations of motion are found in terms of the betdt = 51 ¥ Will become infinite and the dominant term is
function. is given by

Y~ i% log(s — s1) (1-4)

1 INTRODUCTION ]
See [4] for more details.

In the case of linear unstable motion, the beta function can

be zero at some points in the lattice. Because of the zerosip  THE DEFINITION OF THE BETA FUNCTION

the beta function, and other assumptions often made about

the realness of the beta function and phase function, ti&e linear parameters can be defined in terms of the ele-
usual treatment given for stable motion does not carry ovéfents of the one period transfer matrix. The 2 transfer

to the case of unstable motion. A treatment is given belovwatrix, M, is defined by

that allows for the zeros in the beta functions and does not

make assumptions about the realness of the betatron and x(s) = M(s,s0)z(s0)
phase functions. A x (2-1)
It will be shown that the solutions of the equations of n Da
motion can be written in the form
) The one period transfer matrix is defined by
r = [7exp(£y) .
S ds - M(s)=M(s+L,s) (2-2)
v = P | — +i=N, (1-1)
S0 6 2

where the lattice is assumed to be periodic with the period

N, is the number of times(s) goes through zero between £- The matrixA/ is assumed to be symplectic
sp ands. P indicates the principle value of the integral.

The solutions of the equations of motion can also be written M% - { -

as M = SMS (2-3)
@ = exp[xus/L]f(s) (1-2) g - ( 0 1) [ (1 0)

where f(s) is periodic andL is the length of one turn. It -10 0 1

will be shown that for unstable motion N
S is the transpose of. Also |M| = 1 where|M| is the

po= 2m(g+iq/2) determinant of)/. One can show thait/(s) and M (o)
¢ = % N. (13 e related by

P [tds M(s) = M(s, s0)M(s0) M so,s) (2-4)
T w8 It follows from Eq. (2-4) thatVl;, + Mas, the trace of\/,

where N, is the number of zeros the beta function goeds independent of. For unstable motion it is assumed that
through in one turn P indicates the principle value of the [M11 + M| > 2. This may be shown to lead to unstable
integral. exponentially growing motion.

Often, the case of unstable linear motion is found when One can now introduce the constant parametefined
a gradient perturbation is applied to a lattice whose unpeY
turbedv-value i; close tq/2, q being some integer. In this cosh i = 1 (MH 4 M22> (2-5)
case, perturbation theory will show [1] that the solutions 2

*Work performed under the auspices of the U.S. Department of Eﬂ_f My + M22. is pOSit_iVe1 thery: will be real. HOWG_VGr
ergy. if M1 + Mss is negative them has to have the imaginary

0-7803-4376-X/98/$10.00 [J 1998 IEEE 1421



partigm whereg is an odd integer. In general, one can writethe result

g

B = prtigm il 24118 — 24120
S
coshur = ‘ (2-6) do
i —Ao1 B+ Aray (2-12)
whereg is an even integer l]\/[u + Mo is positive, and; & _ 2A0100 — 24117
is an odd integer when/;; + Moy, is negatlve ds

L is related to the eigenvalues of, \; and \y, where

A+ Ao = My + Moo andAi Ao = 1from | — AT| = 0. 2.2 Differential Equation fo3

It follows from Eq. (2-5) that In this section, the differential equation férwill be ob-
tained without making any assumptions about the form of
A1 = exp(p) the solutions of the equations of motion. For the sake of
Ay = exp(—p) (2-7) simplicity, the derivation will be given for the large accel-
erator case which assumds, = A = 0andA;; = 1.
One can define the linear parametetsq, +, using the  Introducingb, where3 = b%, one can then find (see [4]

elements of the one period transfer matrix. If one uses tHer details)
form of the transfer matrix often used [2] for stable mo-

tion the linear parameters will be imaginary for unstable b + Kb+ 1 - 0
motion. To make the linear parameters real, they will be ds? )
defined here in terms of the one period transfer matrix as b = (2. (2-13)
Ar — |coshp+asinhp Asinh p (2-8) 3 SOLUTIONS OF THE EQUATIONS OF
7y sinh p cosh p — asinh o MOTION AND THE BETA FUNCTION
By=1—a? For stable motion, the role of the beta function in the solu-
tions of the equations of motion is well known. A similar
3, a, v are then given in terms df{ij as result will be found here for unstable motion. The treat-
ment usually given for stable motion, does not carry over to
B = (=1)7My/sinhpg unstable motion because of the assumptions usually made
o = (_1)(1(M11 _ Mgg)/Q sinh iz (2-9) about the realness of the betatron and phase functions, and
5 the absence of zeros in the beta function.
v o= (1-a))/B Let us write the solutions of the equations of motion as
Eqg. (2-6) does not specify the sign @f,. One can define — b
. > r = bexp(v)
the sign ofi.z to be always positive. Thefy, «, v can then N
be computed from thaZ;; using Eq. (2-9). It will be seen b = p2 (3-1)

later that the sign ofi(s) can change within a period, and

((s) can be zero at certain valuessfor unstable motion. where/3 andb have been defined by Eq. (2-8). Thehas

been shown to obey, see Eq. (2-13),

2.1 Differential Equations fop, a, 42b 1
. . . . . 5 T Kb+ 3= 0
Itis assumed that the linearized equations of motion can be ds b
written as K = —Axn (3-2)
dx x then obeys the equations
i A1z + Arope Y a
S d2
dpy _
Pe = Apaz+ Awmp,  (2-10) g5z =0 (3-3)
ds $
Ann+A4»n = 0

