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Abstract wherey(J, ¢) is the beam distribution functios(J) is
When a beam receives a dipole kick, its centroid sign%be betatron frequency as a function of the amplitude of the

decoheres due to the betatron tun read in the b rr?ta'[ron oscillations, anB(.J) is the diffusion coefficient.
econeres due 1o the betatron tune sprea € D€aAMye will solve Eq. (1) in the limit of weak diffusion.

Long after the §|gnal has decohe_red, however, a fOIIOV\‘S ecifically, we assume that the diffusion has a small ef-
up quadrupole kick to the beam brings a pronounced ecqgD

back to the centroid signal. This echo effect has been a cton atime scale during which the beam decoheres. The

. . € h i i - ~Y
alyzed for the case of a bunched beam in Ref. [1]. In théeC? erence t'm%e“’.”" can be es'tlmated 8econ
. . . /wsd, and the diffusion timezy; s, is roughly equal to
work, the perturbation calculation of Ref. [1]is extendedto’ ~” J/D. Requifingrais > 7 we get
include a diffusion in betatron amplitude. The effect of dif- **/ ' dif decoh
fusion on the magnitude of the echo is then parameterized D« w%JQ. (2)

and studied. In the limit of very strong diffusion (typical for electron

accelerators where diffusion is caused by quantum fluctu-
1 INTRODUCTION ations of the synchrotron radiation), when the inequality

The echo effect has been known in plasma physics S posite to (2) holds, the diffusion completely suppresses
Ete echo effect.

many years (see, e.g., [2]). Relatively recently a conce s .
of echo has been introduced into accelerator physics [1, 3]. Fort < 0, we assume an initial distribution function,
For a bunched beam, the echo in a circular accelerator can Y = o(J). (3)

be observed when the beam is kicked off-center at tim&t i _0.theb . Il dipole kick h
t = 0 causing its centroid to undergo betatron oscilla: Ime ¢ = 0, the beam receives a small dipole kick suc

tions. After these oscillations completely damped out du atthe amplitud_e ofthe dipo[e oscillation is m.uch smaller
to beam decoherence, the beam is excited by a quadrup gn the beam size. Immed|at(_aly after the .k'd.( we have
kick at timet = 7. This kick does not produce any vis- rom 'Ref'. [1] that the perturbation, of the distribution
ible beam centroid displacement at that time, but it turn nction is

out that close to timé = 27 the beam centroid undergoes 1 (J,u) = eV2JYH(J) sinu, (4)
transient betatron oscillations with an amplitude that is a , .

fraction of the initial beam offset. The echo can also bé/heree gives the strength of the kick, < 1, andu =
observed in the longitudinal direction [4] in which case RF — wﬁ(‘])t'_ ) )

phase shift and RF amplitude jump play a role of the dipole N the period) < ¢ < 7, changing variable frortJ, ¢, )

and quadrupole kicks, respectively. to (J;u,t) in Eq. (1) gives for),
Experimentally, longitudinal echo has been observedin 9y, 0 , 0
the anti-proton accumulator ring at FNAL [5] and in the ot (ﬁ B wﬁ(‘])tﬁ)
CERN SPS [6] for coasting beams. Those experiments O , On
demonstrated that echo can be effectively used for measur- x [D(J)J (W - wﬁ(‘])t%)] )

ing an extremely weak diffusion inside the beam.

!
For a longitudinal echo in a coasting beam, the theoryVNenlws|t/ > 1, Eq. (5) becomes

of echo effect taking into account the diffusion has been by ) ) 824
developed in Refs. [5, 7]. In the present paper we extend T [wi()t]*D(J)J R (6)
the theory of transverse echo to include the diffusion eﬁecﬁ/ I . .
in a bunched beam ith initial condition (4), the solution of (6) fob < ¢ < 7
is
2 THEORY Yi(Ju,t) = eV2T4(J) e3P gin g, (7)

Following approach of Ref. [1] we will use the action - an- At © = 7, the beam receives a quadrupole kick, after
gle variables, and, for description of transverse dynam- Which the perturbation, is (see Ref. [1])

ics of a bunched beam. With diffusion, we need to solve the 4, (.7, 4) = \/iqew/ﬁ(J)TJ?’/Qw(’)(J) (8)
Fokker-Planck equation 1
xexp | —=D(J)J(wh(J))*7m3| sin(2u + 2wg(J)T
T VR PR VAR 5 DT (s (1)*7 | sin(2u + 2ws()7)
ot P 9e T o 0J” X cosu,
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whereq gives the strength of the quadrupole kick. Using @&omplex echo signal of which the real echo is its imaginary
trigonometric identity, we can expand the prockia{2u+  part,
2wg(J)7) cos u into a sum of the firsty sin(u+2ws(J)7))

and theth.irdé sin(3u+2wg(J)7)) harmonics with respect 7echo(t) = —mqer /OO aJ W/B(J)JQ%(J) (14)

to the variable:. From these two terms only the first har- 0

monic is responsible for the dipole echo; the second term wetws () (t=27) ;= D(J)J (wj (1)) (27° +(t—27)%)

gives rise to a sextupole echo which we omit in what fol-

lows. Note that the echo appears when the argument of the first

In the periodt > 7, we make a change of variable fromexponent in the integrand of Eg. (14) approaches zexo,
(J,¢,t) 1o (J,u1,t) whereu; = ¢ —wg(J)(t —27)inEQ. 27. Since we assume that diffusion is small (see Eqg. (2)),

