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Abstract

Treatment of tumours by hadron-therapy is greatly
improved if the patient can be irradiated from different
directions.  This task is performed by a gantry, i.e. a
section of beam line that can be rotated around the
patient.  The gantry optics have to be designed in such a
way that the beam at the patient is  independent of the
rotation angle.  The various matching techniques are
briefly reviewed in the light of the current development
in medical synchrotrons towards active scanning, which
requires a small, high-precision beam spot at the patient.
In particular, beam delivery systems with rotators are
discussed.

1  INTRODUCTION

In a medical machine the designer has the problem of
matching the beam coming from the accelerator to the
rotating gantry, as shown in Figure 1.
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Figure 1: Schematic view of a rotating gantry.

The following requirements have to be fulfilled
independent of the rotation angle:

x Constant spot size and shape at the treatment volume.
x No correlation between momentum and position.
x No change of the beam optics inside the gantry.

There appear to be only two methods, that satisfy all the
above requirements, and a third method (one to one
gantry) that partially fulfills them.

Consider a vector y, containing the transverse
phase-space coordinates of a particle. The statistical
average of any distribution of particles in phase space is
then given by the V-matrix [1] defined as

σ = y yT ,

where the brackets mean the expectation value. For an
uncoupled beam, all elements coupling the horizontal
and the vertical phase space vanish and the V-matrix is
of the form shown below,
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With the definition of the statistical emittance,

E x x xxx = −2 2 2
' ' ,

the relationship between the V-matrix and the Twiss
formalisms is found as,

     γ α βx

x

E

xx

E

x

E
= =− =

'
,

'
,

2 2

x
x

x
x

x

2  SYMMETRIC BEAM METHOD

In the symmetric beam method, the gantry is matched
directly to the fixed beam line coming from the
accelerator.  To obtain the same beam behaviour inside
the gantry and at the patient, independent of rotation, the
beam has to be symmetric at the gantry entrance.  The
necessary symmetry conditions can be derived by the use
of the V-matrix. For an uncoupled beam the V-matrix at
the end of the fixed beam line, just in front of the gantry
is given by:
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and after a rotation, R, the new V-matrix is given by

σ σ2 1= R RT .

When the incoming beam is rotationally symmetric, the
matrix VV2 will be independent of the rotation angle.
Therefore the following constraints have to be fulfilled
at the entry to the gantry:

E Ex x z zβ β= E Ex x z zα α= E Ex x z zγ γ= ,
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which means that the following beam- and optics
properties are required:

x Equal emittances    E Ex z= .

x Equal Twiss parameters  β βx z=  , α αx z=  , γ γx z= .

x Zero dipersion function   D = 0  ,  D´ = 0.

Thus the beam must be symmetric in real space and of
identical shape in the two transverse phase spaces.  It is
not sufficient to have only a physically ‘round’ beam at
the gantry entrance.  To have equal Twiss parameters in
both planes is not very limiting in practice but the
constraint of equal emittances is a severe problem for
resonant extraction from a synchrotron.  Therefore this
method is best suited for a cyclotron based facility.

3  ONE TO ONE GANTRY METHOD

For this method, the gantry must be a 1:1 or 1:-1
mapping, achromatic structure, with phase advances
being multiples of S for both transverse planes. For
simplicity Px=Pz=2S is considered.  The transfer matrix
for the gantry is the 4x4 unit matrix I .  The gantry
rotation is described with a rotation matrix RD� The
overall matrix M �� from the end of the fixed beam line to
the treatment volume, is then given by:
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Thus, the beam seen from the gantry, is rotated at the
treatment volume by the negative gantry angle -D. This
rotation cannot be avoided but if the beam at the gantry
entrance is symmetric in real space, the patient will
always ‘see’ the same particle distribution.  Therefore

E Ex x z zβ β=        and       D = 0 , D´ = 0

are required at the gantry entrance.  The disadvantage of
the one-to-one gantry method is that, as long as the beam
does not fulfill all the conditions of the symmetric beam
method, the beam is coupled inside the gantry, resulting
in changing beam envelopes.

4  ROTATOR METHOD

In the rotator method [2] an insertion containing only
quadrupoles is placed just in front of the gantry.  This
section of beam line (the rotator) is then rotated in
proportion to the gantry rotation.

