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Abstract*

This paper considers an electron beam whose energy and
current are simultaneously premodulated at the injection
point of a drift tube.  A theoretical model is developed for
the subsequent current and energy modulations which
propagate downstream.  A closed integrodifferential
equation for the normalized beam current is obtained in
terms of  time and propagation distance. To make the
nonlinear current modulation analytically tractable, a small
signal theory is introduced into the modulation calculation.
 The current modulation in the linear regime is a linear
combination of the forward and backward waves of the
initial current and energy modulations.  The downstream
energy modulation is also expressed by a linear
combination of the forward and backward waves of the
initial current and energy modulations. It is shown that the
initial energy modulation is a very effective means for
downstream current modulation.  Numerical data even for
a large initial current and energy modulations agree
reasonably well with analytical results predicted by the
linear theory.

I  INTRODUCTION

Prebunched charged particle beams have been investigated
for various applications, including accelerator physics1-7 and
high-power traveling wave tubes (TWT).8,9 Prebunched
beams may make possible compact traveling wave tubes,
eliminating the amplification regions.  The recent
experiment8,9 on micro-field-emission gates indicates a
strong possibility of the prebunched beams in near future.
 Unlike klystron amplifiers,10-14 initiated by energy
modulation at the input cavity, the prebunched TWT is
operated by a premodulated electron beam, where the initial
current modulation is a driving factor.  A large initial
current-modulation may considerably reduce size of the
amplification region in TWT.  In this context, a nonlinear
theory of a prebunched electron beam propagating through
a drift tube has been reported in a previous paper.15  When
the prebunched electron beam enters the drift tube, the
initial electron current of the beam is modulated according
to a prescribed current profile f(wt0), where w is the
bunching frequency of the beam and t0 is the entering time
of each beam slice.  In addition to initial current
modulation, we may also modulate the beam energy at the
beginning.  In reality, energy of the beam electrons13 in the
klystron amplifiers is modulated at the injection point by
the input cavity without the current modulation.  It is useful
to investigate the influence of the initial energy modulation
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on the prebunched beam current during propagation.  This
article develops a theoretical model describing the current
and energy modulations of an electron beam propagating
downstream, when the beam's energy and current are
simultaneously premodulated at the injection point.

II  PROPAGATION THEORY OF AN ELECTRON
BEAM

A premodulated electron beam enters a drift tube at z = 0.
 The electron beam is radially confined by a strong
magnetic field.  For simplicity in the subsequent analysis,
we assume that the electron beam current at z = 0 is
premodulated according to a periodic function f(q).  Here,
the normalized timeq = wt0 represents the time t0 at which
the beam segment labeled by t0 enters the drift tube and the
parameter w is the modulation frequency.  The function f(q)
can be an arbitrary function that represents the initial
current modulation.  For example, the function f(q) = 1 -
hcos(q) shows a sinusoidal current modulation with the
strength of h.  Electron beam energy is also premodulated
according to
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where g0 and gb are the relativistic mass factor at z = 0 and
its average value over one period of the energy modulation
function g(q).  The propagation distance z is related to the
present time t and the injection time t0 by making use of the
velocity definition dz/dt = bc.  Defining q = wt0 and j = wt,
we obtain

 ,
1  -  

d = 
d

  =   -  
200

g

g
z

b

z
qj

zz ¢ò
¢

ò (2)

where z is the normalized propagation distance defined by
z = wz/c and g(z,q) = (1 - b2)-1/2 is the instantaneous
relativistic mass factor of the beam segment labeled by q.
 The present time j is uniquely described by the injection
time q and propagation distance z.

The self-electric field E, which exerts in the beam
segment q is calculated to be13
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where the geometrical factor G is determined in terms of
system configuration.  For convenience in the subsequent
analysis, we define the normalized current F(z,q) by
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where Ib is the average beam current in one period of the
current modulation at the injection point and the normalized
distance z is defined by z = wz/c.  Velocity modulation of
the beam segment labeled by q is obtained from

),eE(z, = 
dz

d
mc2 qg (5)

with the initial condition g = g0(q) at the entrance point z =
0 of the beam segment q.  Substituting Eq. (3) into Eq. (5),
we obtain
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where the self-potential depression k is defined by16 k =
2IbG/IA and IA = 17 kA is the Alfven current.  Carrying out
the integration of Eq. (6) and making use of the initial
condition, we obtain
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where the initial beam energy g0(q) is determined from Eq.
(1).  Once the current modulation F is known, the energy
modulation g(z,q) is also known from Eq. (7). 
Differentiating Eq. (7) with respect to q, we obtain
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where g(q) is the energy modulation function defined in Eq.
(1).