(1) to obtain fory, the second exponent is a slow function of time, and we can
- 5 5 putt = 27init,
Bt = (g7 b5 h e
o o Feho(t) A~ —mger /0 4T Wy (1) I3 (15)
gz _ _9on Y72
X [D(J)J ( Y wp(J)(t —27) aulﬂ - 9) w eiws(N)(t=27) ;=2 D(J)J (wh ()T
When|wj(t — 27)|J > 1, we have Assuming thaty(.J) is a monotonous function of its ar-
, gument and using Schwarz’s inequality, one can conclude
92 W ()t~ 27)]2D(J)Ja w; . (10) that the maximum amplitude of echo occurs at 27, and
ot ous is equal to the following expression
The solution with the initial condition (8) (keeping only |jmax echo ampl) _|pecho (9| (16)
the termox sin(u + 2wg(J)7)) is o0 ) e s
’ ) = —wqer/ dJ wé(J)J2¢6(J)e_3D(J)J(“ﬂ(‘])) .
1 0
v o= ——=qewy(J)T I 2 (T _ . _
V2 5(J) o) Eqg. (15) is our main result. Giveng(J), ¢o(J) and
X sin(¢p —wg(J)t + 2wg(J)T) (11) D(J), it gives the echo response as a function of time. In
1 the special case when
X exp —gD(J)J(wg(J))Q((t —27) + 273 .
ws(J) = wo+w'J,
Now, we have to note that although Eq. (10) is not valid bo(J) = 1 o=/ J0 (17)
in the vicinity oft = 27 due to the approximation made in 2mdy ’

Eqg. (10), the solution (11) turns out to be approximately

valid for all times. The reason for that is that duration oiand_assumipg qconstantdiﬁ‘usion coefficidht,]). » Do,
the period wher{(t — 27)| < 1/%J is of the order of the integration in (15) can be performed explicitly. The

the decoherence time, and according to our assumption @sult IS e’ lo s

the diffusion is negligible during that period. Formally, the e (t) = G-y’ (18)
right hand side of Eq. (10) becomes small wh@n- 27)|
approaches zero, and we can neglect it puting/dt ~ 0 Where
during that period, from which is follows that =~ const. ,
On the other hand, we find that solution (11) indeed does £ = Wolt—27)
not change npticeably during this ipteryal. 3 = 1+ EDO(W/)2J0T37
The centroid offset of the bunch is given by
® = wolt—27). (19)

00 27
n(t) = / dJv 2J/ dpcosdp(J,¢,t).  (12)  WhenD, = 0, this reduces to Ref. [1].
0 0 One may calculate the amplitude of the dipole echo,

Substituting (11) into (12) gives for the echo signal ,
qew’ JoT

—echo ampl o
oo |7] P (t)| - (52 + 52)3/2 . (20)
) = —rger [ dTwh()PU)
) 0 The plot of this function is shown in Fig. 1. As mentioned
X sinfws(J)(t - 27)] (13) above, the maximum value of the echo is achieved at time

x e~ 3DUNIW(N)? @ +(t=2m)%) t = 27, and the amplitude of the echo rolls offg4t — 27
for large values oft — 27|. For small values of such that
Eqg. (13) can be cast into a complex form by substitutingg ~ 1, the width of the echo pulse is of the order of the
sinfwg(J)(t — 27)] by exp[iwg(J)(t — 27)] that defines a decoherence timejecon; it increases for larger.
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and

F,(¢) = (:/OOO dz z% exp (—x — 2" T1¢3). (24)

Fig. 3 shows the plots of the functio$ for n=1,2 and 3.
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Figure 1: Echo signal as a function of the variableor- F
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Fig. 2 shows the maximum value of the echo ampli-
tude as a function of the time between the dipole and
guadrupole kicks. The maximum value of the echo ampli-
tude is achieved at = T,,ax = 0.91 (Do(w})?Jo) /3. In
terms of decoherence and diffusion times, the maximum is
achieved atiax ~ (TaitT2oeon) >

Figure 3: Plot of functiong, for n=1,2 and 3.

3 CONCLUSION

0.6 1T We extended the perturbation theory of the transverse echo
~ o5 L E effect in a bunched beam to include the diffusion. Without
2 B ] diffusion, the perturbation theory predicts a linear growth
% 0.4 - E of the echo signal with the delay timeg(which is only true
T 03 E if the the echo signal is small; see nonperturbative approach
% E ] in Ref. [3]). With diffusion, we find that the echo signal
s %20 ] reaches maximum at,ax ~ (TairT2..0,) "/, and vanishes
To1l = whent > .. The exact value of,,,, depends on the

0 o functional form of the diffusion coefficient and is calcu-
0 05 1 15 2 25 3 lated above for several simple power dependences. Exper-
(2D (w')2,/3)"° imentally, transverse echo gives a possibility not only to

measure the diffusion coefficient within the bunch, but also

Figure 2: The maximum amplitude value of the echo as 0 distinguish between different dependentds).

function of the kick timer.
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1
|,r—]max echo ampll = §7Tq€W/JOTnFn(Tl)a (22)

n

where 5
7o = (5 (W) Dy ™7 (23)
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