Putting the form ofr assumed in Eq. (3-1) into Eq. (3-3),

L and using Eq. (3-2) fob one gets
In the large accelerator approximatiofyy; = Aoy = 0 using Eq. (3-2) 9

andA;; = 1. one can show that 2 9 2
i (YL
AN . R ds bds ds ds b
S AM - M A (2-11)
ds Putting f = dip/ds one gets
A is the2 x 2 matrix whose elements are tig; of Eq. df 2
(2-10). ReplacingZ, using Eq. (2-8), in Eq. (2-13) gives pr ——f fP=5=0 (3-5)
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The solutions of Eq. (3-5) are 4 PHASE FUNCTION RESULTS WHEN 8 HAS

f=+(1/8) =+1/5. (3-6) ZEROS
Thus In this section, the result for the phase functign,given
5ds by Eq. (3-10) will be derived. Also, the behavior ¢f
p==[ = (3-7) , : , ;
I C whens is near the zeros o#(s) will be studied. First, let
and the two solutions of the equations of motion are us consider the case where
1 ®ds . 5 ds
T = 32 exp (i 10 ?) (3-8) Y= lli% o B—ic (4-1)

One may note that in deriving Eq. (2-8) no assumptioR - ( and one assumes there is only one zergifay) at
was made about the realnesgiadr ». However, thereisa ; — 5, petweens = s, to s = s. Then, one can write

problem with the result for unstable motion, as in the case

of unstable motior(s) will go through zero. To evaluate 5ds 140 g
the integral wheri(s) has zeros, Eq. (3-2) will be replaced b= P/SO B + /515 B — ie
by

(4-2)

v = 213% 3 —ie (3-9) the integral. Neag; one can write3 = 3'(s1)(s —s1) + ...
wheree is a positive small quantity. It can be shown tha@nd find

Eqg. (3-9) gives (see section 4)

/S ds whereé — 0 butd > e. P stands for the principle part of
S0

s1+d g s1+4 ds
ds . - = -
or [Ty Gy s TR T
S0 B B |ﬁ (Sn)l 1 d (§_|_ Z'E)
. " = ; / dEﬁ,Ezs—sl,E:e/ﬂ/(sl)
wheres,, are the locations of the zeros 8fs) from s, to B'(s1) Js 3 +€
s. P represents the principle part of the integral. 1 i_EW (4-3)
One can also show that(s) = 42 at the zeros off(s). - B(s1) Je
Since3y = o? — 1, thenae = +1 whenj3 = 0. Since 1
8 = —2a, f/ = ¥2 wheng = 0. One can now write Eq. = W(Sl””
(3-10) as
S d N =
b=P as | Z_WNZ (3-11) Ifthere are many zeros betwegfito s ats = s,, one then
so B 2 finds s g .
whereN., is the number zeros ifi(s) in s to s. Y=P “ 4 Z /2777 (4-4)
One may notice that the imaginary partiwfhas on an s0 S 18" (sn)]

unusual dependence an It is constant in between zeros |t .an pe shown that near a zerofiffs), like s = s1, ¥
of 3(s) and jumps byr/2 at each zero 08(s). One can pocomes infinite like ' ’
use Eq. (3-11) to find the changesnover one turny (s +

L) —1(s), and find P~ :I:% log(s — s1) (4-5)

s+L S '
Y(s+ L) —1(s) = P/S B (3-12)  see [4] for more details and results.

where2q is the number of zeros ii(s) in one turn, and
L is the length of one turn. For simplicity, it is being as-
sumed that the periofl is one turn. Sincé(s) is a peri- [1] G. Parzen, Particle motion inside and near a linear half—
odic function, the number of zeros 6fs) in one turn has integer stopband, BNL Report, BNL-62036 (1995).

to be even. If one defines the tune as the imaginary part pfj E.D. Courant and H.S. Snyder, Theory of the alternating gra-
¥(s + L) —(s) divided by2r, then one has dient synchrotron, Ann. Phys, 3 (1958).

tune= q/2. (3-13) [3] J.S. Bell, Hamiltonian Mechanics, CERN Accelerator school

) proceedings, CERN 87-03 (1987); Rutherford Lab. Report
Eq. (4-13) shows the connection between the tune and the Agrg T/R 1114 (1953).

number of zeros in the beta function in one turn. The re
part ofi(sg + L) — ¥ (so) gives the exponential growth in
one turn. If one defines the exponential growth fagjoto
be the real part ofp(s + L) — v(s) divided by2x

_£ S+L§
2w, 1)
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9 (3-14)

See [4] for details.

1423



