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Abstract* on the prebunched beam current during propagation. This
artjcle develops a theoretical model describing the current
energy modulations of an electron beam propagating
nstream, when the beam's energy and current are
g]multaneously premodulated at the injection point.

This paper considers an electron beam whose energy
current are simultaneously premodulated at the injectio&bw
point of a drift tube. A theoretical model is developed fog
the subsequent current and energy modulations whic
propagate downstream_. A closed integrodiffe.rentia.llu PROPAGATION THEORY OF AN ELECTRON
equation for the normalized beam current is obtained in BEAM

terms of time and propagation distance. To make the

nonlinear current modulation analytically tractable, a smaft Premodulated electron beam enters a drift tube at iz = 0.
signal theory is introduced into the modulation calculationThe electron beam is radially confined by a strong
The current modulation in the linear regime is a linea@agnetic field. For simplicity in the subsequent analysis,
combination of the forward and backward waves of thwe assume that the electron beam current at z = 0 is
initial current and energy modulations. The downstreafemodulated according to a periodic functios) f(Here,
energy modulation is also expressed by a linedhe normalized tim@= wt, represents the timgat which
combination of the forward and backward waves of ththe beam segment labeled pertters the drift tube and the
initial current and energy modulations. It is shown that thearameten is the modulation frequency. The functio)(
initial energy modulation is a very effective means fcfan be an arbitrary function that represents the initial
downstream current modulation. Numerical data even f@urrent modulation. For example, the functiod) ¢ 1 -

a large initial current and energy modulations agre@cosg) shows a sinusoidal current modulation with the
reasonably well with analytical results predicted by th&trength of h. Electron beam energy is also premodulated
linear theory. according to

| INTRODUCTION 7o(@)=y, + 9(0), (1)

Prebunched charged particle beams have been investigajgferey, andy, are the relativistic mass factor at z = 0 and
for various applications, including accelerator physiasd ts average value over one period of the energy modulation
high-power traveling wave tubes (TWT)Prebunched function g@). The propagation distance z is related to the
beams may make possible compact traveling wave tubggesent time t and the injection timéy making use of tre

eliminating the amplification regions.  The recenielocity definition dz/dt 8c. Definingd = ot, andg = ot,
experimerit’ on micro-field-emission gates indicates aye gbtain

strong possibility of the prebunched beams in near future.

Unlike klystron amplifiers}™ initiated by energy o - 0= ad’ _ Ede /4 )
modulation at the input cavity, the prebunched TWT is 0 p 70 V21

operated by a premodulated electron beam, where the initial

current modulation is a driving factor. A large initialwheret is the normalized propagation distance defined by
current-modulation may considerably reduce size of the = yz/c andy(¢,0) = (1 - B)™® is the instantaneous

theory of a prebunched electron beam propagating througfy,e present time is uniquely described by the injection
a drift tube has been reported in a previous pap#then  (ime o and propagation distan&e

the prebunched electron beam enters the drift tube, the The self-electric field E, which exerts in the beam
initial electron current of the beam is modulated accordingegmene is calculated to B&

to a prescribed current profileof), where o is the
bunching frequency of the beam apistthe entering time

of each beam slice. In addition to initial current
modulation, we may also modulate the beam energy at the

beginning. In reality, energy of the beam electfdnsghe  where the geometrical factor G is determined in terms of
klystron amplifiers is modulated at the injection point bysystem configuration. For convenience in the subsequent

the input cavity without the current modulation. It is usefuhnalysis, we define the normalized curreri,&) by
to investigate the influence of the initial energy modulation

w ol

E(¢.0)= ZG(Rb)ﬂz}/zcz(%

)z 3)
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I(&,0 the normalized current ratio &0) in Eq. (4) is expressed
F(g,e):ﬁ, 4 as
b

N($) f(0) a1

F(c.0)= d p/d 6]

where | is the average beam current in one period of the
current modulation at the injection point and the normalized
distances is defined by = wz/c. Velocity modulation of where the normalization constantJ)( After carrying out
the beam segment labeled@js obtained from a straightforward calculation, we obtain the nonlinear
integrodifferential equation

d
mc®—y = eE(z0), (5) /
dz NE 1 (0)=11- (2 - 1)d91072d§ o
F(¢.0) -1) (12)
with the initial conditiony = y,(0) at the entrance point z = de” oo o 1

- . K -
0 of the beam segmefit Substituting Eq. (3) into Eq. (5), 510 7-1)% I N 06 f(9)( )]; l
we obtain
where use has been made of the relai®fp = F/Nf(®).
( -y )=k 9 F(&@)]g , (6) The term_thgt is proportional to (_j@/'uh Eq. (1_2)_ originates
d¢ " 3 0 from the initial energy modulation at the injection. The
_ o ) initial condition of the integrodifferential equation (12) is

where the self-potential depressiers defined by k = F(09€) = (0). Equations (7) and (12) are two principal
21,G/l, and | = 17 kA is the Alfven current. Carrying out regyits in this article, and can be used to find the nonlinear
the |ntegrat|on of Eq. (6) and making use of the initiagyrrent evolution as the premodulated beam propagates

condition, we obtain downstream. The numerical calculation of Eq. (12) is not
3 3 so simple. The main difficulty in numerical calculation of
7= 70(0) - 1o(0) +x S dC (_ o (D) Eq. (12) is the double integration®fn the right-hand side,
3 3 which requires a long computer time.

