
OBJECT ORIENTED PROGRAMMING INTERFACES FOR
ACCELERATOR CONTROL *

L.T. Hoff
Brookhaven National Lab

Upton, NY, 11973-5000, USA

* Work performed under the auspices of the U.S. Department of Energy

Abstract

A current trend in control system design is to provide an
object oriented programming interface for application
developers. This talk will discuss important aspects and
features of object oriented APIs for accelerator control
systems, and explore why such interfaces are becoming
the norm.

1 INTRODUCTION

Several years ago, the AGS controls group was given the
task of developing software for the RHIC accelerator.
Like the AGS, the RHIC control system needs to control
and monitor equipment distributed around a relatively
large geographic area. A local area network connects this
equipment to a collection of UNIX workstations in a
central control room. Similar software had been
developed for the AGS about a decade earlier, but isn't
well suited for RHIC use for a number of reasons.

The AGS software was designed to work within
AGS parameters. The AGS software expects data updates
at AGS operating rates. This rate is typically every 3 or 4
seconds. The AGS software does not allow large (greater
than about 40 Kbytes) data transfers. The AGS software
enforces a very rigid format for grouping related data. In
addition, the AGS software was written for a proprietary
hardware platform. An aggressive porting effort was well
underway to make the software usable on typical UNIX
workstations. However, it seemed that this effort would
not be complete in time.

More importantly, all software for AGS operations
had been written by the controls group. A different
paradigm was expected for RHIC software development.
The RHIC Accelerator Physics group is composed of
experienced programmers. Not only are these physicists
fully capable of writing physics applications, they expect
to do so. The controls group is expected to provide
training and assistance in using control system software.
This necessitates a succinct, well-defined application
programming interface (API).

The AGS software represents accelerator equipment
as collections of control points. These collections of
control points are called “logical devices”. Other control
systems focus more on individual control points, rather
then on related groups of control points. The AGS
approach contains the rudiments of an object oriented

system. It is not truly object oriented, since the “logical
devices” do not contain the methods for translating the
control points into commands to accelerator equipment.

Rather than adapt the AGS software for RHIC use,
the controls group opted to start with a clean slate. To
develop software that would address the shortcomings of
the AGS software, while preserving the useful features
that evolved through years of use.

2 INFLUENCES

The ideas for the RHIC API were necessarily shaped by
trends in industry. The network management protocol
SNMP[1] was becoming more popular. Network
management shares many characteristics with accelerator
control. The simple, flexible interface of SNMP allows it
to control and monitor a wide variety of network devices
distributed around a large region. When Marshall T. Rose
designed the SNMP interface, he commented “I wanted
to make an interface so simple that no one could
complain about it.”[2]

Accelerator control systems began mimicking
industry trends. A new control system was developed for
the European Synchrotron Radiation Facility (ESRF) [3].
This control system provides an interface even simpler
than SNMP. SNMP has separate SET and GET functions
for controlling and monitoring devices. The ESRF
control system provides a single function, dev_putget(),
for both operations. Like SNMP, the ESRF control
system is object oriented. Accelerator equipment is
represented as collections of related control points. These
collections are called Device Servers. Each Device Server
contained methods for translating the control points into
commands to accelerator equipment.

Widespread application of object oriented
programming techniques were becoming the norm. In
particular, the C++ language was emerging as the most
popular object oriented programming language. C++ had
already become the standard programming language for
application development at the AGS[4]. The RHIC
Accelerator Physics group members were all well versed
in object oriented analysis and design as well as object
oriented programming.

Concepts such as abstract data types began
appearing in class libraries. The Free Software
Foundation made available a general purpose class library
called libg++. This library contains classes to represent

23950-7803-4376-X/98/$10.00  1998 IEEE

rational and complex numbers. These classes are
designed so that they can be manipulated without the user
knowing how the data is represented. Such classes
contain methods to coerce their values into C++ native
data types. This might be necessary for interfacing with
legacy code, or for doing I/O.

3 GOALS

Combining the requirements for RHIC operations,
lessons learned from prior AGS experience, and adopting
useful industry trends, the following goals were set for
RHIC software.

