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Abstract

We describe a simple hybrid numerical method for beam
orbit correction in particle accelerators. The method over-
comes both degeneracy in the linear system being solved
and respects boundaries on the solution. It uses the Sin-
gular Value Decomposition (SVD) to find and remove the
null-space in the system, followed by a bounded Linear
Least Squares analysis of the remaining recast problem. It
was developed for correcting orbit and dispersion in the B-
factory rings.

1 INTRODUCTION AND PROBLEM STATEMENT

The main objective in accelerator steering is to minimize
deviations of the beam from the center of the beam pipe,
that is, to minimize the rms of the orbit. There may be other
objectives such as minimizing the corrector strengths, or
dispersion, but these are generally secondary. What follows
can be generalized very easily to include these secondary
objectives, but for illustration only orbit correction will be
discussed.

For practical purposes of online orbit correction in a lin-
ear accelerator, its reasonable to assume that there is only a
linear relationship between a corrector magnet’s strength
(the extent to which it bends the beam) and the beam’s
position when measured horizontally or vertically by any
“down-stream” Beam Position Monitor (BPM). The mag-
nitude of this influence can be computed or measured, and
recorded, for all magnets to all BPMs in the accelerator.
This coefficient is sometimes called, informally,T12, the
subscripts refer to the position of this coefficient in the
larger “Transport matrix” discussed in [5] and elsewhere,
which describes to the first-order the action-response rela-
tionship between control elements of a beam-line.

The problem of accelerator steering can then be posed
as a system of simultaneous linear equations relatingM
BPMs toN magnets used for orbit correction.

T 11
12 ∆θ1 + T 12

12 ∆θ2 + · · · + T 1N
12 ∆θN = ∆BPM1

T 21
12 ∆θ1 + T 22

12 ∆θ2 + · · · + T 2N
12 ∆θN = ∆BPM2

...

T M1
12 ∆θ1 + T M2

12 ∆θ2 + · · · + T MN
12 ∆θN = ∆BPMM

where∆BPMi, i = 1 . . .M , is the desired change in the
ith BPM, and∆θj , j = 1 . . .N , is the sought change in
the bend angle of thejth corrector magnet to achieve that
change. A suitable vector of theN ∆θ values which solves
this system would then constitute a solution to the steering
problem for theM BPMs.
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The equations are often written in matrix form, which
lends itself to solution by numerical methods:
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In practice though, there is a barrier constraint; that each
∆θ does not result in exceeding the practical maximum
strength for that magnet. That is, each element in the un-
known vector of∆θ has an upper limit.

So, we could characterize this as a linear least squares
problem

‖Ax − b‖2 (1)

subject toxj ≤ xmax
j

for which a solutionx can be found by least-squares in-
version ofA giving x = A†b. b would be the vector of
all the desired changes to the BPMs values,x is the vec-
tor of necessary changes in corrector magnet strengths as
bend angles, andA is the matrix of all the ratios between a
corrector strength and its concomitant beam monitor value.
Specifically,A is the matrix of theT12s in the system,
where each column ofA represents a single corrector.

Posed as a linear system then, the problem lends itself
to questions such as “is there a solutionx, if so is there
a family of solutions, and if there is, which is the “best”
solution according to some criteria, if there is no solution,
is there at least some optimum compromise?”

These questions are all related to the property ofrank,
the maximal number of linearly independent columns in
A, and the ratio of this rank to the number of unknowns in
x. The termsingularity is also often used particularly for
square matrices. There are a number of separate theoreti-
cal methods to answer these questions, but one, the SVD
has become popular because its very robust and is easily
applicable to all of these questions.

The SVD though does not respect barrier conditions so
its not possible to include the magnet limits in the problem
posed to classical SVD algorithms, and it is this drawback
we address later.

2 THE SINGULAR VALUE DECOMPOSITION

The SVD technique is based on a factorization ofA which
we shall summarize as follows:A = UΣVT whereA is
M rows×N columns,U is anM×M column-orthogonal
matrix, Σ is anM × N diagonal matrix of positive or 0
values, andV is an N × N column-orthogonal matrix,
i.e. UTU = VTV = I. SinceV is square it is also row-

24250-7803-4376-X/98/$10.00  1998 IEEE



orthogonal.