where the initial beam energy®) is determined from Eq. Il SMALL SIGNAL THEORY
(1). Once the current modulation F is known, the ener%
modulation y(£,0) is also known from Eq. (7).
Differentiating Eq. (7) with respect &) we obtain

order to find a scaling law, we linearize Eq. (12),
assuming a small level of modulation. Therefore, the initial
and later current modulations are expressed as

2
dy_ 7o -1dg
do ,?%-1d6

A (S @ #)=1+ &),
00 op (13)
where gf) is the energy modulation function defined in Ec. F(£.0)=1+ oF(Z0),
(D). It is useful in subsequent analysis to obtain where the amplitudes &f anddF are much less than unity.
We also assume that the initial energy modulatiéf ig(
much less than the mean valyef the relativistic mass
' (9)  factor. A previous studyindicates that results from the
small signal theory in the subsequent analysis agree
remarkably well with results from numerical solution of Eq.
(13), even when the modulation amplitude is close to unity.

V

0P _4 . Oy
00 I 1)3’2(86)

from Eq. (2). Substituting Eq. (8) into Eq. (9) gives

( ) —1-(y2-1)395 dg’ The functionsf(8) in Eq. (13) is a periodic function with a
0 do 0 2 - 1) 5/2 periodicity of Zt. The initial current ff) and energy @
q 52F (10) profiles must satisfy the normalization condition that the
e Jg%ﬁ’ 4"( ) . average values of the functiodf$6) and gf) must be zero
(¥ 00 0 over one period. Substituting Eq. (13) into Eq. (12) and

linearizing, we find

Note that the derivativép/o0 in Eq. (10) is uniquely
described by the history of the current modulation F until SF(£.0)=61(0) + gi 9(0)
the present time in which the beam segment labelgtl by
arrives at the distance z. 2 y 3

The beam segmentgdasses the injection point at time +n°fgdylpd X[a—ngs Fx0)]1x
t = t. When this segment arrives at z in time t, it is
stretched by a factor of dt/dtThus, the beam current of theyhere the frequency; of the amplitude oscillation is
segment tat z is proportional to @de)f(6). In this regard, gefined by

(14)
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combination of the initial energy and current modulations.
Substituting Eq. (22) into Eqg. (7) and carrying out the
linearization, we obtain the downstream energy modulation

_ 4
(75> - 1) (7f -

1
and the normalization constantd)(n Eq. (12) has been 7 (6:0)= 7, + E[ 9(0-ng )+ 9(0+nd)]
approximated by NJ) = 1 for small oscillations. Je (2 - 1)
Differentiating both sides of Eq. (14) Hywe obtain + Vel - 1)
2

2 K

n 5506 (15)

1 )3/2 !

[oF(0+nc)-&(0-ns)].

62

2
- F(¢.0)= >

2R F(E0)

(16) The current modulation E@) in the linear regime is a
linear combination [Eq. (22)] of the forward and backward
Th(\_gv)aves of the init]ialhcurrent and Znergy moduC:a':ions (f and
: : ; g). Properties of the current and energy modulations were
physically acceptable solution to Eq. (16) is numerically investigated from the integrodifferential
OF(L,0)=A(0 + ns)+ B(O - nl), equation (12) for a broad range of system parameters.
Magnitudes of the energy and current modulations were

where the functions A and B must satisfy the boundargetermined in terms of the modulation frequency, initial

which is a typical equation for wave propagation.

(17)

conditions energy ¢f) and current f) profiles, geometrical
configuration, beam intensity and initial kinetic energy of
A(9) + B(0)=561(0) (18)  the beam. Numerical data from Eq. (12), even for large
and initial current and energy modulations, agree reasonably
well with analytical results predicted by the linear theory.
oA oB 1.d d
(S =0 (55007 ;(d—g)(é) (19) REFERENCES

[1]
at the injection point = 0. Equation (19) is equivalently [2]
expressed as 3]

[4]

9(9) [5]

\/; (be _ 1)1/4’

where the definitions in Eq. (15) have been used. Tqa
functions AQ) and Bg) are determined to be

A(0) - B(0)= (20)

(7]
_1 g(o)

=205t 9 4 (8]
A(0) 2[5 (0)+ /—K(}/bz_l)lm]
(21)

9(9) ol

\/;(be _ 1) 1447

from Egs. (18) and (20).
therefore given by

B(0)=2151(0) -

The solution in Eq. (17) i$10]
[11]

5F(§,9)=%[5f(9+77§)+ 50 -n¢)] n2)

(22) [13]
[14]

+2¢;(7§ Sl (0 ng) -9 -6,
KB

[15]
which is expressed by a combination of the initial energys]
and current modulations. We thus conclude that the
downstream current modulation is described by a linear
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