It is useful in subsequent analysis to obtain
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from Eq. (2).  Substituting Eq. (8) into Eq. (9) gives
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Note that the derivative ¶j/¶q in Eq. (10) is uniquely
described by the history of the current modulation F until
the present time in which the beam segment labeled by q
arrives at the distance z.

The beam segment t0 passes the injection point at time
t = t0.  When this segment arrives at z in time t, it is
stretched by a factor of dt/dt0.  Thus, the beam current of the
segment t0 at z is proportional to (dq/dj)f(q).  In this regard,

the normalized current ratio F(z,q) in Eq. (4) is expressed
as
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where the normalization constant N(z).  After carrying out
a straightforward calculation, we obtain the nonlinear
integrodifferential equation
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where use has been made of the relation ¶q/¶j = F/Nf(q).
 The term that is proportional to dg/dq in Eq. (12) originates
from the initial energy modulation at the injection.  The
initial condition of the integrodifferential equation (12) is
F(0,q) = f(q).  Equations (7) and (12) are two principal
results in this article, and can be used to find the nonlinear
current evolution as the premodulated beam propagates
downstream.  The numerical calculation of Eq. (12) is not
so simple.  The main difficulty in numerical calculation of
Eq. (12) is the double integration of z in the right-hand side,
which requires a long computer time.

III  SMALL SIGNAL THEORY

In order to find a scaling law, we linearize Eq. (12),
assuming a small level of modulation.  Therefore, the initial
and later current modulations are expressed as
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where the amplitudes of df and dF are much less than unity.
 We also assume that the initial energy modulation g(q) is
much less than the mean value gb of the relativistic mass
factor.  A previous study13 indicates that results from the
small signal theory in the subsequent analysis agree
remarkably well with results from numerical solution of Eq.
(13), even when the modulation amplitude is close to unity.
 The function df(q) in Eq. (13) is a periodic function with a
periodicity of 2p.  The initial current f(q) and energy g(q)
profiles must satisfy the normalization condition that the
average values of the functions df(q) and g(q) must be zero
over one period.  Substituting Eq. (13) into Eq. (12) and
linearizing, we find
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where the frequency h of the amplitude oscillation is
defined by
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and the normalization constant N(z) in Eq. (12) has been
approximated by N(z) = 1 for small oscillations.

Differentiating both sides of Eq. (14) by z, we obtain
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which is a typical equation for wave propagation.  The
physically acceptable solution to Eq. (16) is
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where the functions A and B must satisfy the boundary
conditions
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at the injection point z = 0.  Equation (19) is equivalently
expressed as
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where the definitions in Eq. (15) have been used.  The
functions A(q) and B(q) are determined to be
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from Eqs. (18) and (20).  The solution in Eq. (17) is
therefore given by
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which is expressed by a combination of the initial energy
and current modulations.  We thus conclude that the
downstream current modulation is described by a linear

combination of the initial energy and current modulations.
 Substituting Eq. (22) into Eq. (7) and carrying out the
linearization, we obtain the downstream energy modulation
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The current modulation F(z,q) in the linear regime is a
linear combination [Eq. (22)] of the forward and backward
waves of the initial current and energy modulations (f and
g).  Properties of the current and energy modulations were
numerically investigated from the integrodifferential
equation (12) for a broad range of system parameters. 
Magnitudes of the energy and current modulations were
determined in terms of the modulation frequency, initial
energy g(q) and current f(q) profiles, geometrical
configuration, beam intensity and initial kinetic energy of
the beam.  Numerical data from Eq. (12), even for large
initial current and energy modulations, agree reasonably
well with analytical results predicted by the linear theory.
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