(A) = (U) ·




σ1

σ2

...
σN


 · (VT

)
(2)

The elementsσj are thesingular valuesof A. The
condition-number ofA is given by the ratio of the largest
of the singular values to the smallest. The rank ofA is
given by the number of non-0 singular values, and so the
nullity (explained more fully below) ofA is given by the
number of 0 valued singular values. Given the above prop-
erties of orthogonality, the pseudo-inverse of A is given by
A† = VΣ†UT. Σ is a diagonal matrix, so its inverse is the
diagonal matrix of reciprocals of its elements. This then is
the simple method of solving a linear system given in eq 1:
using the formalism used in Press et al[2]:

A−1 = V · diag(1/σj) · UT (3)

The properties of these matrices for diagnosing alge-
braic problems are well explored, particularly by Golub and
Riensch [1]. The interpretation of results under the condi-
tionsM < N,M = N andM > N are very practically
explained in Press et al, and Strang[3] describes Linear Al-
gebra in general, and its geometric interpretation in partic-
ular.

3 THE SOLUTION SPACE

To illustrate our method of finding solutions which re-
spect barrier conditions lets look at the case of the under-
determined system, one in which there are simply less
equations than unknowns,M < N , or the rank ofA
is insufficient to find a single perfect solution. This may
have been due simply to there being more correctors than
BPMs, or more subtly because of correctors and BPMs be-
ing poorly separated in phase space, or one sub-set of cor-
rectors having roughly the same influence on the BPMs as
some other sub-set. All of these conditions would cause
degeneracy in the transformation matrixA.

The SVD will return at leastN − M 0 or smallσj ’s.
There may also be additional 0σj due to rank deficiency.
Call the number of 0 singular valuesk.

One must also setσj that are very close to 0 to 0, since
those are probably dominated by numerical error. If these
values are allowed to remain they will tend to attract the
computation in 3 toward a null-space vector. Specifically
what constitutes “close to 0”, is related to computational
precision and accuracy of original data. Guidelines for de-
ciding appropriate cut-off values are given in the literature.

The SVD can easily be used to select a ‘particular so-
lution’ and it will be the solution which is smallest in the
least squares sense: one simply sets all the 0 valuedσ (after
editing for computational precision) to 0 rather than1/σj.

x = V · [diag(1/σj)] ·
(
UT · b)

(4)

If we now wanted to look at alternative solutions, per-
haps because the particular solution involved exceeding the
limit of some corrector, we can look more closely at the ge-
ometric interpretations ofU andV. To do this lets make
explicit the ideas of range and null-space. If there are al-
ternative solutionsx, A must be singular orM < N , and
then there must be some sub-spacex for whichA · x = 0.
This is the null-space ofA, and its dimension is called the
“nullity” of A. The space that can be reached byA multi-
plied by anyx at all is called the “range” ofA. The rank
of A is equivalent to the dimension of this range.

The non-0 singular values define the dimensions of these
sub-spaces. Specifically, the columns ofU that correspond
to same-numbered non-0 valued elements ofΣ form a set
of orthonormal basis functions for the range ofA, call this
matrix U1. A basis is a set of vectors which spans the
same sub-space as the original matrix. It is orthonormal in
the sense that it is a set of mutually orthogonal unit vectors,
and so makes up a necessary and sufficient description of
the sub-space.

The columns ofV that correspond to 0 valued elements
of Σ form a set of orthonormal basis functions for the null-
space ofA, call this matrixV0.

Using V0 one can compute alternative solutions by
adding to the particular solutionx linear multiples (or
“combinations”) of columnsvj drawn fromV0, giving x′

and the overall valueAx′ won’t be different fromAx.
Taking this process further, how can we find those spe-

cific alternative solutions which do not exceed some spe-
cific barriers?

4 BOUNDED LEAST SQUARES SEARCH

Recall that the objective is to find a vectorx which mini-
mizes‖Ax − b‖2 - a linear least squares problem. This is
equivalent to minimizing the RMS of the beam orbit when
A is the “transport matrix” of an accelerator. But the prob-
lem is made difficult to solve by the classical linear least
squares algorithm implementations such as LSSOL[4] if
there is degeneracy in the equationsA. Degeneracy sig-
nificantly compounds the effects of rounding error in nu-
merical computations.

One way to overcome the problem would be to remove
the trouble-some null-space fromA, and search for solu-
tionsx in the remaining sub-space. The constraints on the
solution would also have to be transformed in to the coor-
dinates of that, re-cast, problem. When a solution is found
it would be transformed back again into the original co-
ordinates.