3.1 Flexible

The inflexibility of the AGS software limited its
usefulness for RHIC. Conventional wisdom held that
control system software requirements were such that
accelerator-independent software was not feasible.
However, both Vsystem[5] and EPICS[6] proved that this
was not the case. Both of these systems are in use, or are
expected to be put into use at a number of different sites.

3.2 Portable

The ongoing porting effort of the AGS software could not
be ignored. To try to avoid this hardship for RHIC
software, a decision was made to use popular industry
standards whenever possible. While this strategy is not
foolproof it does increase the chance that the software
will run on a variety of hardware platforms.

3.3 Easily configurable

The AGS software uses a central database to describe the
location and functionality of distributed software. This
database defines the data size and type, and even where in
memory to find the data in each remote system. This rigid
design severely limits the ability to incrementally upgrade
or deploy remote systems.

3.4 Succinct API

Since AGS software development was contained within
the controls group, there was little incentive to simplify,
or fully document the various programming interfaces.
This information is transmitted informally to new
members when they joined the group. There are no
external customers for the API. If external customers are
expected, the API must be succinct enough so that it can
be easily documented, and so that training can be easily
provided.

3. 5 Object Oriented

AGS applications programmers found object oriented
programming techniques essential. Object oriented
programming techniques often allowed for more easily
supporting last minute changes without restructuring the
application. An object-oriented API can be more succinct
than a procedural equivalent. Since certain state
information can be contained within an object, there is

less need to clutter the API by passing state information
back and forth across the interface. Functionality such as
error handling and recovery can often be separated from
the main functionality of the interface. This frees the
application writer to concentrate on interfacing with
equipment, not on dealing with control system or network
weaknesses.

3. 6 Abstract data types

To work with data in the AGS control system, the
application programmer needs to know the size and type
of the data. Since this information resides in a database,
this becomes somewhat awkward. Using database
information, the data must be coerced to fit the data type
the programmer wishes to use. To simplify this process,
all data may be automatically coerced to a float type.
This method is not without pitfalls. It forces the use of
slower floating point arithmetic, and precludes data types
such as character strings. In addition, the AGS software
made assumptions about byte ordering and padding.
These assumptions added to the difficulty of porting to
new platforms.

Abstract data types, such as the ones in libg++ avoid
these shortcomings. Data can be stored in convenient
internal representations. The data can be coerced as
needed to the most appropriate native data type. Abstract
data types can be flexible enough to represent vectors or
scalars, character strings, and even data structures. This
can vastly simplify application code by avoiding the need
for complex “switch” statements.

4 ESRF

The ESRF control system was written in C using a
technique called Objects in C. This technique was chosen
in lieu of using an object oriented programming language
such as C++. At that time, C++ was not supported for the
hardware platforms used at ESRF.

A single function, dev_putget(), handles monitoring
and controlling accelerator equipment. A vector version
handles commands to groups of devices, and an
asynchronous version provides for a delayed response.

The ESRF control system does not provide a true
abstract data object. Instead, there is a generic data
pointer type, DevArgument, and separate type
information, DevType. This already succinct API could
be made even more succinct with a true abstract data
object.

The ESRF directory service is not embedded within
the dev_putget() function. There is a separate
dev_import() function call which activates the directory
service. This function returns a handle which must be
used in subsequent dev_putget() calls. This function is
roughly analogous to a C++ constructor. The returned
handle is similar to a pointer to a C++ object. The
directory service indicates whether the service provider is
local or remote. If the service provider is remote, the
directory service provides network addressing

2396

information. In this case, SUN RPC is used to handle
parameter passing between the possibly different
hardware platforms.

5 ADOIF

The RHIC control system API is called AdoIf[7]. This is
an acronym for ADO interface. ADO is itself an acronym
for Accelerator Device Object.

AdoIf was written entirely in C++. There is no other
language binding for the API. Users are expected to be
C++ programmers.

AdoIf provides three functions for controlling and
monitoring accelerator equipment. Set() is used to change
a current setting. Get() is used to retrieve a current setting
or a current reading. GetAsync() is used to be notified of
a future change to a setting or reading.

The name GetAsync() has been the source of some
confusion. This may be replaced by the name subscribe()
in the future. This name is consistent with the paradigm
that new data is published to all subscribers.