4.1  Basic principle

Consider a section of bending-free transfer line with
betatron phase advances of 2S in the horizontal and S in
the vertical plane with a transfer matrix of the form
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If this line is physically rotated by half the gantry
angle (D/2) the overall transfer matrix M 0 from the end
of the fixed beam line through the rotator to the gantry
entrance is obtained as,

M R M R M0 2 2= =α α/ /Rot Rot.

The final overall transfer matrix maps the incoming
normal modes directly to those of the gantry without any
cross-coupling and independent of the gantry angle.
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The dispersion function (D,D’) is automatically rotated
and matched at the same time, since in a bending-free
region, the dispersion function acts like a betatron
oscillation.  This can be used for a simplified gantry
design (i.e. fewer quadrupole magnets, shorter gantry).
Additional advantages are:

x No requirements on the beam symmetry at the gantry
entrance.

x Dispersion at the gantry entrance can be finite.
x Uncoupled beam inside the gantry.

The rotator method is best suited for a slow extracted
beam from a synchrotron that has unequal emittances in
the transverse planes.

4.2 Rotator design

In the above theory, the only visible constraint on the
design of rotators is that the phase advances must be 2S

and S. However, one has to be aware that the overall
transfer matrix does not contain any information about
beam sizes and chromatic effects inside the structures.
A rotation by S/2 is equivalent to a change from focusing
to defocusing in the rotator and therefore FODO
structures lead to very large fluctuations of the Twiss
functions and beam sizes due to the opposite signs of Dx

and Dz at the entrance.  For this reason, rotators should
be designed with approximately equal Twiss parameters
for the transverse planes at the entrance, which ensures a
controlled beam behaviour at any rotation angle.
Figure 2 shows a design example, the structure consists
of two doublets that match the equal Twiss functions at
the entrance (Ex = Ez = 4 m, Dx = Dz = 0) into a FODO
channel that gives the required phase advances of Px = 2S
and Pz = S.
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Figure 2:  Twiss functions for Doublet FODO rotator.

4.3  Extension modules

To deliver beam to different gantries with only one
rotator a modular beam delivery system can be used [3].
‘Extension modules’ with optical properties similar to
the rotator are inserted between the rotator and the
different gantries.  These modules are fixed in the
accelerator plane.  They must be achromatic sections of
transfer line with phase advances of n·S in the transverse
planes. Modules that provide a deflection must therefore
have a closed dispersion bump.  Figure 3 shows a 60°
deflecting extension module based on the Doublet
FODO rotator.
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Figure 3:  Extension module providing 60° deflection

Two C-shaped dipoles have been inserted such that they
give a closed dispersion bump.  Powering the dipoles
deflects the beam towards one gantry.  To send the beam
to a different gantry, the dipoles are not powered and the
beam goes straight through the first dipole, where the
structure is continued with the standard rotator lattice.
Figure 4 illustrates the geometry, the first two
quadrupoles are commonly used by the deflecting and
the straight-through extension modules.
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Figure 4:  Geometry of deflection and straight-through
extension modules.

5  CONCLUSIONS

In this paper the different techniques for matching
therapy beams to gantries are reviewed.  The methods
can be summarised as follows:

Symmetric Beam Method:
x Requires a fully symmetric beam, i.e. equal

emittances and Twiss functions at gantry entrance.
x The dispersion must be zero at the gantry entrance.
x Well suited for beams from cyclotrons.

One-to-one Gantry Method:
x Phase advances in the gantry must be multiples of S

in both  transverse planes.
x Requires a symmetric beam in real space at the

gantry entrance.
x The dispersion must be zero at the gantry entrance.
x Beam sizes change inside the gantry.
x Suited for beams from synchrotrons and cyclotrons,

but non-perfect matching.

Rotator Method:
x Requires an additional quadrupole lattice section

with phase advances of 2S and S in the transverse
planes. This insertion (rotator) has to be rotated
proportional  to the gantry angle.

x In principle, no restrictions on the beam symmetry.
x In principle, no restrictions on the dispersion

function which may simplify the gantry design.
x Well suited for beams from synchrotrons and

cyclotrons.
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