To delineate these transformations, define the basis func-
tions that will be used to generate them:

U1
def= columnsuj, for whichσj 6= 0 : An orthonormal

basis for the range ofA. U1 is M × N − k.

U0
def= columnsuj, for whichσj = 0 : An orthonormal

basis for the orthogonal complement of the range ofA. U0

is M × k.
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V0
def= columnsvj, for whichσj = 0 : An orthonormal

basis for the null-space ofA. V0 is N × k.

V1
def= columnsvj, for whichσj 6= 0 : An orthonormal

basis for the orthogonal complement of the null-space of
A. V1 is N × N − k.

Σ1
def= σj, for whichσj 6= 0 : The extent of each dimen-

sion of the range ofA. Σ1 is a square diagonal matrix of
non-0 singular values and isN − k × N − k.

Then define the orthogonal sub-space ofA:

A1
def= U1Σ1 (5)

The solution vector being sought must similarly be inter-
preted in the coordinates of orthogonal complement of the
null-space ofA:

x1
def= VT

1 x (6)

x1 will be N − k × 1.
Then the minimization can be re-written to exclude the

null-space:

‖Ax − b‖2

⇐⇒ ‖U1Σ1VT
1 x − b‖2

⇐⇒ ‖A1x1 − b‖2 (7)

This is then a least squares problem of smaller dimen-
sion - those dimensions in the null-space ofA have been
removed.

To incorporate the barriers on the original problem,xj ≤
xmax, wherexmax are the limits on changes to the correc-
tor magnet settings, we need to pose those barriers also in
the recast coordinates. From the interpretation ofV1, and
the definition ofx1 given in 6, and since the inverse of an
orthogonal matrix is its transpose, then

x = V1x1 (8)

V1 then is the matrix whose rows each define a general lin-
ear constraint onx1. Each corresponding row vector mul-
tiplicationV1jx1 must not exceedxmax

j .
Altogether, the linear least squares problem in the recast

coordinate space is to minimize:

‖A1x1 − b‖ (9)

subject toV1x1 ≤ xmax

This can be solved by any linear least squares solver that
accepts a linear constraints matrix as part of the problem
parameters, such as LSSOL. When somex1 is found, it
can be transformed back into regular coordinates by 8.

5 PERFORMANCE

Both the SVD and the Linear Least Squares method for
non-singular matrices are known to be very robust.

Although the decomposition operation itself is fairly ex-
pensive, it need at least only be computed once and then all

orbit corrections using the same transport matrix can pro-
ceed from it.

We do not submit the recast problem to a constrained
linear least squares solver in the case that the SVD solu-
tion, by 4, finds solutions that are in bounds, since the min-
imum solution has already been found. Also, the linear
least squares technique in the case of negligible degeneracy
is equivalent to the SVD when all of the singular values are
used.

The hybrid method has been tested in simulation and
been in operation in the SLC linac for some time with suc-
cess. It was developed for the B-factory, which will be
commissioned in the summer of ’97, when heavier require-
ments will be made of its ability to deal with degenerate
matrices. It is also part of a larger project in which disper-
sion is corrected simultaneously with orbit [6].

6 THANKS

Our very warm thanks are extended to Prof. SVD, Gene
Golub for pointing us down the hybrid path, and to Jeff
Corbet and Martin Lee. And Haitham Hindi, who is to
formal argument what a buzz-saw is to a match-stick.

7 REFERENCES

[1] Golub G., Reinsch C. Singular Value Decomposition and
Least Squares Solutions, in Wilkinson J.H. and Reinsch C.
9 (editors) Handbook for Automatic Computation, vol II.
Springer. 1971.

[2] Press W.H., Flannery B.P, Teukolsky S.A., Vetterling W.T.
Numerical Recipes, The Art of Scientific Computing. Cam-
bridge University Press. 1989.

[3] Strang, G Linear Algebra and its Applications. Harcourt
Brace Jovanovich. 1988.

[4] Gill P. E., Hammarling S.J., Murray W., Saunders M.A.,
Wright M.H., LSSOL, Systems Optimization Laboratory,
Stanford University. 1986.

[5] Sheppard J. C., Lee M. J., Ross C., Seeman J. T., Stiening
R. F., Woodley M. D. Beam Steering in the SLC Linac, Pro-
ceedings of PAC 1985.

[6] Chi Y., Donald M., Shoaee H., White G., Yasukawa L.A.
An Orbit and Dispersion Correction Scheme for the PEP-II.
Proceedings of PAC 97.

2427