Set() and Get() have vector equivalents for sending
commands to groups of devices.

Data is represented by the C++ class Value. Value
objects are abstract data objects. The Value class stores
data internally in the most efficient manner. Users may
coerce the data into native C++ data types as needed. The
Value class also supports an ASCII dump method, which
eases the task of writing generic utility programs. Such
programs never need to know what type or size the data
is. They can merely get the data, then display it in ASCII.

AdoIf has been used on a variety of UNIX
workstations, using both RISC and CISC processors, and
both Big-Endian and Little-Endian architectures.

The directory service is undergoing a transition
from a file-based system to a server-based system. In
either system, environment variables allow custom
configurations. A custom configuration might combine
real accelerator equipment with simulated accelerator
equipment. In this way software can be tested even before
the accelerator equipment is installed, or when the
accelerator is not running.

6 CDEV

The Control Device API (CDEV)[8], is not a complete
control system. Instead it is an abstract control system
API which may use one or more underlying control
systems. Issues such as data translation to different
hardware platforms may be handled by the underlying
control system.

CDEV was also written in C++. There is an effort
underway to support portions of CDEV in Java, another
object oriented language. Recently, a C language binding
was added to CDEV. This was added at the request of
some CDEV users, but does not change the object
oriented nature of CDEV.

CDEV provides three messages which are
analogous to AdoIf’s Set(), Get(), and GetAsync()
functions. They are “set”, “get”, and “monitorOn”. All
accelerator equipment is expected to respond to these
messages.

Data is represented in the cdevData class. Like the
Value class, this class provides methods for data coercion
to native types, as well as an ASCII dump method.

The directory service is provided by the
cdevDirectory class. This class directs requests to the
appropriate underlying service provider. This may be a
particular control system, a database, or other data
acquisition software. By default, there is a single
directory service. To provide custom configurations,
users may register additional directory services with the
CDEV system.

7 CONCLUSION

Several trends in API design are identified. The reasons
for these trends are explored. All of these trends ease the
job of application programming. Succinct APIs are easier
to learn. Object oriented features make it easier to focus
on the task on hand. Such features make it less necessary
to focus on control system or network weaknesses, or
data conversion. Portability allows control system
software to run on a variety of hardware platforms. This
allows users to choose hardware based on price and
performance, rather than on compatibility grounds.
Flexible directory services allow software to be written
and tested using either real or simulated accelerator
equipment. Identifying these common themes help
applications programmers from different facilities to
speak the same language, and perhaps even share
software.

The underlying technology that shapes these trends
continues to evolve. Emerging technologies, such as
CORBA[9], may become more widely used. Such
technologies will undoubtedly steer future trends in
programming interface design.

REFERENCES
[1] RFC 1057 A Simple Network Management Protocol (SNMP),

Case, Fedor, Schoffstall, and Davin, May 1990.
[2] The Simple Book: An Introduction to Management of TCP/IP-

based Internets, Marshall T. Rose, Prentice-Hall, 1991. ISBN 0-
13-812611-9

[3] A. Goetz, W.-D. Klotz, J. Meyer, Proc. Int. Conf. Accelerator and
Large Experimental Physics Control Systems, Tsukuba, Japan,
1991, KEK Proc. 92-15 pp. 514-519.

[4] Joseph F. Skelly, Proc. Int. Conf. Accelerator and Large
Experimental Physics Control Systems, Tsukuba, Japan, 1991,
KEK Proc. 92-15 pp. 500-504.

[5] P. Clout, Nuclear Instruments and Methods in Physics Research
A 352 (1994) pp. 442-446 North Holland.

[6] Dalesio, Kraimer, and Kozubal, Proc. Int. Conf. Accelerator and
Large Experimental Physics Control Systems, Tsukuba, Japan,
1991, KEK Proc. 92-15 pp. 278-281.

[7] L.T.Hoff, J.F.Skelly, Nuclear Instruments and Methods in Physics
Research A 352 (1994) pp. 185-188 North Holland.

[8] J. Chen et al, Proc. 1995 Int. Conf. Accelerator and Large
Experimental Physics Control Systems, Chicago, Ill. USA, pp.
97-104.

[9] http://www.omg.org

2397

